
660 www.eymj.org

INTRODUCTION

Neonatal hypoxic ischemic encephalopathy (HIE) refers to a 
series of clinical encephalopathy manifestations resulting from 
fetus or neonatal hypoxic ischemic brain damage (HIBD). The 

damage, attributed to perinatal asphyxia, has been regarded 
as a common cause of neonatal death or motor dysfunction.1,2 
Multiple factors are involved in mediating neuron death after 
hypoxic ischemic brain injury, including overexpression of 
apoptosis-related proteins and the activation of inflammatory 
cells and proteins.3 The inflammatory cytokines interleukin 
(IL)-6 and tumor necrosis factor (TNF)-α, in particular, act as 
crucial components in neuron apoptosis and death upon hy-
poxic ischemic insult.4,5 Accordingly, exploring the molecular 
mechanism underlying HIBD could help in the development 
of therapeutic targets for the treatment of hypoxic ischemic 
brain injury.

MicroRNAs (miRNAs) belong to a category of small non-cod-
ing RNAs that regulate many biological processes, including 
cell proliferation, apoptosis, and inflammation, by targeting a 
wide range of mRNAs.6,7 In addition, miRNAs are considered 
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to be diagnostic biomarkers of human inflammation. They 
function by either promoting or inhibiting inflammation: for 
example, miR-1 aggravates endothelial induced inflamma-
tion.8 miR-101-3p is dysregulated and plays a role in synovial 
fibroblast-like cells in patients with rheumatoid arthritis.9 In-
terestingly, many miRNAs have been shown to have regulatory 
effects on HIE. For instance, miR-499-5p exhibits neuroprotec-
tive effects on HIE in neonatal rats by blocking C-reactive pro-
tein.10 miR-210 modulates microglial activation and regulates 
microglial-mediated neuroinflammation in HIE.11 miR-146b-
5p has been found to exert actions in multiple diseases, includ-
ing papillary thyroid cancer,12 atherosclerosis,13 and obesity.14 
However, the role of miRNAs in HIBD remains unclear.

Interleukin-1 receptor-associated kinase 1 (IRAK1) is a ser-
ine/threonine protein kinase associated with IL-1R and toll-
like receptor (TLR) signal transduction, exercising paramount 
influence in innate immunity and inflammatory diseases.15,16 
Research has demonstrated that miRNAs are able to modulate 
a variety of inflammatory diseases by regulating the expression 
of IRAK1.17 For example, through targeting IRAK1 in MRC-5 
cells, miRNA-206 promotes lipopolysaccharide-induced in-
flammatory injury.18 Additionally, miRNA-146a suppresses 
nuclear factor kappa B (NF-κB) activation and the production of 
proinflammatory cytokines by regulating IRAK1 expression in 
THP-1 cells.19 miRNAs also take part in HIE by regulating simi-
lar signaling pathways. For instance, miR-146b-5p prevents oli-
godendrocyte precursor cells from oxygen-glucose deprivation 
(OGD)-induced damage by targeting Brd4.20 Nevertheless, 
studies have yet to investigate whether miR-146b-5p regulates 
HIE inflammatory responses by targeting IRAK1.

Here, we report the down-regulated of miR-146b-5p and the 
up-regulation of IRAK1 in the brain lesions of HIBD rat pups 
and PC12 cells under OGD. Functionally, miR-146b-5p overex-
pression inhibited OGD-induced PC12 cell injury and attenu-
ated inflammation and oxidative stress following OGD. Mech-
anism studies indicated that IRAK1 is an important target of 
miR-146b-5p and that miR-146b-5p overexpression conspicu-
ously inhibits the activation of IRAK1, TNF receptor-associated 
factor 6 (TRAF6), transforming growth factor beta-activated ki-
nase 1 (TAK1), and NF-κB. Collectively, this study demonstrates 
that miR-146b-5p overexpression ameliorates HIBD by sup-
pressing IRAK1/TRAF6/TAK1/NF-κB signaling.

MATERIALS AND METHODS

Cell culture and OGD cell model
The neuronal cell line PC12 was purchased from American 
Type Culture Collection (ATCC, Manassas, VA, USA). The PC12 
cells were cultured in DMEM high glucose medium contain-
ing 10% fetal bovine serum (FBS) and 10% horse serum at 5% 
CO2 and 37°C. Cells in the logarithmic growth phase were tryp-
sinized using 0.25% trypsin (Beyotime Biotechnology, Shang-

hai, China). For OGD treatment, the cells were cultured in glu-
cose free DMEM medium containing 10% FBS in an incubator 
for 12 hours at 2% O2 and 37°C.

