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Abstract: Fine particulate matter with an aerodynamic diameter of less than 2.5 µm (PM2.5) is highly
variable in space and time. In this study, the dynamics of PM2.5 concentrations were mapped at
high spatio-temporal resolutions using bicycle-based, mobile measures on a university campus.
Significant diurnal and daily variations were revealed over the two-week survey, with the PM2.5

concentration peaking during the evening rush hours. A range of predictor variables that have been
proven useful in estimating the pollution level was derived from Geographic Information System,
high-resolution airborne images, and Light Detection and Ranging (LiDAR) datasets. Considering
the complex interplay among landscape, wind, and air pollution, variables influencing the PM2.5

dynamics were quantified under a new wind wedge-based system that incorporates wind effects.
Panel data analysis models identified eight natural and built environment variables as the most
significant determinants of local-scale air quality (including four meteorological factors, distance to
major roads, vegetation footprint, and building and vegetation height). The higher significance level
of variables calculated using the wind wedge system as compared to the conventional circular buffer
highlights the importance of incorporating the relative position of emission sources and receptors
in modeling.
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1. Introduction

Fine particulate matter with an aerodynamic diameter of less than 2.5 µm (PM2.5) is a mixture of
extremely small particles with adverse consequences for human health and the environment [1–3].
Urban air pollution has surfaced as a significant global environmental health concern because 55% of
the world’s population lives in urban areas [4], and more than 80% of urban dwellers live in areas with
the air quality levels exceeding World Health Organization guideline limits [5].

The spatio-temporal patterns of PM2.5 are highly variable within cities [6,7], because the
formation and dispersion of PM2.5 involve complex physical and chemical processes resulting from
human–atmosphere–biosphere interactions [8], and urban ecosystems manifest the highest degree
of heterogeneity and uncertainty in these interactions [9]. For example, PM2.5 is highly concentrated
along and near arterial roads [10], and particle pollutants can vary five to eightfold within an individual
city block [7,11]. In turn, increasing empirical evidence of localized pollution patterns has led to a
growing interest in assessing air pollution at the intra-urban scale in many disciplines [12–18].
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Although all major U.S. cities have monitoring stations that provide continuous measurements
of criteria air pollutants, the number of these stations is usually too low to capture small-scale
spatial variability in the pollutants’ distribution [19]. For instance, the Dallas–Fort Worth Metroplex
(DFW), home to approximately 7 million people, has only six stations monitoring PM2.5, and most are
located in old city areas. The expanded use of low-cost air quality sensors is recommended by the
Environmental Protection Agency (EPA) as the “new paradigm for air quality monitoring” [20]. Unlike
traditional stationary measurements that require high operational cost and expertise, low-cost sensors
are easy to use, portable, and affordable. They offer additional avenues to refine the spatio-temporal
characterization of air quality by allowing direct citizen engagement and wide community deployment.

The concentration of particle pollutants at a specific location and time is determined by many factors,
including emission sources, meteorology, landscape features, and physicochemical transformations.
To understand the driving factors of the spatio-temporal dynamics, it is common to statistically
link critical environmental factors—especially those that influence pollutant emission intensity and
dispersion efficiency—to site measurements. However, some overlooked facets include the quantity
and quality of input air pollution data, the 3D representation of predictor variables, and the wind
effects. For instance, to properly specify a regression model, a minimum of 40–80 sampling locations
is suggested [21]. However, most previous models were built upon a small number of fixed-site
measurements [22]. Moreover, most traditionally used explanatory variables only describe the
horizontal landscape, such as green space distributions [23]. Rarely do those variables account for
the dispersion environment (e.g., street canyons, position and dimensions of buildings, and road
width). Finally, the explanatory variables are typically calculated using point estimates at a specific
location, or based on circular [22] or varying-distance buffers [24]. Those buffers apply equal weights
to emission sources around a receptor, irrespective of the prevailing meteorological conditions and the
relative positions of sources and receptors [25]. This limitation could be especially exaggerated when
the model is developed at fine resolution.

