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Electroencephalography (EEG) is used in the diagnosis, monitoring, and prognostication

of many neurological ailments including seizure, coma, sleep disorders, brain injury, and

behavioral abnormalities. One of the primary challenges of EEG data is its sensitivity

to a breadth of non-stationary noises caused by physiological-, movement-, and

equipment-related artifacts. Existing solutions to artifact detection are deficient because

they require experts to manually explore and annotate data for artifact segments. Existing

solutions to artifact correction or removal are deficient because they assume that the

incidence and specific characteristics of artifacts are similar across both subjects and

tasks (i.e., “one-size-fits-all”). In this paper, we describe a novel EEG noise-reduction

method that uses representation learning to perform patient- and task-specific artifact

detection and correction. More specifically, our method extracts 58 clinically relevant

features and applies an ensemble of unsupervised outlier detection algorithms to identify

EEG artifacts that are unique to a given task and subject. The artifact segments are then

passed to a deep encoder-decoder network for unsupervised artifact correction. We

compared the performance of classification models trained with and without our method

and observed a 10% relative improvement in performance when using our approach.

Our method provides a flexible end-to-end unsupervised framework that can be applied

to novel EEG data without the need for expert supervision and can be used for a

variety of clinical decision tasks, including coma prognostication and degenerative illness

detection. By making our method, code, and data publicly available, our work provides

a tool that is of both immediate practical utility and may also serve as an important

foundation for future efforts in this domain.

Keywords: electroencephalography, artifact rejection, brain computer interface, unsupervised learning, artifact

removal

1. INTRODUCTION

Electroencephalography (EEG) devices are pervasive tools used for clinical research, education,
entertainment, and a variety of other domains (1). However, most EEG applications remain
limited by the low signal to noise ratio inherent to data collected by EEG devices. EEG noise
sources includemovement artifacts, physiological artifacts (e.g., from perspiration), and instrument
artifacts (resulting from the EEG device itself). While researchers have developed a number of
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methods to identify specific instances of these artifacts (2) in EEG
data, most methods require manual labeling of exemplary artifact
segments1 or special hardware, such as Electrooculography
electrodes that are placed around the eyes, or large data-sets of
templates, such as independent component scalp maps (3).

Manual annotation of artifacts in EEG data is problematic
because it is time-consuming and may even be untenable if the
specific profiles of artifacts in the EEG data vary as a function of
the task, the subject, or the experimental trial within a given task
for a given subject, as they so often do. These realities quickly
scale the complexity of the artifact annotation problem and make
the use of a one-size-fits-all artifact detection method infeasible
for many practical use cases.

Even if artifacts could be identified with perfect fidelity, their
simple removal (e.g., by deletion of the corrupted segment)
may introduce secondary analytic complications that confound
the performance of downstream methods that leverage these
data. For instance, methods that rely on the stationarity of
EEG segments will be confounded by simple removal of
the artifact segments. Even the simplest approaches, such as
averaging many EEG trials before extracting features (4), may
be less effective if artifact occurrence is correlated with the
trail type or experimental condition, thereby increasing the
likelihood of a type II error and the consequent reduction in
experimental power.

An essential challenge of artifact detection in EEG processing
is that the definition of “artifact” depends on the specific task at
hand. That is, a given EEG segment is an artifact if and only if it
impacts the performance of downstreammethods by manifesting
as uncorrelated noise in a feature space that is relevant to those
methods. For instance, muscle movement signatures confound
comma-prognostic classification but are useful features for sleep
stage identification (5).

The task-specific nature of artifacts makes their detection
especially suitable for data-driven unsupervised approaches as
the only requirement for the identification of artifacts using
such methods is that the artifacts are relatively infrequent.
That is, when mapping our data into feature spaces that are
relevant to the specific EEG task, artifacts should stand out as
rare anomalies. Indeed, many state-of-the-art approaches use
unsupervised methods for the detection of specific artifact types
under specific circumstances. For instance, the Blink algorithm
described by Agarwal et al. is a fully unsupervised EEG artifact
detection algorithm (6) that is effective for the detection of eye-
blinks. While existing methods provide excellent performance
for specific artifact types, there is a need for additional progress
toward generalized artifact detection approaches, that make no
assumptions about the task, subject, or circumstances.