Cell transfection
MiR-146b-5p mimics, inhibitors, and their negative controls 
(miR-NC or NC-in) were obtained from GenePharma (Shang-
hai, China). A total of 1×105 PC12 cells were seeded in 24-well 
plates. The cells were transfected with the above vectors using 
Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) according 
to the manufacturer’s instructions. After 24 hours of transfec-
tion, the medium was exchanged to normal culture medium.

HIE model with rat pups
A modified Rice-Vannucci hypoxia-ischemia model was de-
veloped using rat pups at the seventh day after birth (P7) as 
previously described.21 Briefly, the rat pups were anesthetized 
with inhalation of isoflurane (5% for induction and 2–3% for 
maintenance), and the right common carotid artery (CCA) was 
permanently occluded with 8/0 silk surgical suture. After sur-
gery, pups recovered at 37°C for 1 h and then placed in a hypoxic 
incubator containing humidified 8% oxygen balanced with 92% 
nitrogen at 37°C for 2.5 h. At the end of hypoxia, the pups were 
returned to their dams. For the sham group, the right CCA was 
exposed but not ligated, and the pups were not exposed to hy-
poxia treatment. The animal research was approved by the An-
imal Ethics Committee of Shanxi Children’s Hospital and per-
formed in line with guidelines on the protection and use of 
experimental animals at Shanxi Children’s Hospital. Our study 
was approved by the Ethics Review Board of Shanxi Medical 
University (IRB No. 2016LL083).

Immunohistochemistry
The brain tissues of the rats were fixed in 10% formaldehyde 
and embedded in paraffin. Next, citrate buffer (10 mM sodium 
citrate 0.05% tween, pH 6) was used to restore the brain sec-
tions for 20 min at 96°C. Afterwards, the sections were incubat-
ed with endogenous peroxidase blocking buffer [70% methanol 
and 3% hydrogen peroxide (H2O2)] for 15 min. Then, the slices 
were blocked in 0.5% bovine serum albumin with 0.05 M tris-
buffered saline and 0.5% triton for at least 1 hour. IRAK1 anti-
body (1:200, Abcam, ab238, MA, USA) and Caspase-3 antibody 
(1:150, Abcam, ab13847, MA, USA) were incubated with the 
sections at 4°C overnight. The following day, after being washed 
with PBS buffer, the sections were incubated first with second-
ary antibodies for 1 hour at room temperature and then with 
horseradish peroxidase (HRP)-coupled streptavidin. Finally, 
we sealed the sections for microscope observation. Five high 
power (×400) fields of view were randomly selected, and the 
exact number of positive cells in each section were counted. 

ELISA
At 72 hours after HIE surgery, the brain tissues in the rats were 
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collected, cut into pieces, and mixed in 0.9% physiological sa-
line. The mixture was centrifuged at 6000 r/min (15 min, 4°C), 
and the supernatant was retrieved. The contents of IL-6, TNF-α, 
SOD, and GSH-Px in the supernatant were determined ac-
cording to the manufacturer’s instructions included with the 
ELISA kits (Nanjing Jiancheng Bioengineering Institute).

qRT-PCR
Total RNA was extracted from cells or brain tissues using TRIzol 
(Invitrogen). Total RNA was reversely transcribed into cDNA 
with the RNA First Strand cDNA Synthesis Kit (Sangon Biotech, 
Shanghai, China). PCR was conducted using SYBR Prime 
Script RT-PCR kits (Invitrogen). The primers were synthesized 
by Sangon Biotech Co., Ltd. GAPDH and U6 were used as the 
internal references for IRAK1 and miR-146b-5p, respectively. 
The primers sequences are as follows: miR-146b-5p, forward: 
5'-ATGCGCGCTGAGAACTGAATT-3', reverse: 5'- CAGTG-
CAGGGTCCGAGGT-3'; IRAK1, forward: 5'- CCTCCAGGTTC-
CACTCTCTG-3', reverse: 5'-AACCACCCTCTCCAATCCTG-3'; 
GAPDH, forward: 5'-AACGGATTTGGTCGTATTG-3'; GAPDH, 
reverse: 5'-GGAAGATGGTGATGGGATT- 3'. U6, forward: 5'- 
GCTTCGGCACATATACTAAAAT-3', reverse: 5'- CGCTTCAC-
GAATTTGCGTGTCAT-3'. 