The goal of this study is to characterize the intra-urban PM2.5 variability at fine resolution and
determine significant contributors via an integrated “monitoring–mapping–modeling” approach,
by developing new models and variables to overcome the aforementioned challenges. We utilized the
mobile monitoring data to reflect real-time fluctuations in local air quality and thus enrich the model
input data. New variables, such as building and vegetation heights, will be needed for an enhanced 3D
representation of land use and the physical characteristics of dispersion environments [26]. Moreover,
to account for the wind effects, a new buffer system that can incorporate the relative position of
emission source and receptor was deployed.

2. Study Area

This study was conducted on the University of North Texas (UNT) campus, which is located in
Denton County, Texas—the northern part of the Dallas–Fort Worth metroplex (hereafter referred to as
DFW; officially known as the ‘Dallas–Fort Worth–Arlington metro area’ by the U.S. Census Bureau;
Figure 1a). The DFW is ranked as the fourth most populous metropolitan area in the U.S. and has the
largest population growth from 2017–2018 with a gain of 131,767 (1.8%) residents in the nation [27].
The city of Denton is located at the northbound of DFW (Figure 1b), where the major Interstate 35
(I-35) rejoins from I-35E and I-35W. Given its importance as a transportation node in DFW, Denton has
experienced extensive urbanization with an increase of 18% in population since 2010 [27]. UNT is the
largest higher education sector in Denton, with 38,087 enrolled students and 3671 full-time employees
in 2018 [28].

Air quality in Denton has been consistently ranked among the worst in Texas. North Texas
asthma rates are reported as three times higher than the state’s average and twice as high as the
nation’s average [29]. Emissions from idling trucks, construction, hydraulic fracturing, and the brunt
of pollution blown from factory plants from South Dallas are all known to be major contributing factors
to Denton’s poor air quality [30]. However, within the total area of 2470 km2 in Denton, there is only
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one Texas Commission on Environmental Quality (TCEQ) monitoring station that measures PM2.5

(Figure 1c). This station is located at the TCEQ Denton Airport South location, approximately 4 km
west of UNT and 6.5 km from the city of Denton’s urban center, where PM2.5 levels would be expected
to be representative for the whole city.

Given the magnitude of the population impacted, relatively poor air quality, and lack of monitoring
sites, UNT is a unique place to conduct mobile air quality monitoring research. Compared to K-12
school settings, very few studies have investigated exposure to particulate matter in the university
setting, and previous studies largely focused on environmental quality factors and perception-based
measures [31,32]. Thus, there is a critical need to characterize and understand air quality on campus.
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Figure 1. The survey route map. Three inserts separately display: (a) location of the Dallas–Fort
Worth Metroplex (DFW) in the State of Texas, United States; (b) location of the city of Denton in DFW;
(c) location of University of North Texas (UNT) and the Texas Commission on Environmental Quality
(TCEQ) Air Quality Monitor in the City of Denton.

3. Methodology

3.1. Mobile Air Monitoring Surveys

In this study, mobile air monitoring surveys were conducted on UNT’s main campus using a
bicycle-based sampling system along a fixed route. Details of the mobile devices, selection of survey
routes, and methods of raw data aggregation are specified below.

3.1.1. Device

Bicyclists were outfitted with a Dylos DC1700 particle counter (Dylos Corporation, Riverside,
California) and a GlobalSat DG-500 GPS unit (GlobalSat WorldCom Corp., New Taipei City, Taiwan)
strapped inside of a mesh backpack that allows free airflow (Figure 2). The Dylos 1700 model is a
battery-operated, laser particle counter that measures the particle concentrations for PM2.5 and PM10
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(µg/m3) for each minute. Here, only PM2.5 concentrations were used. The GPS unit collects positional
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Figure 2. (a) The Dylos sensor and GPS units used to measure outdoor fine particulate matter with an
aerodynamic diameter of less than 2.5µm (PM2.5) concentration and record travel trajectory, respectively,
with a pencil for size reference; (b) the outfit of the two devices in a meshed backpack.