It is also possible to go beyond artifact detection to correct the
EEG trial by removing the artifact signal. EEG artifact removal
is one instance of a more general class of noise reduction
problems. The removal of noise from signal data has been a
topic of scientific inquiry since Shannon laid the foundation for
information theory in the 1940s (7); over the years, multiple

1Which may be used as “templates” by statistical or rule-based methods for the

identification (and potential rejection) of noisy data epochs.

signal processing approaches to this problem have found their
way into EEG research. One such technique for artifact removal
that is ubiquitous for EEG processing is Independent Component
Analysis (ICA). This method and its modern derivative remain
popular among the research community for unsupervised artifact
correction. However, ICA still requires EEG experts to review the
decomposed signals and manually classify them as either signal
or noise. Furthermore, while ICA is undeniably an invaluable
tool for many EEG applications, it also has limitations that are
particularly poignant when the number of channels is low; ICA
can only extract as many independent components as there are
channels and will therefore be unable to isolate all independent
noise components if the total number of independent noise
components and signal sources exceeds the number of EEG
electrodes (8).

Artifact removal is an especially common practice for a
particular artifact type: the electrode “pop.” These artifacts
result from abrupt changes in impedance, often due to loose
electrode placement or bad conductivity (9, 10). Unlike muscle
and movement artifacts, electrode pop is extremely localized,
often affecting only one electrode channel. Channel interpolation
is the process of replacing the signal of a corrupted channel
with one that is interpolated from surrounding clean channels.
Patrichella et al. demonstrated that knowing specific electrode
locations (namely the exact electrode locations for each subject),
and the distances between them can improve interpolation
results (11, 12). However, this type of additional information is
rarely available and often requires special dedicated hardware.
Recently, Sadiya et al. proposed a deep learning convolutional
auto-encoder based approach to learn task and subject-specific
interpolation (13). By iteratively occluding channels in the input
and using original data as the ground truth, the model learned
how to interpolate channels in a self-supervised manner with
no human annotation. Moreover, not only was the model able
learn idiosyncratic information, such as subject-specific electrode
location, beating state-of-the-art models, it was also possible
to use transfer learning to improve performance on previously
unseen tasks and subjects.

In this paper, we extend the aforementioned state-of-the-art
approaches in artifact detection and rejection by building an
end-to-end pipeline that solves both the detection and rejection
problems together without making any assumptions concerning
the task or artifact type.

Our artifact detection approach uses a collection of
quantitative EEG features that are relevant for a wide variety of
tasks including coma prognostics (14), diagnosing mental-illness
(15), decoding mental representations (16), decoding attention
deployment (17), and brain–computer interface design (18).
Unsupervised outlier detection algorithms utilize these extracted
features to identify artifacts in the EEG data. These unsupervised
algorithms only require an estimate of the frequency of artifacts
in the data, and can detect any artifact type, irrespective of
the task. To guarantee that our results accurately represent the
capabilities of these unsupervised outlier detectors we carefully
selected algorithms that are qualitatively different from each
other (for instance relying on local vs global characteristics of the
data distributions) and explored hundreds of different possible
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FIGURE 1 | Our methodological approach. The EEG data is first segmented into epochs (see A1, A2, A3). Next, 58 features are extracted and an ensemble of

unsupervised outlier detection methods are used (see B1, B2, B3) to identify EEG epochs that are artifact-ridden and require interpolation (see A2 and B2). The

artifact-ridden epochs are then interpolated by an ensemble of deep encoder-decoder networks (see red line in C).

configurations. Sub-section 2.2.1 provides a comprehensive
review of the feature extraction process. Sub-section 2.2.2 details
our experimentation with different outlier detection algorithms.

Our artifact correction approach uses a deep encoder-decoder
network to correct artifacts that are not restricted to only
one channel. Specifically, we frame our learning objective as a
modified “frame-interpolation” task. Frame interpolation is the
filling in of missing frames in a video (19). To the best of our
knowledge, this is the first work that takes this approach to
EEG artifact correction. The proposed approach is also unique
in that it does not require the maintenance of any large data-
set of templates or annotated data similarly to other state-of-
the-art artifact removal methods (6). The model architecture as
well as the exact objective formulation are discussed in detail
in subsection 2.3.

The data-sets used in this work are discussed in detail in
subsection 2.1. The results of the different experiments we
conducted can be found in section 3. Finally, we discuss our
findings, their broad implications, and the limitations of our
approach in section 4.

