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The discrimination and production of temporal patterns on the scale of hun-

dreds of milliseconds are critical to sensory and motor processing. Indeed,

most complex behaviours, such as speech comprehension and production,

would be impossible in the absence of sophisticated timing mechanisms.

Despite the importance of timing to human learning and cognition, little

is known about the underlying mechanisms, in particular whether timing

relies on specialized dedicated circuits and mechanisms or on general and

intrinsic properties of neurons and neural circuits. Here, we review exper-

imental data describing timing and interval-selective neurons in vivo and

in vitro. We also review theoretical models of timing, focusing primarily

on the state-dependent network model, which proposes that timing in the

subsecond range relies on the inherent time-dependent properties of neurons

and the active neural dynamics within recurrent circuits. Within this frame-

work, time is naturally encoded in populations of neurons whose pattern of

activity is dynamically changing in time. Together, we argue that current

experimental and theoretical studies provide sufficient evidence to conclude

that at least some forms of temporal processing reflect intrinsic computations

based on local neural network dynamics.
1. Introduction
The dynamic nature of our natural environment and the need to move and antici-

pate events in this environment provided strong evolutionary pressures for the

nervous system to process temporal information and generate timed responses.

Additionally, later in evolution the temporal features of animal vocalizations

came to play a fundamental role in social communication [1–3]. As a result of

these evolutionary pressures, the human brain is exquisitely capable of proces-

sing temporal information and generating temporal patterns. Indeed, the

sophistication of temporal processing is well illustrated by the observation that

humans can reduce communication to a purely temporal code, as occurs when

people communicate using Morse code. Despite the obvious importance of tem-

poral processing to communication, learning, cognition, and sensory and motor

processing, even the most basic mechanisms of how animals discriminate simple

intervals or generate timed responses remains unknown.

A key question in the debate of how the brain tells time relates to whether

timing should be viewed as ‘dedicated’—relying on specialized and centralized

mechanisms—or ‘intrinsic’—relying on local and general properties of neural

circuits [4,5]. In attempting to answer this question, it is first critical to define

the time scale of interest because it is clear that the brain uses fundamentally

different mechanisms to solve timing tasks across the range of microseconds

used for sound localization to circadian rhythms [6–8]. Here, we focus on the

time scale of tens of milliseconds to a few seconds. It is within this range that

the most sophisticated and flexible forms of temporal processing reside, as it

encompasses the temporal structure critical to the recognition and production

of both speech and music. We review models of temporal processing and
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experimental data supporting the view that timing in this

range relies on intrinsic neural properties, specifically that

timing is among the most basic and general computations

that neural circuits perform. This review focuses primarily

on the electrophysiological experimental data and theoretical

models; we do not carefully address behavioural and psycho-

physical experiments, which have been reviewed elsewhere

[4,6,8–14].
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2. Models of timing
Timing has been proposed to rely on a number of different

potential mechanisms. These models cover a broad range of

different neural substrates and vary dramatically in the level

of biological detail and plausibility. Broadly speaking, these

theoretical models of timing can be loosely categorized into

four classes [8,15]: (i) spectral/delay line models; (ii) oscillator

models; (iii) ramping models; and (iv) state-dependent network

(SDN) models. We briefly describe the first three classes of

models, and then describe the state-dependent models in

more detail before reviewing the experimental studies of timing.

(a) Spectral/delay line models
Some of the earliest models of temporal processing relied on

the notion that representations of recent events were

‘buffered’ through delay lines. This view was strongly influ-

enced by the delay line models of sound localization [16].

According to this model, interaural time differences on the

order of tens of microseconds are computed in the auditory

brainstem based on two mechanisms: delay lines and coinci-

dence detectors. Delays are introduced as a result of axonal

length, and when the delays are counterbalanced by the

input time difference between them, neurons functioning as

coincidence detectors report the relative timing of both

inputs [16–18]. On longer time scales, conceptually similar

models—sometimes referred to as tapped delay lines—

operate under the assumption that different neurons are acti-

vated or receive inputs at different time delays [19–21]. For

example, early cerebellar models emphasized the potential

of parallel fibres (the axons of cerebellar granule cells) to

function as delay lines on the order of tens of millise-

conds—this notion has never received experimental support

and it is generally acknowledged that the conduction time

delays in the cerebellum are unlikely to contribute to timing

on scales above tens of milliseconds. More generally, spectral

models propose that there is a range (a spectrum) of different

delays timing a range of different intervals [22].

