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THE BIGGER PICTURE Federated learning (FL) has emerged as a promising machine learning approach to
enable large-scale analyses across multiple institutions without sharing data. With FL, data remain private
and secure. Data are never shared; only encrypted model parameters are shared and aggregated. This
research exemplifies the potential of FL consortia, critically comparing models trained centrally and in a
federation in the neuroimaging domain. We show that FL performs comparably with respect to centralized
approaches and outperforms them in cases where more sites join the federation than are willing to share
data. Ultimately, we want to raise awareness of the advantages and challenges of FL among biomedical
and healthcare researchers and encourage scientists to establish ever-larger federated consortia to improve
biomedical analysis in real-world settings.
SUMMARY
The amount of biomedical data continues to grow rapidly. However, collecting data from multiple sites for
joint analysis remains challenging due to security, privacy, and regulatory concerns. To overcome this chal-
lenge, we use federated learning, which enables distributed training of neural network models over multiple
data sources without sharing data. Each site trains the neural network over its private data for some time and
then shares the neural network parameters (i.e., weights and/or gradients) with a federation controller, which
in turn aggregates the local models and sends the resulting community model back to each site, and the pro-
cess repeats. Our federated learning architecture, MetisFL, provides strong security and privacy. First, sam-
ple data never leave a site. Second, neural network parameters are encrypted before transmission and the
global neural model is computed under fully homomorphic encryption. Finally, we use information-theoretic
methods to limit information leakage from the neural model to prevent a ‘‘curious’’ site fromperformingmodel
inversion or membership attacks. We present a thorough evaluation of the performance of secure, private
federated learning in neuroimaging tasks, including for predicting Alzheimer’s disease and for brain age
gap estimation (BrainAGE) from magnetic resonance imaging (MRI) studies in challenging, heterogeneous
federated environments where sites have different amounts of data and statistical distributions.
INTRODUCTION

Deep learning and traditional machine learning methods are now

widely applied across biomedical research.1 These methods

have been particularly successful in medical imaging,2 including

image reconstruction and enhancement,3 automated segmenta-
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tion and labeling of key structures,4 computer-aided diagnosis,5

pathology detection,6 disease subtyping,7,8 and predictive ana-

lytics (e.g., modeling future recovery or decline).9

In neuroimaging, there has been great progress in automated

diagnostic classification and subtyping of diseases, such as in

Alzheimer’s disease (AD) and Parkinson’s disease, to assist in
gust 9, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
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patient management and monitoring and to screen patients for

eligibility for clinical trials. Some recent magnetic resonance im-

aging (MRI)-based classifiers have merged data from over

80,000 individuals for diagnostic classification.10 The perfor-

mance of deep learning methods depends heavily on the avail-

ability of large amounts of training data. Unfortunately, data

acquisition is expensive in many areas of biomedical research,

such as neuroimaging. Therefore, any organization or research

group can collect only limited data.

To increase the amount of data to improve the statistical

model’s learning performance, research groups join together

into consortia.11 However, the need to protect patient data

makes data sharing very challenging. Regulatory frameworks,

such as the Health Insurance Portability and Accountability Act

(HIPAA), require strict protection of health records and data

collected for medical research. Privacy laws have spurred

research into anonymization methods, for example, algorithms

to remove facial information from MRI scans.12–14 The inherent

complexity and cost of enforcing security and privacy results in

few large-scale data sharing efforts. Even when large consortia

are established, they often perform only meta-analysis using

traditional statistical methods instead of joint mega-analysis us-

ing deep learning methods. A paradigmatic example of large-

scale meta-analysis is the ENIGMA Consortium.11

Federated learning15–19 has emerged as a promising distrib-

uted approach for performing large-scale cross-institutional

data analysis without moving the data out of their original loca-

tion. Using federated learning, institutions can collaboratively

apply classical statistical methods and train machine and deep

learning models by aggregating the parameters (e.g., weights)

of models trained on institutions’ private data. Since subject

data are never shared and parameters can be protected through

encryption, privacy concerns are ameliorated. Federated

learning is being increasingly applied in biomedical and health-

care domains.19–23 Similarly, in the neuroimaging domain,

many recent works have demonstrated the promise of federated

learning for enabling federated neuroimaging data analysis in

multisite consortia without data sharing.24–28

This paper demonstrates the potential of federated learning to

accelerate and improve research outcomes through decentral-

ized biomedical consortia. We conduct our analysis using

MetisFL, our secure and private federated learning system.

The MetisFL source code and the definitions of the models

used to conduct the experiments in this study are publicly

available on GitHub (https://github.com/bioint/MetisFL) and

Zenodo29 (https://dx.doi.org/10.5281/zenodo.11411754). Our

design is modular, and extensible, and supports a variety of

federated training policies. Here, we present a comprehensive

description of the MetisFL framework and provide a qualitative

comparison with other existing federated learning frameworks.

A systematic quantitative evaluation appears in Stripelis et al.30

The MetisFL architecture26 appears in Figure 1. Each site

trains the neural network over its private data for some time

and then shares the neural network parameters (i.e., weights

and/or gradients) with a federation controller, which in turn ag-

gregates the local models and sends the resulting community

model back to each site, and the process repeats. Federated

training in MetisFL is secure. Data are never shared. Model pa-

rameters are transmitted through secure communication chan-
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nels. Moreover, model parameters are encrypted, and the global

model is computed under fully homomorphic encryption (FHE)

(using CKKS31), so even if the controller were compromised,

the global model could not be attacked. Finally, we use informa-

tion-theoretic methods to limit information leakage from the neu-

ral model to prevent a "curious" site within the federation from

performing model inversion32,33 or membership inference34,35

attacks.