3.1.2. Survey Routes

Our mobile survey route contains two paths to span different levels of traffic and types of land
use. One external path follows the major vehicle and bus traffic on campus to capture the pollution
distribution patterns resulted from emissions. One internal path uses the paved pathways solely for
pedestrians and bicyclists in the interior of campus in order to show contrast. The route is 5.35 km
in total and takes an average of 30 min to bike through. Mobile monitoring was conducted every
four hours repeatedly during the workdays of 28 January 2019, to 8 February 2019: 07:00, 11:00, 15:00,
and 19:00. The hours of 07:00. and 15:00 are campus rush hours when people are entering and leaving
campus; 11:00 is the class passing time and during lunch break when people are often out and walking,
so the likelihood of personal exposure to pollutants could be the highest; 19:00 is the evening rush hour
on I-35 and traffic on campus is mainly from students taking evening classes. In total, 34 sampling
runs were completed. The raw data and aggregated survey data were provided in Files S1 and S2.

3.1.3. Data Aggregation

For visualization and data polishing purposes, we aggregated the point-based mobile measures at
equal interval segments along the sampling routes.

The sampling frequencies of PM2.5 and GPS data were 1 min and 5 s, respectively. The PM2.5

concentration data were joined with the GPS data if the 5 s time stamp of GPS data fell within the
1 min timestamp of the PM2.5 data. Then, we aggregated measurements at a 50 m distance along
the sampling routes. This resolution is selected as it is fine enough to reveal spatial variability while
ensuring a sufficient number of measurements per segment (approximately 4 points per segment).
Furthermore, the dataset of instantaneous measurements were converted into estimates of median
concentration for individual 50 m segment via data reduction algorithms. First, each 5 s measurement
was snapped to the nearest segment on the basis of its corresponding GPS coordinates. Second, for each
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segment at each sampling run, we computed the median of all the snapped measurements. The median
concentration was chosen as the core estimate of central tendency for the segment over the mean
considering the potentially small number of extreme outlier observations. The standard deviation was
also calculated for each segment as a representation of the within-segment PM2.5 variability. The raw
data and aggregated survey data are provided in Files S1 and S2.

3.2. Development of Explanatory Variables

A range of predictor variables that have been proven useful in estimating the pollution level
was derived from GIS datasets. Sixteen variables that fell into three categories, separately weather
conditions, proximity to emission sources, and urban morphology were developed (Table 1).

Table 1. List of the explanatory variables and their descriptive statistics.

Variables Acronym Unit Data Range

Meteorological Condition

Wind direction WDIR degrees (◦) 163.3 ± 101.9

Wind speed WSP kilometer per hour 15.6 ± 10.1

Wind gust GST kilometer per hour 6.4 ± 16.6

Temperature T Celsius degree (◦C) 9.2 ± −9.6

Dew point H Celsius degree (◦C) 3.8 ± −8.5

Proximity to Emission Sources

Distance to major roads Dismajor meter 664.8 ± 269.2

Distance to minor roads Disminor meter 8.1 ± 22.1

Distance to bus stops Disbus meter 67.2 ± 55.2

Urban Morphology

Wind Wedge

Vegetation footprint VegFpwedge square meter 1,190,152.0 ± 753,784.7

Building footprint BuildFpwedge square meter 447,183.3 ± 264,025.7

Vegetation height VegHtwedge meter 0.9 ± 0.4

Building height BuildHtwedge meter 0.5 ± 0.4

Circular Buffer

Vegetation footprint VegFpbuffer square meter 14,845,468.9 ± 10,916,456.3

Building footprint BuildFpbuffer square meter 5,880,245.9 ± 3,449,631.6

Vegetation height VegHtbuffer meter 0.9 ± 0.2

Building height BuildHtbuffer meter 0.6 ± 0.4

3.2.1. Meteorological Variables

Meteorological conditions, including wind, temperature, precipitation, and relative humidity,
can affect PM2.5 concentrations [33,34]. Each of those variables has been well documented to have
effects on air pollutants, but the relationships remain uncertain.