Spectral models share the common principle that at least

one variable or property of a neuron is set to a different value,

which endows each unit with the ability to respond selec-

tively to different intervals. In addition to axonal length

[21], a wide range of different biological loci have been pro-

posed to account for the delays, including kinetic constants

of the metabotropic receptor pathway [23], the time constant

of slow membrane conductances [24] and the decay time of

inhibitory postsynaptic potentials (IPSPs) [25,26]. Spectral

models have the advantage of encoding the time since the

arrival of a stimulus by having different subsets of cells

active at different times. Combined with simple learning

rules, where a teaching or error signal modifies connections

for only those cells that are active, it is possible for spectral

models to learn outputs that are properly timed.
(b) Oscillator models
When considering the mechanisms of timing, it is perhaps most

intuitive to think in terms of devices that share the principles of

man-made clocks. Indeed, the most influential model of timing

is based on the notion of an oscillator that elicits pulses at cer-

tain intervals and a counter that integrates the pulses of the

oscillator providing a linear metric of the passage of time

[27,28]. Subsequent versions of clock-like models proved

hugely valuable in guiding behavioural animal experiments

[29–32], however the ‘standard’ internal clock model has not

yet been expressed concretely in biologically realistic models.

More sophisticated oscillator-based models have proposed

that timing arises from a population of elements oscillating

at different frequencies [31,33,34]. These multiple-oscillator

models have the advantage of not requiring integrating or count-

ing the pulses in any of the oscillators, but rely on detecting

specific ‘beats’ or synchronous patterns among the population

of oscillators. This detection process can be performed by read-

out neurons that detect the coincident activity of a subset of

oscillators—corresponding to a specific point in time. While

oscillations are a robust property of many different types of neur-

ons, it remains to be determined whether stimuli can trigger a set

of oscillators at different frequencies. Additionally, multiple-

oscillator models have focused primarily on timing in the

suprasecond range, rather than the subsecond range.

(c) Ramping models
Ramping models propose that time is encoded in the

approximately linear increase in the firing rate of neurons

[35,36]. Experimental studies have conclusively established

that some neurons can exhibit a more or less linear ramping

of firing rate during timing tasks, and that the slope of the

ramp can be modulated so that a particular rate is reached

at a target time [37–42]. In this framework, a timed motor

response can be generated when the firing rate of a neuron

reaches a certain threshold value. The neural mechanisms

underlying this ramping are not known, but have been pro-

posed to be a product of either the intrinsic properties of

neurons or the dynamics of local neural networks [35,36,43].

During timing tasks motor responses or expectation of an

event are, of course, tightly coupled with elapsed timing.

Thus, in many tasks there is a potential confound regarding

whether ramping is actually encoding time or responsible

for triggering a motor response (or representing the expecta-

tion of a reward). At least some data suggest that ramping

neurons are coding expectation rather than absolute time

[44]; furthermore, while upward ramping is seen during

some types of timing tasks it is not observed in others [45].

(d) State-dependent network model
SDN models propose that timing arises from the time-depen-

dent changes in network state imposed by time-varying

neural properties and the neural dynamics characteristic of

recurrent circuits [8,15,46–48]. The SDN model is a prototypical

example of an intrinsic model of timing, in that it does not rely

on what most would consider specialized timing mechanisms.

Similarly, this class of models is also local, that is, any cortical

network could potentially process temporal information.

To understand how the state of a neural network might

encode time, the dynamics of a liquid provides a useful ana-

logy. A pebble thrown into a pond will create a spatio-
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temporal pattern of ripples, and the pattern produced by any

subsequent pebbles will be a complex nonlinear function of

the interaction of the stimulus (the second pebble) and the

internal state of the liquid (the current pattern of ripples).

Ripples thus establish a short-lasting and dynamic memory

of the recent stimulus history of the liquid, and it is possible

to estimate the amount of time elapsed based on the current

state of the liquid.

In defining the state of a neural network, it is important to

consider two general types of states: the active and hidden

states [49]. (i) The active state at any given time point refers

to the population of neurons that is currently firing. The

active state thus represents the traditional spatio-temporal

patterns of activity. (ii) The hidden states refer to the col-

lection of time-varying neuronal and synaptic properties.