We present a thorough evaluation of the performance of

secure, private federated learning in neuroimaging tasks,

including predicting AD and making a brain age gap estimation

(BrainAGE) from MRI studies, in challenging, heterogeneous

federated environments where sites have different amounts of

data and statistical distributions. Specifically, we show that

research consortia based on federated learning, without data

sharing, can achieve comparable learning performance with

respect to centralized consortia, where data are aggregated

into a single site. We show that our homomorphic encryption

(HE) methods are practical, having little runtime overhead over

unencrypted training. We show defense mechanisms against at-

tacks on federated neural models and the trade-offs between se-

curity and learning performance. In summary, secure federated

learning enables large, decentralized analysis of biomedical

data without the burdens of data sharing. Since the performance

of deep learning models improves with the amount of data used

for training, federated learning over research consortia promises

improvements in disease diagnosis, prognosis, biomarker

detection, and many other advances in biomedical research.

RESULTS

Federated learning can perform comparably with
respect to centralized analysis and even outperform it in
the likely scenario where more sites are willing to join a
federation than are willing to share data
We evaluated centralized and federated learning on two chal-

lenging neuroimaging learning tasks: the BrainAGE regression

task and the AD detection classification task, both on structural

MRI inputs.

For the BrainAGE task, we selected 10,446 MRI scans of

healthy individuals (no neurological or psychiatric diagnoses)

from the UK Biobank (UKBB).36 Figure S1 shows the distribution

of the UKBB samples. We trained and tested a 3D convolutional

neural network (CNN) to predict BrainAGE on diverse centralized

and federated environments. Figure S3 shows the 3D-CNN

model architecture.

Figure 2 shows the performance of the centralized and feder-

ated models in terms of mean absolute error (MAE, y axis) and

wall-clock time execution (x axis). Figure S4 shows model

convergence based on communication cost. We tested four het-

erogeneous federated environments with different amounts of

data per site (uniform, equal number of training samples per

site, and skewed, a decreasing amount of training samples for

each site) and different data distributions per site (IID, indepen-

dent and identically distributed, where the local data distribution

of each site is similar to the global distribution, and non-IID,

where it differs). Figure 3 shows the different data distributions

of the federated sites, and the insets in the plots in Figure 2

show the amounts of data per site. We report the results of

https://github.com/bioint/MetisFL
https://dx.doi.org/10.5281/zenodo.11411754


Figure 1. MetisFL, a secure federated learning architecture

Steps 1–4 demonstrate the execution flow of federated training with encryption.
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centralized training as constant horizontal lines to visualize the

performance gap between centralized and federated models

(centralized models converge much faster). Federated training

achieves the same performance as centralized training in the uni-

form and IID environment. In the harder skewed or non-IID envi-

ronments, there is a (small) gap between centralized and feder-

ated analysis when the same amount of data is available to

both approaches (centralized [100%] in Figure 2).

However, the promise of federated learning is that federated

consortia, which do not require data sharing, can enroll more

sites than centralized consortia, which require data sharing.

Therefore, we also show the performance of centralized systems

that can obtain only a fraction of the data of the federated sys-

tem, specifically 50% or 20% of the data; in other words, the

federation is composed of sites that in total have double or five

times the amount of data that can be collected or aggregated

centrally. Table S1 shows the number of MRI scans per age

bucket used to train the centralized (100%, 50%, 20%) and

federated models. All models are evaluated against the same

test set of 2,090 samples. Federated training significantly out-

performs a centralized system when the federation reaches

five times more data, which is feasible, and outperforms or

matches centralized trainingwhen the federation reaches double

the data, which is a reasonable assumption. We expect that

without the burden of data sharing, much larger federated con-

sortia can be formed and yield better analyses.
For the AD detection task, we analyzed three well-known

studies: the Alzheimer’s Disease Neuroimaging Initiative

(ADNI),37 with its three phases ADNI 1, ADNI 2, and ADNI 3;

the Open Access Series of Imaging Studies (OASIS)38; and the

Australian Imaging, Biomarkers & Lifestyle Flagship Study of

Ageing (AIBL).39 These studies contain T1-weighted brain MRIs

taken from patients with different degrees of dementia and

healthy subjects acting as controls. For our work, we used only

images from control subjects and patients diagnosed with AD.

These studies are longitudinal. To obtain unbiased performance

estimates, all the samples for a given subject appeared either in

the training or the test set. Table 1 shows the numbers of training

and testing samples from each study and the target labels.

We compared the performance of models trained on each sin-

gle study (ADNI-{1,2,3}, OASIS-3, and AIBL), a centralizedmodel

with the data of all studies, and models trained on a federation

with an increasing number of sites/cohorts, that is, a federation

of three sites, with each of the three ADNI phases (ADNI-

{1,2,3}); a four-site federation (ADNI-{1,2,3} + OASIS-3); and a

five-site federation (ADNI-{1,2,3} + OASIS-3 + AIBL). All environ-

ments trained the same 3D-CNN neural architecture (shown in

Figure S3). In Table 2, we report every model’s mean and stan-

dard deviation values over three execution runs. The model ob-

tained by the federation outperforms models trained at any sin-

gle site and has comparable AUC ROC with respect to the

centralized model trained over all the data. The AUC ROC
Patterns 5, 101031, August 9, 2024 3



Figure 2. Comparing centralized and federated training on the BrainAGE task

Centralized (100%), (50%), and (25%) represent the models trained using all, half, and a quarter of the available data in a federation, respectively. For the last two

cases, the centralized data were assembled starting from the site with the largest number of data samples. The federated models were trained using the syn-

chronous, semi-synchronous, and asynchronous training policies. Federated training is comparable to centralized in the uniform and IID environment. For the

hardest environment, skewed and non-IID, a federation that accumulates twice the data of a centralized consortium yields a significantly better performingmodel.
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provides a robust measure of classifier performance, since it

does not depend on a specific threshold. A larger difference in

precision and recall values reflects a sensitivity to the classifica-

tion threshold likely due to the class imbalance. The greater the

number of cohorts participating in the federation, the better the

predictive performance of the learned model is.