2. METHODS

In this paper, we propose an end-to-end pre-processing
pipeline for the automated identification, rejection, and
removal/correction of EEG artifacts using a combination of

feature-based and deep-learning models which is intended for
use as a general-purpose EEG pre-processing tool. To begin, we
provide a brief overview of the data and methodological pipeline,
calling out the specific subsections where the full details of each
component of the pipeline are discussed.

In Figure 1 we provide a visualization of our proposed
pre-processing pipeline; our method begins by performing
unsupervised detection of epoched EEG segments in a 58-
dimensional feature space (subsection 2.2). The trials that
were not rejected in this initial stage are used to train a
deep encoder-decoder network designed to correct artifacts
segments (subsection 2.3).

While we demonstrate this method on a particular data set
(described below), it is applicable (with no modifications) for
any EEG pre-processing work. The methods are presented in the
order of their processing within our proposed pipeline.

2.1. Data-Sets
2.1.1. Data Acquisition

Our aim is to demonstrate that unsupervised anomaly detection
is successfully used to identify artifacts in EEG data and that these
artifacts can be corrected via representation learning methods
(see section 2.3). To demonstrate the feasibility of our approach,
it is necessary to not only have ground truth artifact annotations
but also the ground truth labels for all trials, including those
that were annotated as artifacts. While the artifact annotations
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allow us to test the unsupervised outlier detection methods,
the trial labels allow us to verify that corrected EEG data
can indeed be used in conjunction with that regular data for
downstream analytic tasks (e.g., training a classification model).
Unfortunately, available data sets usually do not contain rejected
trials, and even when these annotations are available the original
trial label is not included2. Therefore, our work is validated on
two data-sets, hereinafter referred to as the orientation and color
data-sets, that were previously collected by Saidya et al. (20). We
briefly describe these datasets here; additional information about
the data-sets is provided in the Supplementary Material.

Both experiments were passive viewing tasks. The orientation
task stimulus consisted of 6 oriented gratings, the color task
stimulus consisted of random dot fields in six different colors.
The stimulus was generated using MGL, a library running in
Matlab (Mathworks). The data was collected using a 32-electrode
actiCHamp cap at 1,000 Hz. For each task, we collected data from
seven subjects (four male) for a total of ∼10,000 EEG Trials.
All subjects reported normal or corrected to normal vision.
The data were examined for noisy trials by expert annotators.
Fully annotated and anonymized data-sets will be made available
online. Participants gave informed consent and compensated at
the rate of 15$ per hour. The experimental procedures were
approved by the Michigan State University Institutional Review
Board and adhered to the tenets of the Declaration of Helsinki.

2.2. Unsupervised Artifact Detection
To benchmark the different outlier detection methods we
collected a list of common features used in EEG research
in different domains and applied various unsupervised outlier
detection algorithms. Our main objective was to thoroughly
investigate the feasibility of unsupervised artifact rejection
for EEG.

2.2.1. Feature Extraction

Building on the previous work of Ghassemi et al. (21), we
reviewed the EEG literature and constructed a permissive list of
several features that are commonly used for EEG classification
tasks. In total, we identified and extracted 58 features. The code
that extracts these features was written to allow for parallelization
of the calculations and is accessible as a downloadable python
3.5 package3. See Table 1 for breakdown and references for
all 58 features.

These features can be grouped into three categories
that measure the complexity, continuity, and connectivity
of EEG activity. Before continuing to discuss our
pipeline we will provide high-level intuition behind the
inclusion of each category. We encourage the interested
reader to refer to the previous work of Ghassemi
et al. for a more detailed discussion of the specific
features (21).

2.2.1.1. Complexity features (n = 25)
These features measure the complexity of the EEG signal
from an information-theoretic perspective and are known to

2For instance BCI competitions data: http://bbci.de/competition/.
3Code available at: https://github.com/sari-saba-sadiya/EEGExtract.

correlate with impaired cognitive functions and the presence
of degenerative illnesses. Our first set of features is therefore
a collection of information-theoretic complexity measures. Of
special interest are the first three features shown in Table 1

as they are particularly prominent in EEG research: Shannon’s
entropy has been associated with neurological outcomes in post-
anoxic coma patients (14); the entropy of the decomposed EEG
wavelet signals (known as the Subband Information Quantity)
have similarly been used in cardiac arrest studies (36, 37). Tsalis
entropy is a generalization of Shannon’s entropy that does not
make assumptions about the independence of data channels (as
Shannon’s entropy does) and has been shown to be particularly
useful for the characterization of complexity in EEG data (23).