These include slow synaptic currents, channel kinetics and

short-term synaptic plasticity (STP). These properties are

referred to as the ‘hidden’ state because they typically

cannot be measured using conventional extracellular record-

ing methods, but the effects of these time-dependent neural

mechanisms are expressed at the level of firing properties

when the network is ‘probed’ by a subsequent sensory stimu-

lus. SDN models have typically focused on STP as the

principal contributor to the hidden state of neural networks.

STP refers to a form of use-dependent change in synaptic effi-

cacy that is observed in almost all synapses [50,51]. As a

result of STP, the second of two consecutive exciatitory post-

synaptic potentials (EPSPs) can be larger (facilitation) or

smaller (depression) than the first. In a sense, in the same

manner that long-term potentiation provides a memory of

coincident activity between groups of synapses that occurred

minutes or hours in the past [52,53], STP provides a

memory of an event that happened tens or hundreds of

milliseconds ago.

The hypothesis that the dynamically changing active state of

neural networks may encode time was first proposed by

Michael Mauk in the context of the Marr–Albus–Mauk cere-

bellar model [54–56]. In this model, there is a dynamic

turnover in the population of active granule cells as a result of

the negative feedback loop between granule and Golgi neurons.

The concept that time may be encoded in the population

of neurons was later generalized to cortical circuits and to

incorporate the hidden state of neural networks. In a reduced

circuit composed of a single excitatory and inhibitory neuron,

it is easy to see how STP can potentially account for interval

selectivity (figure 1). For example, if facilitation peaks at

50 ms, it is possible to adjust the synaptic weight so that a

neuron will fire exclusively at 50 ms. Interestingly, in the con-

text of simple disynaptic circuits composed of a single

excitatory and inhibitory neuron, it is possible to tune the cir-

cuit so that the excitatory neuron fires selectively to a range of

different intervals even though the temporal profile of STP

remains the same [48]. As described below, experimental evi-

dence supports the notion that interval selectivity in neurons

arises from dynamic changes in the balance of excitation and

inhibition imposed by STP.

We stress however, that the SDN model does not suggest

that the timing that underlies complex temporal processing

is solely the result of carefully tuned weights and STP in

simple disynaptic circuits. Rather, the core proposal of SDN

models is that temporal-selectivity is in part an inevitable con-

sequence of the rich repertoire of time-dependent synaptic and

neural properties embedded within large intricately connected
recurrent neural networks. Indeed, as shown in figure 2, com-

puter simulations demonstrate that in randomly connected

simulated cortical networks, a percentage of the neurons exhi-

bit interval selectivity [48,57]. Thus, the key notion is that

complex neural circuits—in regimes in which excitation and

inhibition are balanced—will naturally possess neurons that

are selective to temporal features as an inevitable consequence

of the dynamics of the network.

It is important to note that the different classes of models

described above are not mutually exclusive. Timing and tem-

poral processing encompass a very broad range of tasks

requiring different computational needs. Thus, it seems likely

that multiple mechanisms will contribute to timing. However,

we focus here primarily on the SDN model, which we argue

better accounts for the experimental evidence described below.

We should also stress that the spectral, oscillator and ramping

models are mostly limited to relatively simple forms of timing,

for example interval discrimination. It seems unlikely that

these models are sufficiently flexible and powerful to account

for the timing necessary for speech, music or Morse code.
3. Temporal selectivity in vivo
The fact that many animals are capable of discriminating

simple intervals or durations indicates that there are neurons

in their brains that respond with at least some degree of selec-

tivity to the temporal features of stimuli. There are numerous

reports of temporally selective neurons. However, compared

with the spatial features of sensory stimuli, such as position

or orientation of visual stimuli, or frequency or intensity of

auditory tones, very little is known about the location, devel-

opment and mechanisms underlying temporally selective

neural responses.

Some of the best examples of temporal selectivity have

been performed in invertebrates and non-mammalian ver-

tebrates. Extracting temporal information from acoustic

stimuli is a crucial part of social communication of invert-

ebrates and vertebrates. In some species, including frogs,

electric fish and crickets, communication relies on relatively

simple temporal codes in which information is conveyed by

the interval between sensory events. Thus, these animals

have provided an ideal model system to identify temporally

selective neural responses and study the underlying neural

mechanisms. Below, we discuss three examples of temporally

selective neurons, in which the selectivity seems to arise from

dynamic changes in the balance of excitation and inhibition

imposed by STP.

