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Abstract
Targeting epigenetic modification of gene expression represents a promising new
approach under investigation for the treatment of inflammatory diseases. Accu-
mulating evidence suggests that epigenetic mechanisms, such as histone modifi-
cation, play a crucial role in a number of inflammatory diseases, including
rheumatoid arthritis, asthma, and contact hypersensitivity. Consistent with this
role, histone deacetylase (HDAC) inhibitors have shown efficacy in the treatment
of inflammatory diseases. In particular, selective inhibitors of HDAC6, a cyto-
plasmic member of the HDAC family that contains two deacetylase domains, are
under investigation as a potential treatment strategy for inflammatory diseases
due to their ability to regulate inflammatory cells and cytokines. Here, we review
recent findings highlighting the critical roles of HDAC6 in a variety of inflamma-
tory diseases, and discuss the therapeutic potential of HDAC6 inhibitors in these
settings.

Introduction

Inflammation is a common and important physiological
process that is activated in response to infections, such as
bacteria and virus, of the body surface and organs of body
surfaces, and organs in mammals.1–3 Many common
lesions and frequently occurring diseases, such as boils,
carbuncles, pneumonia, hepatitis, and nephritis, are associ-
ated with inflammation.4–8 Thus, the molecular pathways
associated with inflammation are under active investigation
to identify new therapeutic targets for treatment of a vari-
ety of illnesses.
Histone deacetylase 6 (HDAC6) is a unique member of

the HDAC family that has been shown to be involved in
multiple cellular processes, including cell migration and
intracellular transport.9–11 Recent studies also showed the
vital role of HDAC6 in the innate immune response to
intracellular bacterial infections through Toll-like receptor-
mediated signaling.12 Improper activation of HDAC6 has
been observed in a variety of diseases, including cancer
and neurodegenerative disorders, and small molecule drugs
targeting HDAC6 are under active investigation as thera-
peutic agents.13–18 Recent studies have implicated HDAC6

in the pathogenesis of a variety of inflammatory diseases,
and HDAC6 inhibition has been suggested as a potential
therapeutic strategy.19–23 In this review, we analyze the
molecular mechanisms and pathological functions of
HDAC6 in inflammation, and discuss the potential value
of HDAC6 as a therapeutic target in the setting of inflam-
matory diseases.

Inflammation and inflammatory
disorders

The immune system is composed of immune organs and
immune cells. When the body is exposed to damage from
an external source, such as bacteria and virus, immune
responses are activated to protect the body from further
damage.24–31 Among these responses, inflammatory reac-
tions are very common, and manifest physically as redness,
swelling, and accompanying fever and pain. These manifes-
tations primarily arise from chemotactic infiltration of
inflammatory cells into the site of damage.32 For example,
activated inflammatory cells stimulate relaxation of vascu-
lar endothelial cells, thereby increasing the permeability of
the vascular endothelium, and finally resulting in tissue
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swelling through the release of inflammatory cytokines,
such as interleukin (IL-6, serotonin, and tumor necrosis
factor (TNF)-α.33

At the initiation of the inflammatory response, stimula-
tion of dendritic cells and macrophages by foreign antigens
leads to secretion of a series of pro-inflammatory cyto-
kines.34 At the same time, the pathogen itself may also pro-
duce metabolites that accumulate and spread to the
surrounding tissues, forming a concentration gradient cen-
tered around the site of infection.35 Inflammatory cells,
such as monocytes and neutrophil cells, recognize and
respond to these chemotactic signals, attaching to the
endothelial cells from rolling to firm adhesion, and finally
moving towards the site of inflammation with the help and
guidance of chemokines (Fig 1).36

Inflammation is a defensive response to a lesion pre-
sent in living tissue with a vascular system.37 Generally,
inflammation serves a beneficial role as the body’s auto-
matic defense system; however, dysregulated or excessive
inflammation can be harmful, such as in the case of
autoimmune diseases. Inflammatory diseases include a
wide range of disorders that underlie the majority of
human diseases. Examples of pathological immune sys-
tem activation include allergic reactions, inflammatory
bowel disease (IBD), synovitis, contact hypersensitivity,
otitis, pelvic inflammatory disease, rheumatoid arthritis
(RA), asthma, and chronic obstructive pulmonary disease
(COPD).38,39