(1) Temperature affects chemical reactions and atmospheric turbulence that determine the formation
and diffusion of particles [35,36]. Some studies indicate that higher temperature promotes the
photochemical reaction between PM2.5-forming precursors and thus elevates particle mass [36].
Other studies reveal that when the temperature rises, thermally induced air convection becomes
frequent, which leads to the diffusion and dilution of particulate matter [37,38].
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(2) Humidity is closely related to the pollutant level. PM2.5 concentrations tend to increase while
humidity is low. Once the humidity reaches a high value, particles will absorb moisture and
condense, which leads to dry deposition of the particles to the ground and thus results in a lower
concentration of PM2.5 in the air [39]. Here, we used the dew point as a measure of atmospheric
moisture. A higher dew point indicates more moisture in the air.

(3) Wind speed, direction, and gust are crucial indicators of atmospheric activity. They greatly affect
air pollutant transport and dispersion [40]. Wind speed affects the pollutant concentration [41],
and wind direction determines where the pollutant blows from and disperses to [42,43]. Wind gust
is the rapid fluctuations in the wind speed with a variation of 10 knots or more between peaks and
lulls, and it indicates the maximum instantaneous wind speed. Many previous research methods
use long-term average wind speed and direction to estimate the pollution concentrations [44,45].
However, wind can fluctuate rapidly over the short term and its influence on the pollutant
dispersion and deposition processes is in a timely manner. Thus, the dependencies between wind
and PM2.5 concentrations are multidirectional and time-sensitive [46]. In this study, we designed
a wind wedge system to account for the real-time changes of wind, which will be elaborated in
Section 3.3.

We collected data for all meteorological variables (temperature, dew points, wind direction,
wind speed, and wind gust) from the National Oceanic and Atmospheric Administration [47].
Meteorological data were reported hourly and were joined to the corresponding hour of the survey data.
We joined data from surveys that spanned two hours (e.g., 10:50 to 11:20) to two sets of meteorological
data based on the time stamp.

3.2.2. Proximity to Emission Sources

The near-road PM2.5 increment has been proven statistically significant in many studies [48,49] and
the magnitude of increment can range from 10–23% as compared to background concentration [50,51].
UNT has many roadways with high traffic volume within and surrounding its campus, notably North
Texas Blvd, W Hickory St, Avenue C, and I-35E (Figure 1). We acquired the road network data from
Denton County GIS office. Considering the differences between major and minor roads in traffic
density, these two categories of roads were applied separately in further analysis.

3.2.3. Urban Morphology: Airborne Image-Derived Horizontal Landscape Pattern

To describe horizontal landscape patterns at a fine spatial resolution, we generated a land-cover
map based on the United States Department of Agriculture (USDA) National Agricultural Imagery
Program (NAIP) aerial photographic imagery. NAIP color-infrared imagery consists of four 8-bit
spectral bands (red, green, blue, and near-infrared) at 1 m spatial resolution. The latest acquisition
year for our study area is 2016. To better distinguish between vegetation and non-vegetation, we also
generated a vegetation indices layer of Normalized Difference Vegetation Index (NDVI), which is a
quantitative index of greenness, using the red and near-infrared bands of NAIP [52]. Aided with
240 visually interpreted training samples, we applied the supervised classification to the combined
four raw spectral bands and one NDVI layer. The final map reached an overall accuracy of 86% by
validating against an independent set of test samples. Finally, the footprints of the buildings and
green space were derived to quantify the urban morphology at the horizontal plane (Figure 3a,b).
Adequate evidence has suggested that vegetation and built-up were significant landscape elements
in determining air quality [53]. Urban green space can provide cleaner air, especially in its vicinity
areas [46,54]. The density of urban built-up was found to be positively correlated with air pollution
distribution [55]. The full description of methodology and the results can be found in File S3.
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3.2.4. LiDAR-Derived 3D Representation of the Built Environment and Trees

We used airborne Light Detection and Ranging (LiDAR) data to generate rasters for building and
vegetation height. The airborne LiDAR data in the study area were acquired in March 2011 with an
average point density of 4.8 points/m2 and classified into seven classes: 1—unclassified, 2—ground,
4—vegetation, 6—buildings, 7—low point (noise), 9—water, and 13—bridges and culverts. To reduce
errors caused by spatial interpolation, several steps were used to create a building height raster and a
vegetation height raster, with a cell size of 1 m by 1 m. The steps are shown in the following flowchart
(Figure 4). The derived building height raster and vegetation height raster are shown in Figure 3c,d.