Electric fish. The temporal structure of electric pulses is

an integral part of social communication in mormyrid electric

fish [58]. The frequencies of pulses in the range of 10–100 Hz

convey information about the temporal characteristics that

encode species-specific communication. Intracellular record-

ings from electrosensory neurons in the brainstem of these

fish have revealed selective responses to electrical pulses

repeated at specific intervals, leading to high-frequency,

low-frequency or bandpass neurons [59]. Figure 3a provides

an example of a neuron that is tuned to respond to pulses

presented at intervals of 50 ms, compared to intervals of

10 or 100 ms.

Crickets. Female crickets use the information contained in

the temporal characteristics of the male cricket’s song for pho-

notactic orientation [61,62]. Recordings from auditory neurons
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Figure 1. Interval selectivity based on short-term plasticity in simple circuits. (a) (i) Schematic of a feed-forward disynaptic circuit. Such circuits are almost uni-
versally observed throughout the brain. They are characterized by an input that excites both an inhibitory (Inh) and excitatory (Ex) neuron (for example,
thalamocortical axons synapse on both excitatory and inhibitory neurons), and feed-forward inhibition (the excitatory unit receives inhibition from the inhibitory
neuron). Each of the three synapses exhibits STP. (ii) Simulated paired-pulse facilitation (PPF) of EPSPs on to an Ex (blue) and Inh (red) neuron. (b) STP (the hidden
state) can potentially be used to generate interval-selective neurons. Perhaps the simplest scenario is one in which both the excitatory and inhibitory neurons receive
inputs that exhibit PPF. (i) An example of a 50 ms interval-selective neuron, where the Ex responds selectively to a 50 ms interval, simply because PPF peaks at
50 ms. (ii) An example of a 100 ms interval-selective neuron. Compared with (i), the strength of the excitatory weight onto both the Ex and Inh neuron has been
increased. The spike in the Inh neuron at 50 ms ‘vetoes’ a spike in the Ex neuron, which responds to 100 ms because of the increase in the synaptic strength of the
inputs (adapted from Buonomano [48]).
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in response to different song patterns revealed the presence of

a particular class of interneurons that respond selectively to

pulses presented at specific intervals. For example, a subpopu-

lation of neurons exhibited firing rate versus pulse interval

tuning curves that closely mirrored the behavioural response

which peaked at intervals of 15 ms. These neurons would

not respond to a sequence of four pulses presented every

5 or 60 ms, but spiked when the four pulses were presented

at 15 ms intervals (figure 3b) [60]. When the intervals between

pulses were either too short (5 ms) or too long (60 ms), IPSPs

were elicited to the first few pulses in the sequence followed

by weak or negligible EPSPs to the subsequent pulses. When

the pulse interval was optimal, the first few pulses were still

dominated by pronounced IPSPs but the latter pulses in the

temporal pattern elicited suprathreshold EPSPs accompanied

by spikes.

Frogs. Some species of frogs also communicate through a

temporal code in which the calls of different species are defined

by their temporal structure [3,63,64]. Neurons in the auditory

brainstem of these anurans have also been shown to respond
selectively to the interval and number of pulses in a sequence.

Short-term plasticity and the interplay of excitation and inhi-

bition contribute to the interval selectivity observed in

‘interval-counting’ neurons [65]. The interval tuning of these

auditory neurons is interesting in that they are tuned to

respond only when a certain number of pulses with the opti-

mal interval duration has been repeated. Hence, they are

termed as interval-counting neurons because they show pro-

nounced enhancement of excitation over a selective range of

pulse repetition rates. Furthermore, if the temporal sequence

of pulses contains a single non-optimal pulse interval (wherein

the interval is too long or too short), then the interval-counting

procedure is reset. A detailed study by Edwards et al. [65]

examined the neural mechanisms of ‘interval counting’. They

found that for a given neuron, when the number of pulses in

a temporal sequence of optimal intervals exceeded a threshold,

there was an enhancement of EPSPs often accompanied by

spikes followed by subsequent inhibition.