Fully homomorphic encryption can efficiently protect
federated learning against attackers outside the
federation
Neural models can memorize training data and are susceptible

to model inversion attacks32,33 or membership inference at-

tacks.34,35 Thus, if the sites shared unprotected models with

the federation controller, or the models were captured in transit,

an attacker may obtain private information. To prevent such at-

tacks against the local neural models, we use FHE, specifically

the CKKS scheme.31 The sites encrypt their local models before

transmission and the federated controller aggregates themodels

in an encrypted space.

Previous work40,41 has studied secure aggregation using

masking40 for cross-device settings with frequent dropouts or

for simple non-weighted aggregations over large plaintext
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spaces.41 However, these approaches implicitly trust the

controller with the global model,40,41 whereas our work adopts

a threat model where the controller is untrusted. FHE is crucial

in this setting, as it ensures that no information about the local

or global models is revealed to the controller during the aggrega-

tion process. Our findings underscore that privacy attacks, such

as membership inference attacks, pose a significant privacy risk

(see Figure 5). While employing FHE introduces a moderate

computational and communication overhead (see Figures 4

and S5), the enhanced security and privacy guarantees,

including safeguarding against inference attacks by a malicious

controller and protecting the consortium’s intellectual property,

are well worth its cost.

We evaluated the learning performance of CKKS FHE on the

BrainAGE prediction task over four federated learning environ-

ments using a 3D-CNN model with 3 million parameters (Fig-

ure S3). Figure 4 demonstrates that the inclusion of FHE, thanks

to our optimizations, introduces a minimal runtime overhead

compared to training without encryption. Specifically, the execu-

tion time for synchronous federated averaging15 (SyncFedAvg)

with encryption shows only a slight increase (�7%) compared

to its unencrypted counterpart. Furthermore, Figure S5 shows



Figure 3. The age distribution of the UKBB MRI scans allocated to each silo/site/learner (denoted as G:i) on the four federated learning en-

vironments investigated in the BrainAGE prediction task. For every distribution the small white box next to the plot shows its standard de-

viation (s) and mean (m)
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a model convergence comparison based on communication

cost. These findings underscore the ability of our framework to

offer robust privacy protections with only a marginal increase

in training time, making it a practical solution for secure feder-

ated learning.

Federated learning is vulnerable to insider attacks
Our architecture uses HE for secure communication and aggre-

gation of parameters. Thus, the system is protected against at-

tacks from outside the federation or a compromised controller.

However, each learner needs to decrypt the community model

for local training. Therefore, a curious site inside the federation

may attempt a model inversion attack32,33 or a membership

inference attack34,35 against the community model (the local

models of the other learners are protected through encryption).

Model inversion attacks against the global federation model

are impractical in realistic settings, since learners train the global

model locally for a large number of local iterations, and the local

models are aggregated. Therefore, the risk of leaking any identi-

fiable information from the global model in realistic settings is

limited.42,43 In contrast, membership inference attacks are very

successful. A site can use private local subject data to probe

the federated community model and discover if such data

were used for training. Discovering that the MRI scan of a partic-

ular subject was used for training the model can reveal informa-

tion about a person’s medical history or participation in some

sensitive medical study.44

Figure 5 shows the increasing vulnerability of community

models with each federation round. We used the features and

architecture in Gupta et al.44 to conduct the membership infer-

ence attacks. We measured vulnerability as the average accu-

racy of detecting that an MRI was used for training over 56

different datasets (see experimental procedures). As training

progresses, the neural network learns more information about

the samples, and it becomes easier to identify MRIs partici-

pating in training. Notably, in the uniform and IID environment,

attack success reached 80%. Previous works44–47 have also

found a strong correlation between overfitting and vulnerability

to these attacks. We see that data distribution across silos may

impact vulnerability. Models trained over more homogeneous

(IID) data distributions across silos are more vulnerable than

heterogeneous data distributions (non-IID). Non-IID distribu-
tions often train slowly, with implicit regularization due to

each local model being trained on different distributions, thus

reducing overfitting. Overall, vulnerability increases during

training, suggesting a trade-off between learning performance

and privacy risk.

Federated training with gradient noise protects against
membership attacks from insiders
The success of privacy attacks is often attributed to the ability of

learning algorithms to memorize information about a single sam-

ple.48 Therefore, defending against data privacy leakages in-

volves limiting the information the learning algorithmmay extract

about each sample or limiting information in the neural network’s

weights. We explore approaches to limit the vulnerability to

membership inference attacks: differential private training via

DP-SGD49 and stochastic gradient descent (SGD) with non-

unique gradients.

Figure 6 shows the privacy and learning performance trade-

off when sites are trained with small-magnitude Gaussian

noise and our non-unique gradient approach. Both ap-

proaches can reduce the vulnerability of the global model to

privacy attacks. The standard deviation of Gaussian noise

used in our experiments is varied between 10�4 and 10�1,

which corresponds to ε> 1010 for any reasonable d, when

considering ðε; dÞ-DP. As such, when trained at such noise

levels, the models would not have privacy guarantees of differ-

ential privacy. Nonetheless, even though the magnitude of

Gaussian noise is much smaller than the theoretically required

differential privacy guarantees, it effectively reduces member-

ship inference attacks.