2.2.1.2. Continuity features (n = 27)
These features capture the regularity and volatility of EEG
activity. Bursts, spikes, and unusual changes in the mean and
standard deviation in the frequency and power domains are
examples of continuity features that are relevant for a variety of
clinical tasks. See Hirsh et al. for an in-depth review of continuity
and it’s relevance to clinical care (38).

2.2.1.3. Connectivity features (n = 6)
. These features reflect the statistical dependence of EEG signal
activity across two or more channels. Functional connectivity
networks are established features of normal brain functioning.
We draw on the rich literature on measuring connectivity from
EEG signals (39) extracting features that have previously been
used for designing brain computer interfaces (18) as well as in
mental illness, perception, and attention research [see (15), (16),
and (17), respectively].

2.2.2. Outlier Detection Methods

We explored a set of ten algorithms for unsupervised artifact
detection; the explored algorithms were inspired by the work of
Zhao et al. (40). The algorithms can be divided into two general
groups: statistical methods and representation learning methods;
they are described in more detail in the “Statistical Methods” and
“Representation Learning Based Methods” sections below. The
hyper-parameters of each method were determined by randomly
exploring the hyper-parameter space and choosing the settings
that yielded the best performance of the methods on the data
according to our artifact annotations.

2.2.2.1. Statistical methods
Statistical methods identify anomalies based on statistical
measures extracted from the data, thereby producing an
“anomaly score” for each trial. The Histogram-Based Outlier
detection (HBOS) method uses histograms with dynamic bin
widths to detect clusters and anomalies in different feature
dimensions. Despite the simplicity of the approach it has been
shown to work well on a variety of data types (41). The Local
Outlier Factor (LOF) method similarly calculates an “outlier
score”; however, instead of global measures, it relies on the local
density of the data as it’s main indicator (42). Another popular
local algorithm, the Angle-Based Outlier Detector (ABOD),
calculates the cosine similarity of data points with their neighbors
and uses the variance of these scores to generate anomaly
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TABLE 1 | EEG Features.

Signal Descriptor References Brief description

Complexity features Degree of randomness or irregularity

Shannon entropy (22) Additive measure of signal stochasticity

Tsalis entropy (n = 10) (23) Non-additive measure of signal stochasticity

Information quantity (δ,α, θ ,β, γ ) (24) Entropy of a wavelet decomposed signal

Cepstrum coefficients (n = 2) (25) Rate of change in signal spectral band power

Lyapunov exponent (26) Separation between signals with similar trajectories

Fractal embedding dimension (27) How signal properties change with scale

Hjorth mobility (28) Mean signal frequency

Hjorth complexity (28) Rate of change in mean signal frequency

False nearest neighbor (29) Signal continuity and smoothness

ARMA coefficients (n = 2) (30) Autoregressive coefficient of signal at (t-1) and (t-2)

Continuity features Clinically grounded signal characteristics

Median frequency The median spectral power

δ band power Spectral power in the 0–3 Hz range

θ band power Spectral power in the 4–7 Hz range

α band power Spectral power in the 8–15 Hz range

β band power Spectral power in the 16–31 Hz range

γ band power Spectral power above 32 Hz

Standard deviation (31) Average difference between signal value and it’s mean

α/δ ratio (14) Ratio of the power spectral density in α and δ bands

Regularity (burst-suppression) (14) Measure of signal stationarity/spectral consistency

Voltage < (5, 10, 20 µ) Low signal amplitude

Diffuse slowing (32) Indicator of peak power spectral density <8 Hz

Spikes (32) Signal amplitude exceeds µ by 3σ for 70 ms or less

Delta burst after spike (32) Increased δ after spike, relative to δ before spike

Sharp spike (32) Spikes lasting <70 ms

Number of bursts Number of amplitude bursts

Burst length µ and σ Statistical properties of bursts

Burst band powers (δ,α, θ ,β, γ ) Spectral power of bursts

Number of suppressions Segments with contiguous amplitude suppression

Suppression length µ and σ Statistical properties of suppressions

Connectivity features Interactions between EEG electrode pairs

Coherence – δ (14) Correlation in 0–4 Hz power between signals

Mutual information (18) Measure of dependence

Granger causality – All (33) measure of causality

Phase lag index (34) Association between the instantaneous phase of signals

Cross-correlation magnitude (35) Maximum correlation between two signals

Cross-correlation – lag (35) Time-delay that maximizes correlation between signals

The 58 EEG features fell into three EEG signal property domains: Complexity features (25 in total), Category features (27 in total), Connectivity features (six in total).

scores (43). Finally, we also trained a One Class SVM Detector
(OCSVM), a classic algorithm for outlier detection (44). In
this algorithm, an SVM is trained on the entire data-set and
afterwards every instance is scored based on its distance from the
class boundary; the intuition is that the infrequent outliers will
contribute less to the decision boundary calculation and will be
more likely to be on the margin of the learned boundary.