Together, the above studies provide examples of neurons

that respond selectively to the temporal structure of sensory
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Figure 2. Example of interval-selective neurons in an SDN model of cortex. (a) Simulation of a recurrently connected network composed of 500 integrate-and-fire
neurons. Each line represents the voltage of a single neuron in response to two identical events separated by 100 ms (representing two auditory tones). The first 100
lines represent 100 excitatory units (out of 400), and the remaining lines represent 25 inhibitory units (out of 100). Each input produces a depolarization across all
neurons in the network, followed by inhibition. While most units exhibit subthreshold activity, some spike (white pixels) to both inputs or selectively to the 100 ms
interval. The Ex units are sorted according to their probability of firing to the first (top) or second (bottom) pulse. This selectivity to the first or second event arises
because of the difference in network state at t ¼ 0 and t ¼ 100 ms. (b) (i) Trajectory of the network in response to a single pulse. The state of the network can be
represented by a trajectory that captures both the active and hidden states of the network. Principal component (PC) analysis is used to visualize the state of the
network in three-dimensional space. There is an abrupt and rapidly evolving response beginning at the onset of the stimulus (t ¼ 0), followed by a slower
trajectory. The fast response is due to the depolarization of a large number of units (changes in the active state), while the slower change reflects the short-
term synaptic dynamics (the hidden state). The speed of the trajectory in state-space can be visualized by the rate of change of the colour code and by the
distance between the 25 ms marker spheres. Because synaptic properties cannot be rapidly ‘reset’, the network cannot return to its initial state (arrow) before
the arrival of the second event. (ii) The trajectory in response to a 100 ms interval. Note that the first and second (arrow) presentation of the same stimulus
produces different trajectory segments. In other words, the same input produced different responses depending on the state of the network at the arrival of
the input (adapted from Karmarkar & Buonomano [57]).
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stimuli. While the exact mechanisms underlying the interval

selectivity are only partially understood, all of the above

studies favoured interpretations based on dynamic changes

in the balance of EPSPs and IPSPs imposed by STP—as

proposed by the SDN model [48].
(a) Temporally selective neurons in mammals
Neurons that respond selectively to the temporal and spatio-

temporal structure of sensory stimuli have also been identified

in the auditory system of birds [66–69] and mammals [70–76].

Identifying temporally selective neurons, also referred to as

temporally combination sensitive neurons, is particularly
challenging in mammals because of the complexity and multi-

plicity of auditory fields. A further problem relates to the

combinatorial explosion of potential spatio-temporal stimuli to

be explored—that is, even if a given neuron was highly selective

to some specific spatio-temporal stimulus pattern, it is difficult to

identify what that stimulus may be. Nevertheless, a number of

studies have provided careful quantitative descriptions of neur-

ons that respond preferentially when pairs or sequences of tones

are presented in a given order with a specific interval between

them [70,71,73–75,77]. These studies reveal a rich repertoire of

cells that generally exhibit complex interactions between the fre-

quencies and durations of the tones, and the interval between

them. The mechanisms underlying these examples of interval
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and order selectivity have not been carefully examined but are

broadly consistent with SDN models.
4. Timing and neural dynamics in vitro
The fact that interval- and order-selective neurons have been

observed in a wide range of subcortical and cortical areas

across many species favours the notion that timing may be

a general and intrinsic property of neural networks. Perhaps

the most rigorous prediction of models that propose that

timing is an intrinsic computation is that timing may be

able to be observed in vitro. That is, if neural networks are

indeed intrinsically capable of timing, it may not only be

possible to observe examples of timing in vitro, but also to,

in a sense, ‘teach’ in vitro circuits simple temporal tasks. We

now discuss studies that have attempted to ask and answer

this question experimentally.

These studies focus on examples of timing that may rely

on the active and hidden states of neural networks. When

timing relies on the active states of neural networks, the

notion is that autonomous dynamics changes the population

of active neurons. A number of in vivo experimental studies

support the notion that time-dependent changes in the

active state of neural networks may encode time [78–82].

We focus, however, primarily on in vitro studies on neural
dynamics and timing because they provide a tractable

approach to understand the underlying mechanisms. And

because, as mentioned, in vitro timing would provide

strong support to the notion that timing is a basic and general

computation of neural networks.

(a) Neural dynamics in vitro
Several in vivo and in vitro studies have shown that the richly

interconnected circuits in the cortex exhibit complex dynamic

patterns of activity [83–90]. This dynamics can be studied

through intracellular recordings from single neurons, extra-

cellular recordings from multiple neurons or multi-cell

Ca2þ-imaging; and methods have revealed that complex yet

reproducible patterns of activity appear to be a general and

widespread regime of recurrent neural circuits.