Varying capabilities across federated learning
frameworks
Many federated learning architectures have recently become

available to address optimization and system challenges for

different domains, e.g., biomedical and finance, including

OpenFL,50 Nvidia FLARE,51 Flower,52 FedML,53 IBM FL,54

PriMIA,55 Substra,56 Fed-BioMed,57 FATE,58 FedScale,59 and

COINSTAC60 frameworks. In Table 3, we provide a qualitative

comparison for all the aforementioned federated learning frame-

works from the perspective of supported functionalities,

following the taxonomy in the works of Li et al.,61 Kairouz
Patterns 5, 101031, August 9, 2024 5



Table 1. Train and test data splits per cohort for the Alzheimer’s

disease prediction task

Train set Test set

Cohort Alzheimer’s controls Alzheimer’s controls

OASIS-3 315 1,113 68 209

AIBL 113 642 28 160

ADNI-1 759 940 299 256

ADNI-2 534 1,137 185 399

ADNI-3 90 388 26 118

Total 1,811 4,220 606 1,142
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et al.,62 and Liu et al.63 Even though COINSTAC provides a

powerful platform for decentralized neuroimaging analysis, we

did not consider it in our evaluation, since it has limited support

for deep learning methods and is not tailored for federated

learning settings. We compared the frameworks based on their

functionalities offered by their open-source versions. Specif-

ically, we considered six categories: deployment, data parti-

tioning, security and privacy, topology, communication, and

software.

In the deployment category, we considered the cases where a

federated learning framework can execute a federated learning

application in a simulated environment, i.e., as parallel pro-

cesses/threads within a single server, distributedly across multi-

ple servers (cross-silo) or edge devices (cross-device). All frame-

works support simulation and cross-silo deployments. Flower,

FedML, FATE, and FedScale have tailored capabilities for

cross-device environments. The other frameworks could be

applied in cross-device environments but are not a specific focus.

In the data partitioning category, we evaluated whether a sys-

tem supports federated model training over federated learning

environments with horizontally or vertically partitioned data dis-

tributions.16 The horizontally partitioned learning environments

are supported by all frameworks. Only FATE and FedML support

machine and deep learning methods over the more challenging

vertically partitioned data.64 Given that data about a patient are

often distributed across many health-care organizations, our im-
Table 2. Alzheimer’s disease prediction

Model Accuracy Precision Recall

(C) ADNI-{1,2,3} 0.8570 ± 0.0090 0.7940 ± 0.0311 0.8270 ± 0.

(C) OASIS-3 0.4428 ± 0.0194 0.3686 ± 0.0036 0.7447 ± 0.

(C) AIBL 0.8050 ± 0.0044 0.7246 ± 0.0153 0.7577 ± 0.

(C) ADNI-{1,2,3} +

OASIS-3 + AIBL*

0.8612 ± 0.0106* 0.7977 ± 0.0350* 0.8287 ± 0.

(F) ADNI-{1,2,3} 0.8462 ± 0.0043 0.8148 ± 0.0189 0.8048 ± 0.

(F) ADNI-{1,2,3} +

OASIS-3

0.8474 ± 0.0073 0.7955 ± 0.0126 0.8296 ± 0.

(F) ADNI-{1,2,3} +

OASIS-3 + AIBL*

0.8633 ± 0.0013* 0.8098 ± 0.0043* 0.8132 ± 0.

Test results on a global stratified test dataset (five sites), and for each datase

and a federation of three sites (ADNI-{1,2,3}), four sites (ADNI-{1,2,3} + OAS

centralized and federated environments with (C) and (F). In the federated en

vironments were trained over all the corresponding datasets. The evaluation

sent the best performance for the centralized (C) and federated environmen
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mediate plan is to extend MetisFL to support vertical federated

settings as well.

In the security and privacy category, we assessed whether a

framework supports the TLS (Transport Layer Security) protocol,

the type of the secure aggregation (SecAgg) protocol and the

cryptographic library (Crypto lib) used for executing the protocol,

and support model training under differential privacy (e.g., DP-

SGD or local or central differential privacy65). All frameworks

support private model training and execution using TLS;

PriMIA is the only framework not supporting TLS. Regarding

the secure aggregation protocol, Nvidia FLARE, IBM FL,

FedML,66 and MetisFL support FHE through the CKKS31 con-

struction scheme. FedML also uses a mask-based encryption

approach through a native library implementation (see

LightSecAgg67), similar to Flower (see Salvia68). PriMIA supports

secure multiparty computation (SMPC) through the SPDZ69

scheme. FATE supports SMPC and partial HE (PHE) through

the Paillier (BatchCrypt70) construction scheme, and OpenFL

operates on a hardware-integrated trusted execution environ-

ment (TEE71). Fed-BioMed uses a multiparty computation

(MPC) protocol. Unfortunately, for Substra and FedScale, we

could not find any information on their online documentation or

open-source code on their secure aggregation schemes.

The topology category compares the federated learning topol-

ogies under which each system operates. Centralized topology

refers to federated learning environments where communication

across learners is established through a centralized controller. In

contrast, decentralized topology refers to the federated learning

environments where no controller is present, and learners

communicate through a peer-to-peer protocol. Finally, hierarchi-

cal topology captures federated learning environments that may

consist of a lead and a sub-controller.19 Our analysis shows that

all systems can operate in a centralized federated learning envi-

ronment. FATE and FedML are the only frameworks supporting

decentralized environments. None of the systems support hier-

archical training.