3.3. Wind Wedge-Based Explanatory Variable Calculation

As stated in Section 3.2.1, wind direction and speed are key parameters in estimating the
landscape–air pollution relationship. As wind conditions may vary substantially, the spatial predictors
need to be calculated by incorporating wind effects. We first discretized the 360◦ wind field into a set
of 12 30◦ wind wedges (Figure 5). The direction of the wedge depends on the wind direction, and the
radius of the wedge relies on the wind speed. To determine the radius, we used the Beaufort Wind
Scale [56]. For example, Figure 5 illustrated the wind wedge overlaid on top of vegetation height layer.
The three wedges corresponded to three wind scenarios. If the wind speed was 17 miles per hour
and the wind direction was 15◦ from north, then the wedge would look similar to the purple wedge
in Figure 5; or if the wind speed was 5 miles per hour and the wind direction was 215◦ from north,
then the wedge would look similar to the yellow wedge in Figure 5. The average of vegetation and
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building heights and summation of vegetation and building footprints were calculated within the
wedge using the focal statistics tool and used in further analysis.

To provide a more holistic assessment of the wind wedge system, we also calculated the average
and sum of the four spatial predictors based on the traditional circular buffer with a variable-distance
radius. The buffer radius was set to be the same as that of the wedges to include the influence of the
surrounding urban landscape but with no consideration of wind direction.Int. J. Environ. Res. Public Health 2020, 17, x 8 of 18 
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3.4. Panel Data Analysis

We employed the panel data analysis to identify the most important variables in explaining
the PM2.5 spatio-temporal patterns. The panel data analysis is a quantitative analytical method that
deals with observations from multiple locations over multiple periods. Its capacity in analyzing the
characteristics and changes from both the cross-section and time-series dimension of data surpasses
conventional models that purely focus on one dimension [57]. The estimation equation for the panel
data model in this study is given as:

PM2.5it = β0 + β1 ×WDIR + β2 ×WSP + β3 × GST + β4 × T + β5 × H + β6 × Dismajor + β7 ×

Dismajor + β8 × Disbus + β9 × VegFPwedge + β10 BuildFPwedge + β11 × VegHtwedge + β12 ×

BuildHtwedge+ β13 × VegFPbuffer + β14 × BuildFPbuffer + β15 × VegHtbuffer + β16 × BuildHtbuffer+ εit

where the subscripts i and t refer to route segment and sampling time, respectively. β0 is the intercept
parameter, β1 to β16 are the estimates of slope coefficients, and ε is a random error. All explanatory
variables are transformed into natural logarithms for data normalization. All variables are calculated
in the natural logarithm.

There are two methods in panel data analysis to obtain estimates: separately fixed effects estimator
and random effects estimator. Depending on the form of the error term, the fixed effects estimator
assumes that each subject has its specific characteristics due to inherent individual characteristic effects
in the error term, thereby allowing differences to be intercepted between subjects. The random effects
estimator assumes that the individual characteristic effect changes stochastically, and the differences in
subjects are not fixed in time and are independent between subjects. To identify the right estimator,
the Hausman specification test was used to choose between models [58], with the null hypothesis that
random effects model yields consistent and efficient estimates [59]. If the null hypothesis is rejected,
the fixed effects model will be selected for further inferences and vice versa.