In vitro whole-cell recordings in both acute and organotypic

slices demonstrate that in addition to a short-lasting monosy-

naptic EPSP, external stimulation can elicit long-lasting

polysynaptic responses. This polysynaptic activity reflects the

internal dynamics of local recurrent networks. Figure 4a
illustrates an example of evoked polysynaptic activity in simul-

taneously recorded neurons in an organotypic cortical slice.

Note that even the intracellular polysynaptic activity recorded

in a single neuron provides a measure of overall network

activity in that the subthreshold PSPs reflect a read-out of the
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subpopulation of neurons connected to the recorded cell. In

this example, is it also clear that across trials the two neurons

tend to fire at different time points (129 and 205 ms after the

stimulus). In a manner of speaking, these neurons and the

networks they are embedded in can be said to encode time.

Specifically, if a neuron reliably fires during some time

window after the stimulus, this neuron contains information

about how much time has elapsed since the stimulus.

Simultaneous recordings from ensembles of L-IV neurons

using Ca2þ-imaging also reveal that electrical stimulation can

elicit spatio-temporal patterns of network activity. For

example, MacLean et al. [84] have shown that acute cortical

slices can exhibit reproducible patterns of activity (up

states) in response to thalamic stimulation that persists for

hundreds of milliseconds or even seconds beyond the dur-

ation of the stimulus. Interestingly, this particular study
also found that subsets of L-IV cells that participated in tha-

lamically evoked network responses also participated in

spontaneous network activity (figure 4b). Together, these

results suggest that cortical networks in vitro can generate

reproducible patterns of activity that can be thought of as a

neural trajectory—e.g. in neural state-space, the activity of

each neuron in a network corresponds to an axis in high-

dimensional space and one can plot the changing activity of

the network as a trajectory. As is the case with the trajectory

of any dynamical system that is moving through state-space,

it naturally encodes time, functioning in effect as what has

been called a population clock [5,91]. Critical to the potential

ability of these patterns to be able to encode time is that they

must be reproducible across different trials. The degree of

variability across trials places strong constraints on the ability

and accuracy of such patterns to potentially encode time.
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(b) State-dependent responses in vitro
A number of in vitro studies have attempted to ask whether

in vitro networks can encode information about time or pre-

vious stimuli in a state-dependent fashion [92–94]. One

group has examined this question in rodent hippocampal

slices wherein different stimuli were presented to hippocam-

pal slices via stimulation of electrodes in the perforant

pathway [93,95]. Responses to stimuli were recorded during

intracellular recordings of up to three simultaneously

recorded hilar neurons. It was demonstrated that the different

patterns of activity in three hilar neurons could be used to

decode which of four perforant path electrodes had been

stimulated. This was true even 15 s after the stimuli had

been presented—indicating that ongoing activity patterns

within the network provided a memory of the stimulus.

More importantly, however, when sequences of four stimuli

(A, B, C and D) were presented, e.g. ABCD � DCBA, there

was also a robust context- or state-dependent code that

allowed, for example, one to determine whether A had

been presented by itself or preceded by other stimuli.

A related in vitro study, performed in dissociated cultures

on multi-electrode arrays, also examined whether a popu-

lation of neurons could encode the sequences of different

input patterns to the network [94]. In this study, neurons

were transfected with channelrhodopsin (ChR) and different

‘visual’ patterns generated using an optical grid that stimu-

lated different subsets of ChR-positive neurons, serving as

different ‘sensory’ inputs. The response of the network was

quantified based on the extracellular recordings of dozens

of units. The results demonstrated that in response to the

presentation of stimulus pairs, such as AC or BC (each separ-

ated by intervals of up to 1 s), it was possible to look at a

population response elicited by stimulus C and determine

whether it had been preceded by A or B. In other words,

the network activity in response to C implicitly encoded the

context in which it was presented. Because network activity

often faded back to baseline within a 1 s time window, it is

suggested that the ‘memory’ of the previous stimulus is

represented in the hidden state of the network.