Another category we considered in our evaluation is the

communication protocol and the communication layer that

each framework can support during federated execution. Even
F1 AUC PR AUC ROC

0288 0.8095 ± 0.0080 0.8639 ± 0.0052 0.8954 ± 0.0057

0518 0.4927 ± 0.0091 0.3396 ± 0.0020 0.4631 ± 0.0047

0172 0.7405 ± 0.0022 0.7990 ± 0.0005 0.8526 ± 0.0017

0271* 0.8122 ± 0.0091* 0.8683 ± 0.0130* 0.8986 ± 0.0051*

0194 0.8095 ± 0.0038 0.8791 ± 0.0039 0.8967 ± 0.0012

0026 0.8121 ± 0.0077 0.8766 ± 0.0007 0.8920 ± 0.0014

0097* 0.8114 ± 0.0031* 0.8682 ± 0.0009* 0.8971 ± 0.0006*

t by itself in a centralized environment (ADNI-{1, 2, 3}, OASIS-3, and AIBL),

IS-3), and all five sites (ADNI-{1,2,3} + OASIS-3 + AIBL). We denote the

vironments, each dataset was located at a different site. Centralized en-

was conducted over three different runs. Values with asterisks (*) repre-

ts (F).



Figure 4. Synchronous federated learning

training (SyncFedAvg) with and without ho-

momorphic encryption using the CKKS

scheme on the BrainAGE task for the 3D-

CNN model

The vertical markers represent the training time it

takes for each approach to complete 20 federation

rounds. Training with encryption incurs only 7%

runtime overhead. SyncFedAvg, synchronous

federated averaging.
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though all systems support synchronous communication and

aggregation, they lack support for asynchronous protocols. In

contrast, MetisFL supports synchronous (including semi-syn-

chronous) and asynchronous execution. According to Flower’s

and FedML’s documentation, they plan to support asynchro-

nous execution soon. Concerning the communication layer,

every reported system uses gRPC to establish communication

across all system services, except for FedML, IBM FL, and

Fed-BioMed, which also use gRPC, MPI, and MQTT protocols;

AMQP; and MQTT, respectively.

Compared to the previously reported dimensions,61–63 we also

considered the programming language used to develop each

component in the federated learning system, namely the

controller and the learner. Across all reported systems, both

components are developed in Python, except for Substra and

MetisFL. Substra’s controller is implemented in Go, while

MetisFL’s aggregator is implemented in C++. In our original im-

plementation,72 we also developed the aggregator component in

Python. However, this approach led to a high latency when

aggregating large-sized models and scheduling training and

evaluation jobs across multiple clients (e.g., >200) due to Py-

thon’s limited memory management capabilities. Python inter-

nally relies on the global interpreter lock (GIL) for proper thread

management, and this hindered the concurrent execution of

tasks and, therefore, slowed down the federated execution

workflow dramatically.

In MetisFL, the federation controller is considered a first-class

citizen of the entire system. By redesigning and refactoring the

controller in a native C++ implementation, we were able to signif-

icantly optimize a range of controller-specific operations (e.g.,

tensor aggregation and network transmission) and achieve a

10- to 100-fold improvement against other leading FL frame-

works.30 Figure 7 demonstrates an evaluation of MetisFL

compared to existing open-source frameworks regarding the to-

tal federation time, including model training, aggregation, and

evaluation. The evaluation is conductedwith amultilayer percep-

tron (MLP) model consisting of 10 million trainable parameters
over an increasing number of learners

(10, 25, 20, 100, 100, or 200), with full client

participation at every round. As shown in

the figure, for large-scale federations con-

sisting of 100 and 200 learners, MetisFL

with and without the use of OpenMP73

leads to a 10-fold improvement compared

to Flower and FedML, while other frame-

works, such as IBM FL and NVFlare, fail

to complete the federation round within a
reasonable time. A more thorough and fine-grained evaluation

of other system metrics can be found in our recent work.30

DISCUSSION

Dementia affectsmore than 50million peopleworldwide, and this

number could exceed 152 million by 2050,74 with AD being the

leading cause. Recently, deep learning has been applied to iden-

tify AD fromstructural brainMRI scans.10,75–77 Similar in spirit, the

BrainAGE task is another pathway toward assessing the acceler-

ation or deceleration of an individual’s brain aging through struc-

tural MRI scans. The difference between the true chronological

age and the predicted age of the brain is considered an important

biomarker for early detection of age-associated neurodegenera-

tive and neuropsychiatric diseases,78,79 such as cognitive im-

pairements,80 schizophrenia,81 and chronic pain.82

Recently, deep learning methods based on RNN83,84 and

CNN85–88 architectures have demonstrated accurate brain age

predictions. We extended these methods to train a 3D-CNN

model over centralized and federated environments with highly

heterogeneous data distributions72,89 for the BrainAGE and AD

prediction tasks. We show that federated learning can achieve

comparable performance relative to centralized training. We

posit that, ultimately, federated consortia will allow one to

analyze much greater quantities of data, since they sidestep

many of the challenges of centralized data sharing.

We use HE90 to ensure that models are protected from at-

tacks from outside the federation. HE is a public-key encryption

scheme91 that enables certain computations (e.g., additions or

multiplications) to be directly performed over encrypted data

without decrypting them first. This distinct computational prop-

erty renders HE a valuable cryptographic scheme for preser-

ving data privacy in distributed settings, as untrusted parties

can be tasked with performing operations over ciphertexts.

In our setting, we consider an honest-but-curious threat

model and assume the participating parties do not collude

with each other. To ensure secure model communication and
Patterns 5, 101031, August 9, 2024 7



Figure 5. Privacy vulnerability increases with federation rounds

Vulnerability is the average accuracy of distinguishing train samples vs. un-

seen samples across sites.
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aggregation, we use CKKS, an FHE scheme.31 Compared to

the Paillier scheme used in past works,70,92 CKKS supports

arithmetic operations over real and complex data and is orders

of magnitudes faster and can support an unbounded amount of

additions and multiplications over encrypted data. While some

previous works70,92,93 may leak the global model to the

controller, our protocol ensures that no global model leakage

occurs at the controller.