4. Results and Discussion

4.1. Diurnal and Daily Variation of PM2.5 Concentration

The mobile monitoring collected PM2.5 concentrations vary diurnally and daily on the UNT
campus over the sampling period. The diurnal profiles of PM2.5 concentration are shown within box
plots for each sampling hour in Figure 6a. For diurnal variation, the average concentration started
low at 07:00 and slightly increased at 11:00. The concentration reached its lowest point at 15:00 and
peak around 19:00. However, the differences between 07:00, 11:00, and 15:00 concentrations were
very subtle. Lower values in the PM2.5 prior to the morning rush hours can largely be attributed to
the less accumulated soot particles emitted from vehicular sources. Additionally, the atmospheric
conditions are relatively stable around 07:00, and thus dispersion is limited. As the day progresses,
increased solar radiation promotes photochemical reactions that lead to the formation of secondary
aerosols [60] and contribute to overall increased PM2.5 mass. While during the late evening rush
hours, PM2.5 reached its highest level. This similar pattern has also been observed in several different
places, such as Guangzhou, China [61] and a location near downtown Los Angeles, USA [62], where a
freeway is also nearby. It was reasoned that the resuspension of local road dust induced by a higher
speed of traffic and heavy-duty vehicle, coupled with a lower mixing height during the winter might
be responsible for the increase in the PM mass. The UNT campus is also in very close proximity
(approximately 200 m) to I-35, and the higher traffic volume on local roads due to evening classes can
be another reason for this increase.

The variation of daily-averaged PM2.5 concentration is shown within box plots for each sampling
day in Figure 6b. For the first week of sampling (28 January 2019–1 February 2019), the mean daily
concentration gradually increased from Monday to Friday, except for Tuesday. The second week of
sampling (4–8 February 2019) shows a completely different temporal pattern, with Tuesday as the peak
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day and followed by a gradual decrease until Friday. It is not surprising to observe such a wide range
of variations on a weekly basis. The PM2.5 concentration is largely determined by the PM chemical
composition, which can be affected by multiple factors including emission sources, thermal conditions,
and atmospheric mixing and dilution by vertical convection [62]. As those factors change dynamically,
the daily averaged PM2.5 concentration would vary accordingly.
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4.2. Spatial Characterization of Intra-Urban PM2.5 Gradient

We visualized the median PM2.5 concentration value of each segment to display the spatial pattern
of campus PM2.5 at a scale of 50 m (Figure 7). The median values were categorized into three levels:
low, medium, and high. Accordingly, each segment is displayed in the color gradient from blue to red.
The individual segment was also encompassed by a gray-shaded buffer, of which thickness represents
the degree of the standard deviation from the pooled data for each segment.

Considerable PM2.5 variation was found within routes. Evidently, the external path, where vehicle
and bus traffic is allowed, has all the segments with the heaviest PM2.5 pollution (the red category).
Areas with good air quality exist in the internal path, which is designated only for pedestrians and
bicyclists. The majority of segments in the internal zone are in the lowest category, and only two
segments are in the medium category. The variation of the measured PM2.5 is also larger for the
external path than the internal path. For the inner core of campus, because the pollution from the major
traffic roads decays dramatically over 100 m distance [63], much reduced and even no pollution from
vehicles should be anticipated. Moreover, more open space and natural environment in the internal
path can accelerate the airflow and collectively lead to lower PM2.5 values.
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4.3. Determinants of PM2.5 Spatio-Temporal Variation

Two panel data analysis models were applied to determine the major PM2.5 pollution contributors
on the UNT campus. The Hausman specification test identified the fixed effects model as the better
estimator, and hereafter, only the results from the fixed effects model were used for discussion (Table 2).

The results revealed that weather condition variables were all significant predictors of PM2.5