Western blot
After cell treatments were finished, the cells were collected, 
and the total protein in the cells was isolated by RIPA lysate 
(Roche, Basel, Switzerland). Afterwards, 50 μg of total protein 
was loaded on a 12% sodium dodecyl sulfate-polyacrylamide 
gel and electrophoresed for 2 h at 100 V. Then, the protein was 
electrically transferred to polyvinylidene fluoride membranes. 
After being blocked with 5% skimmed milk powder for 1 h at 
room temperature, the membranes were washed three times 
with TBST (10 min each time) and incubated with primary an-
tibodies against IRAK1 (Abcam, ab238, 1:1000), NF-κB (phos-
pho S536) (Abcam, ab86299, 1:1000), NF-κB (Abcam, ab16502, 
1:1000), TRAF6 (Abcam, ab33915, 1:1000), TAK1 (Abcam, 
ab109526, 1:1000), TLR4 (Abcam, ab22048, 1:1000), Caspase3 
(Abcam, ab13847, 1:1000), and Bax (Abcam, ab32503, 1:1000) 
(concentration 1: 1000) at 4°C overnight. Next, the membranes 
were again washed with TBST and incubated with HRP-la-
beled anti-rabbit secondary antibodies (concentration 1: 3000) 
at room temperature for 1 h. After another washing with TBST, 
the NovexTM ECL Chemiluminescent Substrate Reagent Kit 
(Invitrogen) was utilized for bands imaging, and the gray values 
of each protein were analyzed using Image J software.

CCK 8 assay
Cells in the logarithmic growth phase in each group were sub-
jected to trypsinization, centrifugation, and counting. They 
were then inoculated into 96-well plates at a density of 2×104/
mL each well. The culture solution was removed 24 hours later, 
and 10 μL of CCK-8 solution (Beyotime Biotechnology) was 

added to each well. Next, the cells were incubated at 37°C for 
another 1 h. Finally, absorbance at 450 nm was examined on 
a microplate reader. Four parallel wells were set in each group, 
and the experiments were repeated three times. 

Flow cytometry
Cells that did not undergo CCK-8 assay were trypsinized and 
collected by centrifugation (1500 r/min, 3 min). The cells were 
the examined in accordance with the instructions of the apop-
tosis detection kit (Shanghai Aladdin Biological Reagent Co., 
Ltd., Shanghai, China). Briefly, the cells were washed twice 
wash with PBS, after which 400 μL of pre-chilled PBS, 10 μL of 
Annexin V-FITC and 5 μL of propidium iodide were added to 
the cell samples. After incubation for 30 min in the dark at 4°C, 
cell apoptosis was immediately measured via flow cytometry. 
The percentage of apoptotic cells was acquired using computer 
algorithms.

Luciferase reporter assay
Amplified DNA sequences were cloned into pmirGLO dual lu-
ciferase vectors (Promega, Madison, WI, USA) to form wild-
type (WT) IRAK1 and mutant (MT) IRAK1 reporter vectors. 
PC12 cells were seeded in 24-well plates and incubated over-
night. Then, we transfected IRAK1-WT or IRAK1-MUT reporter 
vectors and miR-146b-5p mimics or negative control with Lipo-
fectamine 2000 (Invitrogen). At 48 hours after transfection, the 
luciferase activity was measured using a dual luciferase reporter 
gene assay system (Promega).

Statistical analysis
SPSS software (version 20.0, IBM Corp., Armonk, NY, USA) was 
used for statistical analysis. All data are reported as a mean± 
standard deviation (x±s). Statistical analysis was carried out us-
ing Student’s t-test. One-way analysis of variance was used to 
analyze normally distributed data among multiple groups. p 
values <0.05 were regarded as statistically significant.