As previously mentioned, we selected these detectors to
be different in the type of statistical measurements they use.
Therefore, it makes sense to also train ensemble classifiers to
further improve the outlier detection accuracy. Specifically, we

trained five hundred Locally Selective Combination in Parallel
(LSCP) Outlier Ensembles (45) with different combinations of
the algorithms mentioned above.

2.2.2.2. Representation learning based methods
Unlike statistical methods, representation-learning-based
outlier detectors do not simply calculate statistical properties
of featurized data. The most basic classifier uses auto-
encoder (AUTO) based deep learning architectures to learn
a lower-dimensional representation of the data that enables the
best possible reconstruction of the original signal; the embedding
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would be optimized for the common regular data points thereby
producing distinctly noisy reconstructions for the outlier trials
(46). This classifier can be viewed as a modern update of similar
classic outlier detection methods that use methods, such as
PCA reconstruction instead of training a deep auto-encoder
(PCA) (47). A more sophisticated approach uses Variational
Auto-Encoders (VAE). This class of algorithms tries to ensure
that the learned embedding captures the structure of the original
data by penalizing the classifier if the embedding does not follow
a standard normal distribution (48). Finally, we also examine a
Generative Adversarial Active Learning (GAAL) outlier detector
(49), which uses generative adversarial networks to generate
outliers. This method can be used to improve any of the statistical
methods described in 2.2.2.1. We also use an extension of the
original method to learn multiple generators (MGAAL).

2.3. Artifact Correction
As previously mentioned, encoder-decoder based deep learning
methods have proven useful for channel interpolation (13).
In this section we discuss an extension of this approach that
utilizes the same framework for artifact correction. Namely,
given an EEG data segment with an isolated artifact we remove
the corrupted segment and use the data samples preceding
and proceeding it to fill in the resulting void. This problem is
equivalent to the “frame-interpolation” task of filling in missing
frames in a video (19).

2.3.1. The Model

2.3.1.1. Input representation
The channel interpolation model proposed in Saba-Sadiya et al.
(13) represented the EEG as a time series of 2D topologically
organized arrays. This reflects the spatial nature of the EEG
channel interpolation issue; the interpolated values at different
time points are treated as independent. To the best of the author’s
knowledge, this is a standard assumption for EEG interpolation
algorithms. For instance, Petrichella et al. and Courellis et al.
calculate the interpolated values of the missing data at each time
point separately (11, 12). However, research on convolutional
neural networks for EEG decoding and visualization have shown
performance benefits from presenting the input as a column of
electrodes unfolding in time, as this facilitates the learning of
temporal modulations (50). Since artifact correction is first and
foremost a process of completing gaps across time we decided
to depart from Saba-Sadiya et al. (13) and use a 2D array
representation with the number of time steps as the width of
the array.

2.3.1.2. Architecture
The best frame interpolation models involve calculating object
trajectory and accounting for possible occlusion (e.g., if one
object moves behind another). With these “flow computations”
and a stack of the frames before and after the missing
image a convolutional encoder-decoder can generate realistic
intermediate images (19). Unlike video, EEG data have only one
spatial dimension (see subsection 2.3.1.1) and are not analogous
to local phenomena, such as occlusion or object movement; these
can occur as EEGmodulations and are often thought of as mostly

global in nature (50). Therefore, we only concern ourselves
with a stacked convolutional auto-encoder. This architecture is
shared by previously discussed state-of-the-art algorithms for
both frame interpolation and channel interpolation (13, 50).