Structure and function of HDAC6

HDAC6 is a cytoplasmic member of the HDAC family that
is composed of 1215 amino acid residues encoded by the
X-linked gene, hdac6.40 In terms of its domain organiza-
tion, the N-terminus is characterized by an arginine and

lysine-enriched nuclear localization signal, which is fol-
lowed by a leucine-enriched nuclear export signal that
facilitates export of newly synthesized HDAC6 into the
cytoplasm. Two deacetylase domains (DD1 and DD2)
serve as the center of catalytic activity and are followed by
a tetradecapeptide serine glutamic acid repeat sequence
(SE14) that acts as a cytoplasmic retention signal.41 A
ubiquitin-binding domain (BUZ) present at the C-
terminus interacts with misfolded ubiquitinated proteins
and is involved in protein degradation (Fig 2a).42

Among the 18 members of the HDAC family, HDAC6
belongs to the HDAC IIb family, whose members predom-
inantly localize to the cytoplasm.43 Unlike most other
HDACs, HDAC6 primarily deacetylates non-histone pro-
teins, including α-tubulin, cortactin, HSP90, and Prx1,
thereby playing important roles in a variety of cellular pro-
cesses, such as cell adhesion and migration, protein trans-
port, immune synapse formation, and degradation of
misfolded proteins.9,10,44,45 Accumulating evidence also
implicates HDAC6 in the regulation of inflammation and
the immune response.46

HDAC6 regulates the duplication of HIV through mod-
ulating the deacetylation of Tat and thus inhibiting viral
transactivation.10,47 HDAC6 is also involved in Sendai virus
infection through the deacetylation of β-catenin, which acts
as a co-activator of IRF3-mediated transcription.48 The role
of HDAC6 in the adaptive CD4+ T-cell response has been
studied in several autoimmune and inflammatory situa-
tions, such as colitis and cardiac allograft rejection.19,49 In
the process of an innate immune response to fight against
intracellular bacterial infections, HDAC6 participates in
the indication of the pro-inflammatory transcriptional pro-
gram through the Toll-like receptor pathway, which is trig-
gered by sensing of cell-surface and endo-phagosomal
bacteria.12,34,50–53

Figure 1 Schematic representa-
tion of inflammatory response.
In the process of inflammatory
response, foreign pathogens
itself produce the chemokines,
resulting in the infiltration of
inflammatory cells and the activa-
tion of dendritic cells, thereby
increasing the relaxation of vas-
cular endothelial cells and the
production of inflammatory cyto-
kines, finally leading to tissue
swelling, redness, and accompa-
nying fever and pain.
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Regulation of inflammatory
cytokines by HDAC6

HDAC6 significantly impacts the production of inflamma-
tory cytokines, including both pro-inflammatory cytokines
(IL-6, IL-1β, TNF-α, IL-17) and anti-inflammatory cyto-
kines (IL-10; Fig 2b). Inhibition of HDAC6 has been
shown to downregulate the production of IL-6, IL-1β, and
TNF-α in several mouse models of inflammatory disease,
such as a breast silicone implant-induced mouse model of
the immune response, a Freund’s complete adjuvant-
induced mouse model of inflammation, and a collagen
antibody-induced arthritis mouse model of synovial

inflammation and joint destruction. In contrast, HDAC6
deficiency has been shown to increase expression of IL-
17.54 However, the effects of HDAC6 on the production of
the anti-inflammatory cytokine, IL-10, remain controver-
sial. Two reports show that HDAC6 inhibition promotes
IL-10 production, one of the studies shows that HDAC6
deficiency leads to hyper-induction of IL-10 through mod-
ulation of microtubule acetylation, and another also found
the HDAC6 inhibitor in the silicone-triggered immune
response. However, two other reports demonstrate that dis-
ruption of HDAC6 results in diminished production of IL-
10 in macrophages and dendritic cells. The investigators
attributed this effect to the role of HDAC6 in a complex
that also contained the transcription factor, STAT3, or
another member of the HDAC family, HDAC11. Thus, the
precise roles of HDAC6 in the regulation of IL-10 remain
unclear and may vary by cell type and setting.

Regulation of inflammatory cells by
HDAC6

Inflammatory cells play a vital role in the inflammatory
response by infiltrating into the inflammatory site and
releasing inflammatory cytokines, and HDAC6 has been
implicated in the regulation of these cells (Fig 2b). For
example, disruption of HDAC6 results in induction of
inflammatory antigen-presenting cells, which are critical
for the induction of T-cell activation and T-cell toler-
ance.55,56 Furthermore, in models of autoimmunity and
inflammation, depletion of HDAC6 promotes the suppres-
sive activity of Foxp3+ regulatory T cells.19 Foxp3+ regula-
tory T cells play a vital role in immune homeostasis, and
defects in either their numbers or function can result in
autoimmunity. Suppression of HDAC6 deacetylase activity
through targeted inhibition has been shown to upregulate
the population of γδ T cells, which are responsible for the
production of the pro-inflammatory cytokine, IL-17, in the
innate immune response. Suppression of HDAC6 activity
also reduces lipopolysaccharide-induced macrophage acti-
vation and production of pro-inflammatory cytokines.57

Together, these studies suggest that HDAC6 activity regu-
lates a wide array of inflammatory cell types.