concentrations, which aligns with the existing literature [64,65]. Wind direction, wind speed,
temperature, and dew points are positively associated with PM2.5 measurements, and wind gust has
negative effects on PM2.5 concentration. Temperature mainly affects the diffusion and dilution ability of
the atmosphere [66]. The response of PM2.5 mass concentration to temperature is complex and varies
by different PM2.5 components [67]. Sulfate concentrations are expected to increase with increasing
temperature because of faster SO2 oxidation [68], which constitute the main fractions of PM2.5 mass
concentration in the Dallas area [69]. Non-volatile secondary particulate matter also generally increases
at higher temperatures due to increased gas-phase reaction rates [68]. Air humidity is likely to hold
a nonlinear relationship with the air pollution level. When the humidity is low, it is conducive to
the adhesion of atmospheric particulate matter on water vapor, thus leading to the accumulation of
air pollutants [66]. Nonetheless, once air humidity rises to form the effective precipitation, the wet
deposition processes will remove air pollutants by rainfall. Over the sampling period, the overall
humidity condition was dry. Thus, PM2.5 concentrations tend to be higher with rising humidity.
Wind speed determines the migration speed of pollutants. Low wind speed and strong subsidence
have been proven to favor PM2.5 accumulation [70]. In addition, most of the wind direction came from
the southeast, which facilitates the blowing of the pollution from South Dallas, where heavy traffic and
clusters of the industry are located, to Denton. Extreme wind speed, as represented by the wind gust,
is the atmospheric dynamic factor that can cause more atmospheric motion and turbulence, and thus
improve the diffusion and dilution of air pollutant.
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Table 2. Results of fixed effects panel model.

Variables Coefficient Estimate Standard Error p Value

Meteorology

Wind direction 1.25 0.54 *

Wind speed 12.90 1.54 ***

Wind gust −17.47 0.96 ***

Temperature 4.79 0.68 ***

Dew point 6.25 0.69 ***

Proximity to Emission Sources

Distance to major roads −0.17 0.29 ***

Distance to minor roads 3.08 0.34

Distance to bus stops 0.03 0.29

Urban Morphology

Wind wedge

Vegetation footprint −6.64 0.80 ***

Building footprint 1.21 0.61 *

Vegetation height 6.29 0.52 ***

Building height 11.38 0.93 ***

Circular buffer

Vegetation footprint 90.58 6.27 *

Building footprint 94.87 6.21 *

Vegetation height −1.86 0.79 *

Building height 1.61 1.55

Note: * denotes significance level of 0.05; ** denotes significance level of 0.01; and *** denotes significance level
of 0.001.

Among all the traffic-related variables, only the distance to major roads (interstate highway) is
significant, whereas the distance to minor roads (including avenues and streets) and distance to bus
stops were not profound. I-35 is dominated by heavy-duty vehicles (predominantly diesel-powered),
while local avenues and streets are mainly used by light-duty vehicles for the daily commute. Although
diesel vehicles compose only a small fraction of the mobile fleet, its PM mass emissions are 1–2
orders of magnitude higher than gasoline engines [71,72]. A study that collected PM2.5 measures from
two relatively close stations reported that the pollution emitted from heavy-duty vehicles mainly
determined the PM2.5 concentration, whereas contributions from light-duty vehicles were negligible
due to the imbalanced emission in black carbon [73]. This is in line with our observation that the
distance to major roads is a more important factor than the other two variables. Another noticeable
fact is the newly built Buc-ee’s—a supersized highway pit stop with 80–120 fueling positions—is
about 3 miles away from the UNT campus. Many diesel vehicle drivers use Buc-ee’s as their stop site,
which results in frequent acceleration, deceleration, and idling: the main factors in aggravating vehicle
emissions [74].

All urban morphology-related variables that have been calculated under the new wind wedge
system are significant. Building height was in a positive relationship with PM2.5 measurements.
Building footprint, implying the development density, also showed a positive but weaker correlation.
Thus, the greater the surface area of buildings and the higher the building height cause more PM2.5

accumulations, which is partly due to emissions created by increased activity in the surrounding
area. In addition, the significant relationships imply the presence of an urban canyon effect in this



Int. J. Environ. Res. Public Health 2020, 17, 4914 13 of 18

suburban area, whereby generally poor airflow due to higher density and the height of buildings can
cause pollutants to be trapped at the street level. Furthermore, the trapped effect can be intensified
by the increasing depth of the street canyons. Previous research also suggests that the street canyon
phenomenon may not only be observed in much more highly developed cities, such as Hong Kong [75]
and central London [76] but can exist in urban areas where the extension is vast but with most of the
buildings less than three stories tall [77]. Finally, large coverage of an impervious surface has been
a well-documented influence on the urban heat island effect [78]. The heat island-induced higher
temperature could intensify the capping effect of temperature inversions, which elevates the pollution
level [79].