The interpolation of each frame is done separately, thus to
predict n frames it is necessary to train n networks. Technically
this is equivalent to training one ensemble model, however, by
separating the networks we allow for easier parallelization of
the training process. Specifically, given a series of EEG frames
x1, x2, . . . , xn where xt is a vector of all the channel values at
time t, and assuming that the series is missing all frames between
time points tb and te, our network learns to predict xtq from the
two stacks, xtb−h, xtb−h+1, . . . , xtb and xte , xte+1, . . . , xte+h where
tq ∈ (tb, te) and h is some small positive integer representing
how many frames before and after the missing segment can be
perceived. Every network is trained to predict the value at one
specific value of q. Every network takes the same 2h frames (half
preceding the missing segment and half following it) to calculate
the value at a given frame.

2.4. Model Validation Approach
2.4.1. Artifact Detection Method

The performance of the artifact detection methods was assessed
by inspecting the agreement between the artifact detection
approach and the expert annotations from the two data sets
(color and orientation). More specifically, the agreement was
measured using the f-score and Cohen’s Kappa (first and second
values in each cell, respectively). We compared the performance
of our model against the expected performance of a classifier
with knowledge of the exact number of artifacts; this random
classifier is expected to have an f-score of 0.172 and a Kappa of
0.029. We ran the detection algorithms in two configurations,
for each subject separately and for the entire aggregated data.
We hypothesize that the performance will drop when using
the aggregated configuration, as each individual setup for an
EEG recording is likely to introduce unique artifacts (due
to loose connections or subject-specific circumstances, such
as perspiration).

2.4.2. Artifact Correction Method

To optimize the parameters of the artifact correction model, we
produced training data from trials that were marked as artifacts
free by our unsupervised artifact detection method (section
2.2.2) and randomly removed a segment from the middle of
the trial. The h samples proceeding the removed segment and h
samples preceding it were used as input for the model while the
removed segment was the ground truth (hwas a hyper-parameter
optimized on the training set). For the purposes of validating the
artifact correctionmodel, all EEG data were re-sampled to 200Hz.
The reconstructed segments were 200ms each.

2.4.3. End-to-end Assessment Approach

We ran a number of tests to examine if the trials reconstructed
by our artifact correction method could be used to enhance the
performance of downstream EEG tasks. More specifically, we
trained two SVM models to predict the label of the trial from
the color data-set: one SVM was trained using the raw data, and
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TABLE 2 | Comparison of the different unsupervised outlier detection methods

when applied to each subject separately.

Statistical methods HBOS LOF ABOD OCSVN LSCP

Orientation 0.564

0.473

0.218

0.065

0.11

0.06

0.41

0.29

0.577

0.489

Color 0.5

0.4

0.241

0.091

0.1

−0.08

0.36

0.23

0.51

0.411

Representation learning AUTO PCA VAE GAAL MGAAL

Orientation 0.53

0.44

0.527

0.426

0.477

0.368

0.429

0.311

0.428

0.309

Color 0.51

0.42

0.477

0.367

0.478

0.368

0.241

0.086

0.389

0.263

We calculated the mean f-score and Cohen’s Kappa (first and second row in every

cell) across all subject. HBOS, Histogram based outlier detection; LOF, Local outlier

factor Method; ABOD, Angle-based outlier detector; OCSVM, One class support vector

machine; LSCP, Locally selective combination of parallel outlier Ensembles; AUTO, Auto-

encode based method; VAE, Variational auto-encoder based method; GAAL, Generative

Adversarial Active Learning; MGAAL, Multi-object Generative Adversarial Active Learning.

the other was trained using the raw data after artifact correction.
Both models were validated using 5-fold cross-validation, and
the performance of the models on the test set (µ and σ )
was reported.

We also evaluated the impact of our artifact correction
method on downstream EEG tasks when applied to clean trials,
exclusively; this evaluation allowed us to test for inadvertent
degeneration in signal quality of clean segments when processed
by our method. More specifically, we applied our artifact
correction method to 20% of clean trials and used the resulting
data to train an additional SVMmodel.

3. RESULTS

This section presents the results of the two main components
in our pipeline, the artifact detection method and the artifact
correction method on the data described in 2.1.

3.1. Artifact Detection Results
In Table 2, we compare the average performance of the outlier
detection methods described in section 2.2.2 when applied
to each subject separately. Therefore, each value is the mean
of the algorithm’s performance across subjects. As previously
mentioned, the expected performance of a baseline random
classifier with knowledge of the exact number of artifacts
is an f-score of 0.172 and a Kappa of 0.029. Hence, all
models other than the ABOD classifier performed significantly
better than the baseline (one tailed t-test with a p = 0.05
significance level).