Potential of HDAC6 inhibitors as
treatments for inflammatory
diseases

Given the fact that inflammation impacts a wide range of
organs, it is not surprising that inflammatory disorders
include a variety of diseases that affect multiple organs.58–61

As a result of its roles in the regulation of inflammation,
HDAC6 inhibition might be an effective treatment in a
variety of inflammatory diseases, including RA, IBD,

Figure 2 The structure of histone deacetylase (HDAC)6 and its patho-
logical function in inflammation. (a) The schematic structure of HDAC6.
(b) The role of HDAC6 in the regulation of inflammatory cells (macro-
phage, dendritic cell, γδT cell, Foxp3+ regulatory t cells [Tregs]) and
cytokines (interleukin [IL]-6, IL-1β, tumor necrosis factor [TNF]-α, IL-17,
IL-10), and the targeted inhibition of HDAC6 in inflammatory disorders,
including rheumatoid arthritis (RA), inflammatory bowel disease (IBD),
asthma, and chronic obstructive pulmonary disease (COPD).
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asthma, and COPD (Fig 2b). Importantly, unlike other
HDAC inhibitors, selective HDAC6 inhibitors have no
serious side-effects, as evidenced by data from trials of
these compounds in various disease settings, including
neurodegenerative disorders and cancer. Below, we detail
the pre-clinical and clinical data supporting the use of
HDAC6 inhibitors in the treatment of inflammatory dis-
eases in mammals.

Rheumatoid arthritis

RA is a chronic inflammatory disease that is characterized
by inflammatory synovitis, and proliferation and invasion
of synovial tissues, leading to the destruction of bone and
cartilage.62 Treatment with small molecular inhibitors of
HDAC6 has been shown to reduce the production of the
pro-inflammatory cytokines, IL-6, TNF-α, and IL-1β, and
successfully ameliorate synovial inflammation, suggesting a
potential role for these drugs in the treatment of RA. For
example, in the collagen-induced arthritis mouse models
and in RA patients, the HDAC6-selective inhibitor, CKD-
L, inhibits IL-6, TNF-α, and IL-1β expression, and
increases IL-10 production, resulting in a decrease in the
arthritis score and inhibition of the proliferation of effector
T cells.63 Similarly, tubastatin A, another HDAC6 inhibi-
tor, has been shown to successfully ameliorate synovial
inflammation and protect against joint destruction in colla-
gen antibody-induced arthritis mice. These results suggest
that HDAC6-selective inhibitors may have anti-
inflammatory effects in RA (Table 1).

Inflammatory bowel disease

IBD is an increasingly common chronic inflammatory dis-
order of the intestinal tract. Chronic active disease is asso-
ciated with a high burden of morbidity and a marked
impact on quality of life.28,64 Clinical strategies for treat-
ment of IBD include anti-inflammatory drugs, antibiotics,

and biologics that are often not effective and can produce
adverse effects.65,66 Studies in knockout mice and using
small molecule inhibitors show that HDAC6 plays an
important role in the progression of IBD. For example,
HDAC6-selective inhibitors, such as BML-281 and LTB2,
effectively alleviate dextran sulfate sodium-induced colitis
in mice. In mouse models of acute dextran sulfate sodium-
induced colitis, treatment with BML-281 protects against
colonic inflammation, and prevents activation and colon
infiltration of inflammatory neutrophils, a driver of disease
pathology.67 LTB2 also exerts a significant protective effect
in dextran sulfate sodium-induced colitis, and LTB2 treat-
ment was associated with diminished rectal bleeding and
diarrhea, and longer colon lengths in mice.68 Furthermore,
potassium acetate, which serves as a decoy substrate for
HDAC6, reduces cytotoxicity and inflammation in a toxin
A-induced mouse enteritis model.69 These results highlight
the potential clinical role of HDAC6 inhibition in preven-
tion and treatment of colonic inflammation and IBD in
humans.