Even though federated learning avoids sharing datasets, and

model transmission and aggregation can be protected through

encryption, the clients have access to the unencrypted model,

whose parametersmay reveal private information. Variousworks

have highlighted this through practical privacy attacks such as

model inversion32,33 and membership inference34,35 attacks, in

both centralized and federated settings. Researchers have
8 Patterns 5, 101031, August 9, 2024
focused on reducing overfitting,46,47 limiting information in acti-

vations and weights,48 or using differential private mechanisms

to alleviate such privacy concerns. Learning under differential

privacy is particularly attractive, as it comes with theoretically

solid worst-case guarantees. However, these works assume

different threat models. For example, Wei et al.94 assume that

the server can be trusted, whereas Noble et al.95 and Zhao

et al.96 consider a stricter threat model, considering the server

as honest but curious, similar to us. Rather than using a theoret-

ical upper-bound measure of privacy, we focus on a more prac-

tical measure (i.e., membership inference attacks). We study

membership inference attacks in our framework using the

white-box experimental setup from Gupta et al.44 We assume

that the attacker has access to the model, some samples that

participated in the training, and some samples the attacker is

curious about. We show that federated training with noise pro-

tects the models from attacks and the trade-off between protec-

tion and learning performance.

In summary, we have presented the MetisFL secure and pri-

vate federated learning system, a practical, extensible architec-

ture supporting a variety of communication protocols with strong

privacy and security mechanisms. Specifically, MetisFL protects

against attacks from outside the federation through efficient HE

and against insider attacks by adding small, targeted noise dur-

ing federated training. We demonstrated its efficacy in neuroi-

maging tasks, BrainAGE estimation, and AD prediction over

challenging statistically heterogeneous environments. We

showed that federated learning can achieve the same learning

performance as centralized learning in realistic environments.

In hard heterogeneous environments, a small performance gap

remains. We expect that centralized consortia, which require

data sharing, will include fewer sites than federated consortia,

which do not share data. We posit that the larger consortia using

federated learning promise to yield better analysis and greater

advances in biomedical research.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Correspondence and requests for materials should be addressed to Dimitris

Stripelis at stripeli@isi.edu.
Figure 6. Vulnerability vs. performance
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gradients approaches

Lower vulnerability and lower MAE are desired, i.e.,

points toward the bottom left are better.

mailto:stripeli@isi.edu


Table 3. A qualitative comparison of different federated learning systems

Category OpenFL NVFlare Flower FedML IBM FL PriMIA Substra Fed-BioMed FATE FedScale MetisFL

Deployment

Simulation U U U U U U U U U U U

Cross-silo U U U U U U U U U U U

Cross-device + + U U + + 3 + U U +

Data partitioning

Horizontal U U U U U U U U U U U

Vertical 3 3 3 U 3 3 3 3 U 3 3

Security and privacy

Private training U U U U U U U U U U U

SecAgg TEE FHE masking masking j
FHE

FHE SMPC ? MPC SMPC | PHE ? FHE

Crypto lib Graphene TenSeal native native j
PALISADE

HElayers PySyft ? MP-SPDZ native ? PALISADE

TLS U U U U U 3 U U U U U

Topology

Centralized U U U U U U U U U U U

Decentralized 3 3 3 U 3 3 U 3 U 3 3

Hierarchical 3 3 3 3 3 3 3 3 3 3 3

Communication

Synchronous U U U U U U U U U U U

Asynchronous 3 3 3 3 3 3 3 3 3 3 U

Network gRPC gRPC gRPC gRPC j MPI j
MQTT

AMQP gRPC gRPC MQTT gRPC gRPC gRPC

Software

Learner Python Python Python Python Python Python Python Python Python Python Python

Controller Python Python Python Python Python Python Go Python Python Python C++

U, supported; 3 , not supported; +, possible, but not focus; ?, unknown.
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Materials availability

This study did not generate materials.

Data and code availability

This is a study of previously collected, anonymized, deidentified data avail-

able in a public repository. For the UKBB data, access was approved by

the UKBB under application no. 11559. All other datasets analyzed during

the current study are available in the ADNI (https://adni.loni.usc.edu/),

OASIS-3 (https://www.oasis-brains.org/), and AIBL (https://aibl.csiro.au/) re-

positories. Further information is available in published articles for ADNI97

and OASIS-3.38 All the original code of the MetisFL framework has been

deposited at Zenodo29 (https://dx.doi.org/10.5281/zenodo.11411754) under

https://doi.org/10.5281/zenodo.11411754.1 and is publicly available as of

the date of publication. Any additional information required to reanalyze

the data reported in this paper is available from the lead contact upon

request.

Federated learning

A federated learning environment consists of N sites (learners or clients) that

jointly train a machine learning model, often a neural network. The goal is to

find the model parameters w� that optimize the global objective function

FðwÞ : w� = argmin
w

FðwÞ =
PN

k = 1
pk

PFkðwÞ, where FkðwÞ denotes the local

objective function of learner k˛N optimized over its local training dataset

Dk . The global model, FðwÞ, is computed as a weighted average of the

learners’ local models, P =
PN

k jpk j. A typical policy,15 which we follow in

this paper, is to weigh each local model based on the number of training ex-

amples it was trained on, i.e., pk = jDk j, P =
PN

k jDk j, although other

methods are possible.16,98,99 Typically, each learner uses SGD to optimize
its local objective on its local dataset. At a given synchronization point,

each learner shares its local model parameters with the federation controller,

which aggregates the local models (e.g., using weighted average) to

compute a global (or community) model and sends it back to the learners,

and the process repeats. Each such cycle is called a federation round.

This iterative process was first introduced in the seminal work of Tian and

Gu,15 and it is termed as FedAvg.

More recent works100–102 have proposed a more general federated learning

optimization framework where the optimization problem is split into server side

(global) and client side (local). Server side aims to optimize the merging/aggre-

gation rule of the learners’ local model updates, and the client side aims to

optimize learners’ local model training. During training, a learner shares local

model parameters only with the federation controller. Each local dataset re-

mains private.