While relatively few studies have examined the capacity,

complexity and temporal features of stimuli that in vitro net-

works can encode, there is now significant evidence that even

in vitro networks are capable of encoding order and temporal

information as predicted by SDN models. Specifically, on the

subsecond time scale, the population response to a stimulus

can not only encode the identity of the current stimulus but

that of the previous stimulus as well.
5. Neural dynamics and timing plasticity in vitro
The studies above reveal that recurrent networks can produce

complex dynamics in response to a brief stimulus and

encode information about stimulus order and time. However,

it is not clear whether these networks were in some sense

‘designed’ to process temporal information, or in contrast,

the observed timing was essentially a product of random

activity patterns. A particularly valuable approach to

determine whether recurrent neural circuits are in effect

‘designed’ for temporal processing would be to establish

whether they can ‘learn’ to process temporal information.

Here, we use the term ‘learn’ in a general sense and ask

whether the neural dynamics of circuits exposed to a specific
temporal pattern adapt in a manner that would improve the

processing of the experienced pattern.

One approach towards answering this question has been to

ask whether the dynamics in in vitro cortical cultures can be

sculpted by experience [96]. Cortical cultures were ‘implanted’

with a pair of electrodes that were used to provide structured

‘sensory’ input to the network. In the initial experiments, both

electrodes were synchronously stimulated for 2 h (every 10 s),

whereas in the second group, both electrodes were stimulated

with a 100 ms interval: electrode E1 was activated at t¼ 0 and

electrode E2 at t¼ 100 ms. Thus, the pathways in both groups

received the same amount of total stimulation but differed in

the temporal pattern they were exposed to. After training,

whole-cell recordings were made from supragranular pyramidal

neurons near E2 and the responses to E1 were analysed. The

results demonstrate that there was significantly more polysynap-

tic activity in the 100 ms group than in the synchronous group.

Furthermore, there was some clustering of polysynaptic

responses evoked by E1 at around 100 ms. One interpretation

of these data is that the cells near E2 ‘expected’ or anticipated a

stimulus 100 ms after E1, and the network was performing a

form of temporal pattern completion. This was further tested

by training slices with either a 100 or 500 ms interval. As

shown in figure 5, a comparison of evoked polysynaptic activity

revealed a significant difference in the timing of the distribution

of polysynaptic events. Specifically, the temporal profile of this

polysynaptic activity reflected the interval used during training

[97]: more short- and long-latency events in the 100 and

500 ms groups, respectively. Additionally, ongoing experiments

have further explored the ability of in vitro networks to adapt to

experienced intervals by combining electrical and optogenetic

stimulation. In these experiments, an electrical pulse was fol-

lowed by an optical stimulation of a subset of neurons

transfected with the light-activated cation channel ChR. In one

group there was a 100 ms interval between the electrical

stimulus and light, and in the other a 500 ms interval. After 2 h

of training, whole-cell recordings from the ChR-positive neurons

revealed that there was a significant difference in the timing of

the distribution of polysynaptic events: there was a larger pro-

portion of late events in the 500 ms group compared with the

100 ms group [98].

Experience-dependent changes in network dynamics have

also been observed in vivo preparations. Aizenman and co-

workers [99] demonstrated that in Xenopus tadpoles, stimulation

of the optic nerve elicited firing patterns that lasted hundreds of

milliseconds in neurons in the optic tectum. These long-lasting

responses were in part generated by the recurrent circuitry

within the optic tectum, and interestingly the duration of the

activity was influenced by experience. Presenting visual flashes

at intervals of 150 or 400 ms for 4 h before recording sessions

revealed different distributions of the spike times: median

spike latencies of 73 and 106 ms, respectively.

A related in vivo study in the visual cortex of rats revealed

experience-dependent changes of light-evoked neural activity

in the context of an associative learning task [100]. During a

training phase, rats received rewards at different delays

(more specifically after a specific number of licks required

for the reward) in response to flashes to the left or right

eye. Extracellular recordings in V1 revealed that a significant

percentage of neurons exhibited responses that peaked over a

second after the stimulus offset and at approximately

the expected time of the reward (even in the absence of

the reward). These responses were specific to one eye and
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matched the delay associated with that eye, thus providing

strong evidence that the neural dynamics was learned. In a

subsequent study, the authors examined the contribution of

neuromodulators to this form of associative learning task

and demonstrated that changes in the temporal dynamics

can also be observed in acute visual cortex slices [101].