Vegetation footprint was negatively related to PM2.5 concentrations, indicating that areas with
more green spaces tend to have improved air quality conditions. Urban trees are important short-and
long-term landscape sinks for elemental carbon [80]. They also mitigate the urban heat island effect by
the function of evapotranspiration and reduce temperature inversion-induced pollution. However,
vegetation height was in the inverse relationship with the PM2.5 level, implying that high-level trees
have an adverse effect on air quality. A recent article concluded that the net effects of vegetation vary
by each built-up environment through a literature review on neighborhood air quality modifications
by green interventions [81]. It suggests that high-level trees being placed along the two sides of the
street can lead to air quality deterioration in a street canyon. On the UNT campus, the average tree
canopy is above 3 m based on LiDAR detection. A distinct avenue style of planting can be observed
from the aerial image-based classification. High-level trees mingled with buildings in a street canyon
may act as obstacles to wind flow between the air above the building roof and within the canyon and
hence result in accumulated pollutants inside the street canyon [76,81]. However, outside the Denton
city core area, where the built environment is featured by sparsely distributed buildings or traffic
corridors that are open with generally detached manmade structures, vegetations act as the green
barrier that can result in a direct reduction of pollutant concentrations [82,83]. This explains why the
larger footprint of green space can mitigate air pollution.

Our final consideration was to compare how the urban morphology variables act differently to the
response variable (i.e., PM2.5) when they are calculated using different systems: one using the wind
wedge system and one using the traditional circular buffers. All variables calculated using the circular
buffers show a lower significance level as compared to the ones with wind wedge. Building height
was not evaluated as statistically significant. This implies that how urban morphology influences
air pollution concentration partly depends on simultaneous wind behavior. This is in line with
findings from previous studies: as the wind changes continuously, the retention or flow of the air
pollutants changes drastically as well [84]. The complex interplay among wind, urban 3D morphology,
and other natural and human environment elements should be inclusively incorporated to account for
air pollution dispersal.

5. Conclusions

As compared to the typical fixed-site modeling approach, mobile monitoring is superior in its
spatial density of measurements. The number of concentration estimates for modeling is 3673 over the
10-day sampling. Our approach is also notably different in how we assembled explanatory variables.
First, we included the wind wedge system, making it possible to investigate the effects of wind direction
and speed on variable development. Second, our study area is the campus size that makes it possible to
quantify the landscape in the vertical dimension than the typical horizontal plane. The LiDAR-derived
building height and vegetation height give better information on how 3D urban structure affects
pollutant dispersion.

One limitation of mobile monitoring over fixed-site monitoring is its inability to conduct long-term
observation. The choice of measurement time, although carefully chosen to capture the variation in
traffic flow (the major emission source), may have missed potential temporal hotspots. Another related
limitation is the need of high number of repeated measures to access the temporal and spatial variability
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of air pollutants [85]. However, there is no standard on how many runs should be conducted to
accurately represent the background concentration, as the desired number of runs vary by the pollution
level [86]. Based on this first survey data, it is possible to conduct a representativeness analysis to
provide guidance for future studies. A further limitation is a mismatch in the timestamp between
certain explanatory variables and the measurement time. Lacking a sufficient temporal characterization
of explanatory variables can be problematic and make identified correlations somewhat questionable.
For example, the “distance to minor roads” variable may have benefited from the inclusion of real-time
traffic flow, and the “distance to bus stops” variable could be more valuable if the bus schedule is
incorporated. This also signifies that the dilemma of mobile monitoring is no longer the acquisition
of fine-resolution, high-frequency monitoring data, but rather the absence of suitable environmental
parameters with matching spatio-temporal scales. Thus, mitigating these limitations would require
collaborative efforts among various data collection and production agencies.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/17/14/4914/s1,
File S1: The raw data of mobile monitoring surveys, File S2: The aggregated data of mobile monitoring surveys,
File S3: Methodology and results of land cover and land use classification.
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