Predicting BrainAGE

In our experiments we use the same 3D-CNN architecture as in Stripelis

et al.,89 but without the dropout layer. This slight modification improved

the learning performance on the BrainAGE task for both the centralized

and the federated models across all environments. The training and testing

datasets follow Stripelis et al.72,89 We selected 10,446 scans from the

UKBB36 dataset with no indication of neurological pathology and no psychi-

atric diagnosis as defined by the ICD-10 criteria. All scans were evaluated

with a manual quality control procedure and processed using a standard pre-

processing pipeline with non-parametric intensity normalization for bias field

correction and brain extraction using FreeSurfer and linear registration to a

ð2 mmÞ3 UKBB minimum deformation template using FSL FLIRT. The final di-

mensions of each scan were 91 3 109 3 91. Of the 10,446 scans, we used
Patterns 5, 101031, August 9, 2024 9
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Figure 7. A comparison of the MetisFL framework to other open-

source federated learning frameworks: Flower, IBM FL, NVFlare,

and FedML

Inside the parentheses, we state the communication protocol (gRPC or Flask)

and the optimizations (OpenMP) used to run each framework. The perfor-

mance across all frameworks is measured as the total time (in seconds, log-

arithmic y axis) it takes to complete a federation round when training an MLP

model with 10 million parameters over an increasing number of learners, i.e.,

10, 25, 50, 100, or 200. MetisFL greatly improves federated training time, by

almost a 10-fold improvement compared to Flower and IBM FL, while NVFlare

and FedML fail to complete within a reasonable time in large-scale federations,

i.e., federations with 100 and 200 learners.
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8,356 for training and 2,090 for testing. We generated four computationally

and statistically heterogeneous federated learning environments comprising

eight sites (learners). Computationally, the first four learners were equipped

with NVIDIA GeForce GTX 1080 Ti GPUs, while the last four had (faster)

Quadro RTX 8000 GPUs.

For data amounts, we considered both uniform, an equal number of

training samples per learner, and skewed, a decreasing amount of training

samples for each learner. For data distributions, we considered both IID, in

which the local data distribution of each learner contains scans with

the same distribution as the global age distribution, and non-IID, different

age distributions. We tested synchronous (SyncFedAvg), asynchronous

(AsyncFedAvg), and semi-synchronous (SemiSyncFedAvg)72 federated

training policies, all using the training data size as a weighting rule. We eval-

uated the performance of all policies against the same holdout test dataset

to estimate the MAE between individuals’ true chronological brain age and

their predicted age.

Each site (learner) is trained using SGDwith a learning rate of 53 10� 5 and a

batch size of 1. For SyncFedAvg and AsyncFedAvg, local training was per-

formed over four epochs. For SemiSyncFedAvg, we evaluated synchroniza-

tion periods l equivalent to the time it took the slowest learner to complete

four or two epochs. AsyncFedAvg uses the caching method we introduced

in Stripelis et al.,72 significantly improving performance. The controller stores

each learner’s most recently committed local model in a cache.When a learner

issues an update request, the controller replaces its previously cached model

and computes the new global model by performing a weighted average using

all cached models.

Figure 2 compares the learning convergence of the training policies based

on elapsed execution (wall-clock) time; we also provide a comparison in terms

of communication cost in the supplemental information. In IID environments,

both for uniform and for skewed data amounts, federated training achieves

comparable learning performance (MAE) relative to centralized training. The

asynchronous protocol, AsyncFedAvg, is competitive in task performance
10 Patterns 5, 101031, August 9, 2024
but requires significantly more communication. SemiSync has fast conver-

gence with low communication costs.

With centralized 20%, 50%, and 100%, we aim to emulate small, medium,

and large research consortia that have established data sharing agreements

to share their local data with a central authority for further analysis. To generate

the centralized datasets for every environment, we start assigning data sam-

ples from the silo owning the majority of data samples (i.e., silo:1) until we

reach 20% or 50% of the total data. That is, we assume that the first few

(largest) sites in the consortia decide to share data. All models (centralized

and federated) are evaluated on the same test dataset.

Predicting AD

In our evaluation, we studied three prominent AD studies: the three phases of

ADNI,37 OASIS-3,38 and AIBL.39 Images across all sites were preprocessed

following the pipeline in Dhinagar et al..75 First, images were reoriented using

fslreorient2std (FSL v.6.0.1) so as to match the orientation of standard tem-

plate images. Then, brain extraction was performed: skull parts in the image

were removed using the HD-BET CPU implementation, and gray- and white-

matter masks were extracted using FSL-FAST (FSL v.6.0.1 Automated Seg-

mentation tool). An intensity normalization step (N4 bias field correction) using

ANTs (v.2.2) followed. Next, linear registration to a UKBB minimum deforma-

tion template was obtained by using the FSL-FLIRT (FSL v.6.0.1 Linear Image

Registration tool) with 6 degrees of freedom. Finally, an isometric voxel resam-

pling to 2 mm was applied using the ANTs ResampleImage tool (v.2.2). The

actual size of the images after the preprocessing was volumes of 91 3

1093 91 voxels. In our previous work,103,104 we developed methods for scan-

ner invariant representations and imaging harmonization; however, we did not

apply these techniques in the experiments, since the images had already been

processed through a common pipeline.

We trained a 3D-CNN neural model over a federation of three (ADNI

phases), four (ADNI phases + OASIS), and five learners (ADNI phases +

OASIS + AIBL). Table 2 shows the performance of the federated and the

centralized models. The federated models were trained using the synchro-

nous protocol (i.e., SyncFedAvg) for 40 federation rounds, with each learner

training locally for four epochs in-between rounds. The centralized models

were trained for 100 epochs. All models were trained using Adam with

Weight Decay with a learning rate of 1e�5 and weight decay of 1e�4. All ex-

periments were run three times, and the results show the average and stan-

dard deviation of the metrics.