Slices were exposed to a conditioning protocol that consisted

of pairing brief electrical stimulation followed by a puff of a

cholinergic agonist 0.5, 1 or 1.5 s after the electrical stimulus.

After this training protocol, extracellular or intracellular

recordings were performed in layer 5 neurons. The results

revealed that the duration of the neural activity evoked by

a single electrical stimulus was proportional to the interval

used during training. That is, spiking activity was short last-

ing in the slices trained with a 0.5 s interval, and long

lasting in slices trained with a 1.5 s interval. This study

demonstrated that acute slices can ‘learn’ to fire with different

temporal profiles and suggests that cholinergic input can
provide a reinforcing signal that is required for this form of

temporal plasticity.

The above examples demonstrate that network dynamics

undergoes experience-dependent plasticity. Specifically, the

duration or dynamics of neural responses within neural circuits

can be shaped by the experience in a manner that should facili-

tate the processing of the temporal patterns the network

experienced. Together, these findings support not only the

hypothesis that recurrent neural circuits, and cortical circuits

in particular, are capable of encoding time, but also that

there are mechanisms in place that allow such circuits to

‘learn’ the temporal structure of the stimuli they are exposed to.
6. Conclusion
The temporal components of different sensory, motor, cogni-

tive and learning tasks often require different levels of
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accuracy, precision, flexibility (e.g. the time it takes to ‘reset’ a

clock between tasks) and complexity (e.g. simple intervals or

complex patterns). Thus, it would seem that the sheer diver-

sity of sensory and motor tasks that require timing hints that

there may be multiple mechanisms operating in parallel. For

example, a simple interval-timing task may require animals

to time the interval between a cue and a response, expected

reward or unconditioned stimulus, whereas interpreting

Morse code or playing the piano requires the decoding and

generation of very complex temporal patterns. While simple

interval timing could rely on many different potential mech-

anisms including ramping firing rates or neural oscillators, it

seems unlikely that complex temporal tasks rely on such

mechanisms. Here, we have focused on a general framework

that could potentially contribute to both simple and complex

forms of temporal processing. Within this SDN framework,

temporal computations arise from time-dependent changes

in cellular or synaptic properties (the hidden state) and

dynamic changes in the population of active neurons

within recurrent neural circuits (the active state).

To date, the neural basis of temporal processing has

proved to be a challenging problem. This is in part a product

of the relative difficulty in identifying the brain regions under-

lying temporal processing, and reliably recording from

temporally selective neurons. Consider, the relative ease with

which neuroscientists can identify neurons that respond to

the touch of a specific whisker in a rodent or a visual

neuron that responds to a specific orientation. In contradistinc-

tion, even though numerous reports have identified instances

of cortical neurons that respond selectively to temporal

features [70–75], it is not possible to predict in advance

which neurons are temporally selective or anticipate their pre-

ferred temporal features. This somewhat stochastic nature of
temporal-selectivity is, however, what SDN models predict:

that some percentage of neurons will fire selectively to

order, interval and duration, but which ones do is in part a sto-

chastic product of the connectivity and synaptic properties of

the local circuitry. Indeed, computer simulations of randomly

connected recurrent cortical networks that exhibit STP reveal

that some percentage of the units exhibit temporally selective

responses, but as a result of the complexity and randomness

in the network it is hard to ascertain a priori which units will

exhibit temporal-selectivity [46,48,57,102].

Whether or not STP and intrinsic dynamics of recurrent

circuits account for timing in the subsecond range remains

an open question. However, the in vivo studies described

above in different areas of the invertebrate, frog, fish, bird

and mammalian nervous system strongly favour the hypoth-

esis that timing on the scale of tens of milliseconds to a few

seconds is an intrinsic property of neural circuits, as opposed

to specialized computations performed by some dedicated

brain area [4]. Furthermore, we suggest that observations of

timed responses in in vitro circuits, together with evidence

that in vitro circuits adapt to the temporal structure of experi-

enced temporal features, offer some of the best evidence for

the intrinsic timing hypothesis. Thus, although the mechan-

isms underlying the diverse forms of temporal processing

the brain performs remain to be elucidated, we believe that

there is sufficient cumulative evidence to conclude that at

least some forms of timing on the subsecond scale are a pro-

duct of intrinsic mechanisms—that is, they are a general and

inherent computation of neural circuits, as opposed to a

product of dedicated or centralized neural circuits.
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