RESULTS

miR-146b-5p is down-regulated in HIBD 
To explore the function of miR-146b-5p in HIBD, we estab-
lished an HIE model in rat pups. First, histopathological chang-
es in the HIE brain tissues were detected. Staining for cells ex-
pressing Caspase-3 revealed significant increases therein in 
HIE brain tissues, compared with tissues from the Sham group 
(Fig. 1A). ELISA assay was conducted to detect the expression 
of inflammatory and oxidative stress factors in the control and 
HIE groups. The results revealed up-regulated expression of 
inflammatory factors IL-6 and TNF-α (Fig. 1B) and down-reg-
ulated expression of oxidative stress factors SOD and GSH-Px 
in the HIE group (Fig. 1C). qRT-PCR significant downregula-
tion of miR-146b-5p in the HIE group (Fig. 1D). The results of 



663

Guang Yang and Yuan Zhao

https://doi.org/10.3349/ymj.2020.61.8.660

Western blot and immunohistochemistry showed higher ex-
pressions of TLR4, IRAK1, TRAF6, TAK1, and p-NF-κB in the 
HIE group than the control group (Fig. 1E and F). Linear regres-
sion analysis suggested that miR-146b-5p expression is nega-
tively correlated with IRAK1 expression (Fig. 1G). Collectively, 
these results indicated that miR-146b-5p might be involved in 
regulating HIE-induced inflammation and oxidative stress.

miR-146b-5p overexpression attenuates 
OGD-induced PC12 cell damage
Allowing for the downregulation of miR-146b-5p in the HIE 
model, we developed an in vitro model of neuronal injury in 
PC12 cells by OGD. Similar to the in vivo experiments, expres-
sion of miR-146b-5p was lower in PC12 cells upon OGD insult 
(Fig. 2A). Next, we selectively regulated the levels of miR-146b-
5p in PC12 cells using mimics and inhibitors (Fig. 2B). Addi-
tionally, CCK8 assay, flow cytometry, and Western blot were 
conducted to evaluate cell viability and apoptosis, respectively. 

Fig. 1. miR-146b-5p down-regulated in HIE model. (A) Brain tissue necrosis in HIE rats was evaluated via Caspase-3 immunohistochemistry staining. (B) 
The expressions of inflammatory cytokines IL-6 and TNF-α were measured in the control group and HIE group via ELISA. (C) The oxidative stress fac-
tors SOD and GSH-Px levels were estimated via ELISA. (D) qRT-PCR was used to detect miR-146b-5p expression in the brain lesions. (E) Relative expres-
sions of TLR4, IRAK1, TRAF6, TAK1, and NF-κB were measured via Western blot. (F) Immunohistochemistry staining was used to detect IRAK1 expression 
in the brain tissues. (G) The correlation between IRAK1 and miR-146b-5p in rat brain tissues was analyzed by linear regression analysis. *p<0.05, **p<0.01, 
***p<0.001. HIE, hypoxic ischemic encephalopathy; IL, interleukin; TNF-α, tumor necrosis factor.
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The results demonstrated that OGD leads to marked decrease 
in cell viability and an increase in apoptosis (Fig. 2C-E). Over-
expressing miR-146b-5p, however, reversed these features, 
while inhibiting miR-146b-5p decreased cell viability and pro-
moted apoptosis (Fig. 2C-E). Overall, these data indicated that 
miR-146b-5p overexpression attenuates OGD-induced PC12 
cell damage.

miR-146b-5p overexpression attenuates 
OGD-induced inflammatory responses and 
oxidative stress
As the inflammatory response and oxidative stress were sig-

nificant in the HIE model, we further assessed these reactions 
in PC12 cells under OGD. Therein, overexpression of miR-
146b-5p inhibited IL-6 and TNF-α levels, but promoted anti-
oxidative stress factors (SOD and GSH-Px) (Fig. 3). Interest-
ingly, downregulating miR-146b-5p not only enhanced IL-6 
and TNF-α expression, but also decreased SOD and GSH-Px. 
The above results suggested that miR-146b-5p overexpression 
attenuates OGD-induced inflammatory response and oxida-
tive stress and that the inhibition of miR-146b-5p has the op-
posite effects. 
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Overexpression of miR-146b-5p attenuates IRAK1/
TRAF6/TAK1/NF-κB pathway activation
For the purpose of further investigation of the mechanism of 
miR-146b-5p on OGD-induced HIE, qRT-PCR and Western blot 
were performed to examine the relative expression of TLR4/
IRAK1/TRAF6/TAK1/NF-κB in PC12 cells. The results revealed 
that IRAK1 mRNA levels in the OGD+miR-146b-5p group were 
considerably lower than those in the OGD+NC group (Fig. 4A). 
Similarly, the protein levels of IRAK1, TRAF6, TAK1, and p-NF-
κB were also markedly downregulated. While the levels of TLR4, 
an upstream protein of IRAK1, were increased by OGD treat-
ment, they were not significantly altered in the OGD+miR-146b-
5p group, compared with the OGD+NC group (Fig. 4B-G). Also, 
in the OGD+miR-146b-5p-in group, IRAK1, TRAF6, TAK1, and 
p-NF-κB levels, but not TLR4, were notably higher than those 
in the OGD+NC-in group (Fig. 4). Accordingly, we deemed that 

miR-146b-5p overexpression suppresses IRAK1/TRAF6/TAK1/
NF-κB pathway activation.