Airway inflammation

Airway inflammation underlies many chronic respiratory
diseases, such as asthma and COPD. Asthma is a chronic
respiratory disorder that involves aberrant airway inflam-
mation, airway remodeling, and airway hyperresponsive-
ness. Long-term asthma damage leads to bronchial smooth
muscle thickness and subepithelial fibrosis. Current treat-
ment strategies for asthma primarily consist of corticoste-
roids and long-acting β2-agonists. However, these agents
have no substantive effects on airway remodeling.70 Tubas-
tatin A HCl, a selective HDAC6 inhibitor, has been shown
to effectively alleviate airway inflammation, airway remo-
deling, and airway hyperresponsiveness in a mouse model
of chronic allergic airway disease, suggesting a potential
role for HDAC6 inhibition in asthma treatment.71

COPD is the fourth leading cause of morbidity and mor-
tality worldwide. In the case of COPD, the aberrant airway
inflammation is mainly caused by chronic exposure to cig-
arette smoke. COPD is also characterized by epithelial cell
dysfunction, ciliary shortening, and disruption of mucocili-
ary clearance. Current therapies for COPD are insufficient
and seem to have no effect on exacerbations. In contrast,
pharmacological inhibition of HDAC6 with tubastatin A
significantly inhibits cigarette smoke-induced airway dys-
function, and thereby has the potential to be an effective
therapeutic strategy for COPD.72

Perspectives

A compelling body of evidence has established HDAC6 as
a critical regulator of inflammation and a potential clinical

Table 1 HDAC6-selective inhibitors potential to inflammatory diseases

HDAC6-selective
inhibitor Animal model or patient Inflammatory diseases

CKD-L,
Tubastatin A

Collagen-induced
arthritis mouse
models, rheumatoid
arthritis patients

Rheumatoid arthritis

BML-281, LTB2 Dextran sulfate
sodium-induced
colitis mouse model

Inflammatory bowel
disease

Tubastatin A HCl,
Tubastatin A

Chronic allergic airway
disease mouse model

Airway inflammation
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target for treatment of a number of inflammatory diseases.
With roles in mediating the production of inflammatory
cytokines and regulating the action of inflammatory cells,
HDAC6 exerts complicated effects during inflammation.
As a result, numerous questions remain regarding the pre-
cise functions of HDAC6 in inflammation. For example,
HDAC6 harbors two functional deacetylase catalytic
domains, as well as a ubiquitin-binding zinc finger domain,
suggesting that it functions at the crossroads of at least two
cellular signaling systems: protein acetylation and ubiquiti-
nation.42,73 It will be particularly interesting to define
whether cross-talk occurs between the deacetylase and
ubiquitin-binding roles of HDAC6 in the context of
inflammation and inflammatory disease.
We must also note that unlike most other members of

the HDAC family, HDAC6 is unique in that it mainly dea-
cetylates non-histone substrates. A large number of pro-
teins have been identified as HDAC6 substrates, including
α-tubulin, cortactin, peroxiredoxin, Hsp90, and Tat. These
substrates implicate HDAC6 in diverse cellular processes,
such as cell motility and signaling, among others. HDAC6
substrates have also been identified as key players in the
progression of inflammation and the development of
inflammatory disease. For example, HDAC6 inhibition
prevents the progression of murine colitis and allograft
injection through regulation of HSP90. In a different
model, HDAC6 inhibition enhances anti-inflammatory
activity and reduces lipopolysaccharide toxicity by elevat-
ing microtubule acetylation and stabilizing microtubules.
In the viral infection, which is more intractable than bacte-
rial infection, HDAC6 functions through deacetylation of
Tat or β-catenin.74–76 Therefore, it will be interesting in the
future studies to determine whether other substrates also
contribute to the roles of HDAC6 in inflammation and
inflammatory disease.
Over the past decades, HDAC6 has become a particularly

attractive target for the development of drugs to treat a wide
range of diseases.14,15 More importantly, small-molecule com-
pounds targeting HDAC6 have not been associated with seri-
ous toxicities. For example, the HDAC6-selective inhibitor,
tubastatin A, has been investigated in the treatment of
neurodegenerative disorders, cancer, and COPD, and has
demonstrated no obvious adverse reactions. Another
HDAC6-selective inhibitor, CAY10603, has showed a crucial
role in the regulation of sperm flagellar length, and a potential
treatment for fertility.57,77–79 However, some HDAC6 inhibi-
tors do not display high selectivity and may inhibit related
HDACs. Thus, further research is required to identify novel
effective HDAC6 inhibitors with higher selectivity. Overall,
the positive safety profile of HDAC6 inhibitors and evidence
implicating HDAC6 in a number of inflammatory diseases
provide strong support for the development of selective
HDAC inhibitors in the treatment of inflammatory disease.
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