Unsurprisingly, the best outlier detector was an LSCP
ensemble classifier that performed 16.86x better than the baseline
method, and 1.03x better than the next best approach; the best
performing configuration of the classifier consisted of two HBOS
classifiers and one OCSVM. While it is difficult to interpret

TABLE 3 | The performance of the models trained on data aggregated from all the

subjects.

Statistical methods HBOS LOF ABOD OCSVN LSCP

Orientation 0.502

0.4

0.246

0.095

0.07

−0.11

0.362

0.234

0.537

0.441

Color 0.476

0.35

0.305

0.15

0.09

−0.108

0.377

0.238

0.463

0.332

Representation learning AUTO PCA VAE GAAL MGAAL

Orientation 0.488

0.338

0.448

0.338

0.447

0.336

0.383

0.246

0.393

0.258

Color 0.414

0.283

0.437

0.312

0.436

0.31

0.185

0.022

0.393

0.258

The f-score and Cohen’s Kappa are presented in the first and second row in every cell.

ensemble classifiers it is worth noting that the two histogram-
based classifiers diverged quite substantially; one using a high
number of histogram bins and a rigid outlier scoring policy
(tol = 0.1) while the other using a smaller number of bins and
more relaxed policy (tol = 0.5). A simple auto-encoder was the
best representation learning algorithm, closely followed by the
PCA algorithm. We speculate that the auto-encoder could have
possibly had better performance if more data were available for
each subject. See our Supplementary Material for a breakdown
of trial and artifact numbers for each subject.

In Table 3, we compare the performance of the outlier
detection methods described in section 2.2.2 when applied to
the subjects aggregated data; that is, subject were not considered
separately as they were in the results from Table 2. When
compared to the results shown in Table 2, the performance
decreased for most models. This is not surprising as the
fundamental assumption of unsupervised methods is that the
data are homogeneous with the exceptions of the outliers.
Here again, the LSCP method performed the best of the tested
approaches. A comparison of the results in Tables 2, 3 provide
motivation for the development of subject-specific anomaly
detection approaches. Moreover, the comparison also highlights
that the unsupervised algorithms and the features we extracted
can successfully capture both common EEG artifacts and subject-
specific idiosyncrasies.

3.2. Artifact Correction Results
3.2.1. Network Optimization

Our first step was to optimize the network hyper-parameter
configurations. This included testing different sizes of both the
layers and convolution filter, as well as exploring different hyper-
parameters, such as optimization algorithms, dropout rates,
and activation functions. To train the network we followed
the method discussed in section 2.2.2: we randomly extracted
104 samples from the data, the first and last 32 samples were
stacked and used as the input to the model, and the sample
at position i from the remaining 40 samples was used as the
ground truth. Essentially we are training a network to predict
the values after removing 40 samples (200ms) using the 32
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TABLE 4 | Mean accuracies of simple SVM classifiers.

Original

EEG

EEG with random

correction

EEG with artifact

correction

All trials 0.3 0.31 0.33

Rejected trials 0.23 0.23 0.29

A simple t-test confirmed that all accuracies were significantly above chance level (1/6

for six different colors) at a p = 0.05 level. Original EEG: The Original EEG data. EEG with

Random Correction: The EEG data after random artifact free trials were “corrected.” EEG

with artifact correction: The data after we applied the EEG artifact correction on the trials

that were marked as artifact ridden.

samples that before and after the removed segment. The best
performing network (lowest loss) was different for different ts.
The optimal topology for reconstructing sample 20 is available
in the Supplementary Material as a reference of the type of
convolutional U-net architecture used.

3.2.2. End-to-End Assessment

In Table 4 we compare the classification accuracy of a 5-fold
SVM model trained to perform a downstream classification of
trial type using down-sampled EEG data with three different
configurations of the data: (1) the raw EEG data, (2) the data
after correction of artifact segments, and (3) the data following
“correction” of a random 40 samples of 20% of the non-artifact
segments. Note that while simple this type of analysis is used in
actual EEG research (4).

The performance remained comparable after using the artifact
correction on trials that did not contain any artifacts. This is a
strong indication that the model is indeed able to learn how to
reconstruct the original EEG signal. When using the corrected
trials with EEG artifacts the classification accuracy improved
by 10% overall and over 20% for trials that were marked
as containing artifacts. These results successfully demonstrate
that our unsupervised end-to-end artifact correction pipeline
improves down-stream analysis.