IRAK1 is a functional target of miR-146b-5p
To further study the downstream molecular targets of miR-
146b-5p, we analyzed miR-146b-5p using the miRanda, PicTar, 
miRmap, and TargetScan databases, and Venn Diagrams were 
drawn to analyze shared targets among the four databases. The 
results highlighted 21 candidate genes, including IRAK1 (Fig. 
5A and B). Next, we verified targeted binding relationships be-
tween miR-146b-5p and IRAK1 via the dual luciferase gene re-
porter method. The results demonstrated that miR-146b-5p 
mimics significantly reduced the luciferase viability of IRAK1-
WT, but not for IRAK1-MT (Fig. 5C). Moreover, we analyzed the 
biofunctions of IRAK1 through GO and KEGG pathway map-
ping using String (https://string-db.org/cgi/network). Interest-
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Fig. 4. MiR-146b-5p overexpression inhibits activation of the IRAK1/TRAF6/TAK1NF-κB pathway. (A) Relative expression of IRAK1 mRNA was deter-
mined via qRT-PCR. (B-G) Relative expressions of TLR4, IRAK1, TRAF6, TAK1, phosphorylated (p)-NF-κB, and NF-κB in PC12 cells were examined via 
Western blot. No significance (ns) p>0.05, *p<0.05, **p<0.01, ***p<0.001. OGD, oxygen-glucose deprivation; NC, negative control.
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ingly, IRAK1 was found to be a vital protein involved in TLR4-
MyD88-IRAK1-TRAF6-TAK1-NF-κB signaling (Fig. 5D and E). 
Overall, these results indicated that miR-146b-5p elicits anti-in-
flammatory and anti-oxidative stress responses by modulating 
IRAK1-TRAF6-TAK1-NF-κB signaling.

DISCUSSION

In the present study, we found that miR-146b-5p was down-
regulated in the brain lesions of HIE rat pups, which was corre-
lated inflammatory and oxidative stress responses. Further 
exploration indicated that overexpression of miR-146b-5p at-
tenuates OGD-induced PC12 cell damage via restraining the 

IRAK1-TRAF6-TAK1-NF-κB pathway.
Neonatal HIBD is a comorbid brain disorder caused by neo-

natal asphyxia, which threatens the life and health of newborns. 
Accordingly, the search of more effective methods against neo-
natal HIBD has become a greater focus in perinatal medi-
cine.21,22 In the pathogenesis of HIE, the inflammatory reaction 
cascade is integral. The expressions of several inflammatory 
factors, including IL-6, IL-8, and TNF-α, increase greatly after 
HIE.23 Among these, IL-6 attracts neutrophils to the injured site, 
resulting in destruction of endothelial cell integrity.24 TNF-α in-
teracts with NF-κB to aggravate the inflammatory response. 
Eventually, a series of damage, such as blood brain barrier de-
struction, cerebral edema, thrombosis and bleeding, may oc-
cur.25 Meanwhile, dysregulated oxidative stress elicits cytotox-
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Fig. 5. MiR-146b-5p, a functional target of IRAK1. (A) Potential targets of miR-146b-5p were analyzed through miRanda, PicTar, miRmap, and TargetScan 
databases. (B) Binding sites between miR-146b-5p and IRAK1 are shown. (C) Luciferase viability was detected after co-transfection of wild-type IRAK1 or 
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ic reactions. In HIE, the production of reactive oxygen species 
ruins antioxidant defenses, thereby permitting the modification 
or degeneration of cellular macromolecules, such as mem-
branes, proteins, lipids, and DNA. Moreover, reactive oxygen 
species can lead to a cascading inflammatory response and 
protease secretion.26 Here, we constructed a HIE model in rat 
pups and found observed obvious inflammation and oxidative 
stress responses. 