Secure FL using FHE

Figure 8 presents the secure federated training pipeline of our MetisFL sys-

tem. We use HE to communicate the (encrypted) local and global models

between the federation controller and the learners and compute the new

global model by aggregating learners’ local models in an encrypted space.

Training starts with an initial configuration phase, where the federation driver

generates the HE key pair (private and public key) and the original neural

model state. The federation controller receives only the model definition

and the public key from the driver, since it only needs to perform the private

weighted aggregation of local models. In contrast, the learners need private

and public keys during training. The private key is used to decrypt the en-

crypted global model received by the controller to perform their local

training (or model evaluation) over their local private dataset, and the public

key is used to encrypt the locally trained model before being shared with the

controller.

We used a similar training pipeline in Stripelis et al.26 However, in our previ-

ous work, we encrypted the entire model into a single ciphertext, which

created scalability issues for large models. To mitigate this, in MetisFL, we en-

crypted the model on a matrix-by-matrix basis, allowing for a collection of ci-

phertexts to be communicated between learners and the controller instead of

just a single ciphertext. Thereafter, the controller performs the private

weighted aggregation over the collection of ciphertexts from all learners. In

addition, we divided the model parameters into batches processed in parallel,

leading to a much faster encrypted computation.

Figure 9 demonstrates the effect of batching multiple model parameters on

the size of the encrypted model. Batching multiple parameters into a single

ciphertext helps us reduce the overall model size and allows us to leverage

SIMD (single instruction multiple data) for faster processing of encrypted



Figure 8. Homomorphic encryption training pipeline in the MetisFL framework using the synchronous communication protocol

After the federation configuration, the controller sends the original encrypted model to each learner, the learners decrypt and train the received global model and

then encrypt and send the new local model to the controller, and the controller aggregates the encrypted models, and a new federation round begins.
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models. The CKKS parameters are multiplicative depth of 1, 52 scale factor

bits, batch size of 4,096, and security level of 128 bits.

Membership inference attacks

To conduct the membership inference attacks, we used the same features and

architecture as in Gupta et al.44 for training models to predict membership. We

trained the attack model for each learner by creating a training set from their

training samples and samples not seen during the model training. Finally, we

computed how accurately we can predict the training samples of all the other

learners vs. samplesnot used for training.Wecreateda balanced set of samples

used for training and unseen samples (i.e., the test samples) fromeach learner to

compute this accuracy. We report the average of these 56 accuracy values as

the vulnerability score—each learner trains attack models (i.e., eight attackers)

and predicts train vs. unseen on samples from the seven other learners.
Gaussian noise

Differential privacy is a formal framework to reason about privacy. A differen-

tial private training mechanism ensures that the outcomes (i.e., final model

weights) do not change much between two training sets that differ by one

example.105 For training brain age models with differential privacy guaran-

tees, we use the DP-SGD algorithm.49 Briefly, the principal modifications

to SGD to limit the influence of a single sample are to clip the gradients

from each sample not to exceed a maximum norm and to add spherical

Gaussian noise. We update each learner during federated training with these

private gradients. During initial experiments, we found that achieving non-

vacuous differential privacy guarantees requires adding significant Gaussian

noise to the gradients, which annihilates learning performance. However,

we observed that practical privacy attacks, such as membership inference

attacks, can be thwarted by adding Gaussian noise of much smaller
Figure 9. Relation between the encrypted

model size and the batch size of the CKKS
scheme

The encrypted model size is reduced as we in-

crease the batch size of the FHE scheme (scaling

factor bits, 52; security level, 128).
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magnitudes.106 Therefore, we evaluated training with gradients with a small

additive Gaussian noise.

Learning with non-unique gradients

To learn goodmachine learningmodels, wewould like to extract patterns while

ignoring information about specific samples. Training models using gradient

descent can leak an individual’s information during training because there is

no restriction on what information a sample may contribute. Thus, the model

may preserve information unique to each individual, leaking privacy. Differen-

tial privacy adds the same noise to all gradients to limit the information or influ-

ence of a single sample on the neural network, but that may also destroy useful

information in an attempt to reduce memorization. We investigated removing

unique information from each sample’s gradient and training with only non-

unique parts. We computed the gradient of the loss (L) with respect to param-

eters (q) for each sample (xi ; yi ) in a batch (B), i.e., gi = VqLðfðxi ; qÞ; yiÞci˛
f1.Bg. To compute the non-unique part, we projected each gradient vector

on the subspace spanned by the rest of the gradient vectors (gspan
i ). We

considered the residual part as the unique information about each sample

(i.e., gunique
i = gi � gspan

i . Ideally, we would like to train with only the non-

unique part. However, we observed that it may harm the performance too

much. Therefore, we downweighed the effect of the unique part and used

bgi = gspan
i +agunique

i ;a< 1 to update the model at local learners; a is a hyper-

parameter that we tune to trade off privacy and performance.

We hypothesized that the small additive noise is enough to reduce the

mutual information between data and neural network outputs/activations,

which limits the success of membership inference attacks.48 In IID environ-

ments, non-unique gradients perform similar to adding Gaussian noise. How-

ever, they are significantly faster to train. The Gaussian noise models

required training for 40 rounds, whereas the non-unique gradients required

only 25 rounds. Training with Gaussian noise in non-IID environments pro-

vides a better trade-off than non-unique gradients. This may be due to

learners overfitting to private datasets earlier in training, thus deviating

from the community model. In summary, both small-magnitude Gaussian

noise added to gradients and non-unique gradients are effective at prevent-

ing membership attacks.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2024.101031.
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