Increasing studies have demonstrated that miRNAs play a 
role in HIE. For instance, miR-17-5p was found to be downreg-
ulated in neonatal hypoxic-ischemic rat brains, and overex-
pression of miR-17-5p was shown to significantly relieve brain 
injury in rats by modulating IRE1α-mediated TXNIP/NLRP3 
inflammasome activation.27 Additionally, over-expression of 
miR-128 has been found to attenuate brain edema and apop-
tosis of nerve cells in DEX-treated HIBD mice. Mechanistically, 
miR-128 exerts its neuroprotective effects by inhibiting WNT1.28 
Previous studies have found that miR-146b regulates multiple 
inflammation processes by targeting multiple genes. For exam-
ple, miR-146b overexpression inhibits the NF-κB activation sig-
naling pathway by suppressing MYD88, thereby reducing the 
inflammatory factor production in the serum of patients with 
pneumonia.29 Additionally, miR-146b overexpression inhibits 
TRAF6, thus reducing inflammatory factor expression to alle-
viate hypercholesterolemia.30 In the present study, we found 
that miR-146b-5p was significantly downregulated both in 
HIE rat pups and OGD-treated PC12 cells. Overexpression of 
miR-146b-5p not only significantly inhibited OGD-induced 
PC12 damage, but also attenuated inflammatory and oxidative 
stress responses. Accordingly, we deemed that miR-146b-5p 
exerts neuroprotective effects in HIE.

Interestingly, accumulating evidence has proven that many 
miRNAs are dysregulated in patients with HIE. For example, a 
clinical study of 78 patients with ischemic stroke indicated that 
three novel miRNAs (miRNA-221-3p, miRNA-382-5p, and miR-
NA-4271) are significant biomarkers in the diagnosis of isch-
emic stroke.31 Another study revealed that miR-125a-5p, miR-
125b-5p, and miR-143-3p in the circulatory system serve as 
promising early diagnostic markers for the patients suffering 
from acute ischemic stroke.32 Additionally, exosomal microR-
NA-126 from the venous blood of remote ischemic precondi-
tioning was found to induce hypoxia tolerance of SH-SY5Y 
cells via targeting DNMT3B.33 Collectively, these studies sug-
gest that miRNAs plays important roles in HIE. Notwithstand-
ing, the clinical therapeutic effects of miRNAs on human dis-
eases have rarely been reported, and the roles of miRNAs have 
primarily been elucidated using cells or animal models. Thus, 
there is a tremendous amount of works remaining to be done 
to clarify the biofunctions of miRNAs in human.

TLR-mediated NF-κB pathway signaling has been found to 
be activated after HIE.34 As a vital transcription factor, NF-κB is 
phosphorylated and then penetrates into the nucleus, thus 
promoting the expression of inflammatory factors. Moreover, 

multiple drugs have been found to ameliorate HIE by regulat-
ing TLR-mediated NF-κB signaling: For instance, tanshinone 
IIA relieves HIE through TLR‑4‑mediated NF‑κB signaling.35 
Similarly, ginkgolide B ameliorates hypoxic-ischemic brain 
injury in neonatal male rats by dampening NLRP3 inflamma-
some activation.36 Furthermore, resveratrol mitigates hypoxic-
ischemic induced oxidative stress and brain injury in neonatal 
rats via Nrf2/HO-1 pathway.37 Presently, to investigate the un-
derlying mechanism of the neuroprotective role of miR-146b-
5p in HIE, we conducted bioinformatics analysis and found 
that IRAK1 was a promising candidate target of miR-146b-5p. 
Indeed, we found that IRAK1 was upregulated in HIE brain le-
sions and negatively correlated with the expression of miR-
146b-5p. Moreover, we verified that miR-146b-5p targets the 
3’UTR of IRAK1 mRNA and inhibits activation of the IRAK1-
mediated TRAF6/TAK1NF-κB axis in OGD-treated PC12 cells. 
Interestingly, previous studies have found that IRAK-1/4 inhi-
bition decreases the nuclear translocation of the NF-κB sub-
unit p65 and protects against acute hypoxia/ischemia-induced 
neuronal injury in vivo and in vitro.38 Overall, we demonstrated 
that miR-146b-5p targets IRAK1 and inhibits IRAK1 expression, 
thereby reducing TRAF6/TAK1NF-κB pathway activation and 
the expression of inflammatory factors and oxidative stress. 

In short, miR-146b-5p overexpression relieves HIE-induced 
neuronal damage by regulating the TRAF6/TAK1NF-κB sig-
naling pathway by targeting IRAK1. Altogether, in this study, we 
identified a new regulatory axis of miR-146b-5p/IRAK1/TRAF6/
TAK1/NF-κB in HIE, which could be a promising therapeutic 
target for neuronal HIE. 
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