4. DISCUSSION

4.1. Significance of Our Results
In this paper, we presented an end-to-end pipeline that is capable
of unsupervised artifact detection and correction. Our results
demonstrate that data-driven approaches for unsupervised
outlier detection can be extremely useful when applied to the
problem of EEG artifact detection. Interestingly, the classifiers
with the best performance (HBOS, OCSVM, and the best
performing LSCP) are global classifiers; this might indicate that
EEG artifacts are better discriminated by global characteristics.
This supports our previous observation that artifacts are task
specific and infrequent occurrences of uncorrelated noise. It is
worth noting that, as demonstrated in Table 3, the classifiers we
trained were able to learn subject-specific idiosyncrasies.

While the accuracy and agreement between the annotators
and the detectors were far from perfect, the Cohen Kappa of
the best performing algorithm was comparable to the inter-rater
agreement levels of expert annotators reported in the literature;

for instance, when asked to annotate, “periodic discharges” (a
specific type of artifact) and “electrographic seizure” annotators
had a Cohen’s Kappa of 0.38 and 0.58, respectively (51). Our
results indicate that an unsupervised outlier detection is a feasible
approach for generalized EEG artifact detection.

4.2. The Data-Sets
We validated our framework on two novel data-sets. To test the
impact of artifact correction algorithms on downstream analysis
it is necessary to have ground truth artifact annotation as well
as knowledge of the labels of all trials, including those that
are artifact ridden. Unfortunately, public data-sets often exclude
trials that contain artifacts. Even in the rare occasions in which
these trials are made available, the labels are often replaced with
a special identifier for rejected trials4. We hope our data-sets
inspire other researchers to adopt more thorough data publishing
practices as data-availability is perhaps the primary limiting
factor in artifact correction research.

4.3. The Strength of Unsupervised
End-to-End Methods
The accuracy of simple classifiers improved modestly after
artifact removal. It is possible that replacing our deep-learning-
based artifact removal components with an ICA artifact removal
algorithm (52) could yield better results. However, two important
distinctions should be made: First, the proposed method
does sidestep many weaknesses inherent to ICA (8) (such
as the number of independent components being limiting by
the number of channels, which is particularly problematic
for lightweight commercial EEG setups). Secondly, while the
independent component deconstruction itself is data driven and
unsupervised, the ICA method still requires visual inspection
and analysis of the decomposed signal by human experts. In
contrast, our method can be put into effect without any human
intervention, making it is suitable for online EEG applications or
as a no-cost first step before a more thorough analysis. In general,
supervised methods unquestionably out-perform unsupervised
ones and we fully acknowledge that the pipeline proposed in
this work is no different. It is therefore useful to consider
unsupervised methods not as replacements of currently existing
algorithms but as complimentary additions to the toolbox of the
EEG researcher. With this in mind, we intentionally designed
our end-to-end pipelines to be highly modular; An experienced
researcher can easily substitute our last component with an
ICA artifact removal algorithm, and in contrast, researchers that
have access to artifact annotations (for instance by virtue of
employing specialized hardware during data acquisition) will be
able to use their method in conjunction with ours or sidestep the
first processes completely and apply only the artifact correction
component before carrying on with the analysis process.

4.4. Limitations
We did not formally evaluate the reconstruction performance
of the model because (1) there is not an authoritative literature

4For an example of standard EEG publishing practices see the BCI Competition

data-sets.
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baseline, and (2), insofar as the reconstruction enhances the
ability of the downstream classification model to perform their
intended classification tasks, the reconstruction is valid and
valuable. There are a few limitations that we hope to address in
future work. First and foremost, this artifact detection method
can only be used if the frequency of the artifacts is low enough
for them to be considered outliers. While this is indeed the
case for the vast majority of EEG use cases, tasks, such as
seizure detection often involve long periods of unusually low
signal to noise ratio. Additionally, the performance of our
artifact correction network would likely benefit from introducing
more complex component into the architecture. For instance,
introducing temporal dependencies via an LSTM component
would guarantee that the corrected frame at time t influences the
frame at time t + 1. Finally, our method is in dire need of being
validated on additional tasks and data-sets.

Despite the challenges described above, we believe that our
work demonstrates the feasibility of an EEG pre-processing
pipeline which if adopted could facilitate and expedite the
often tenuous process of artifact annotation and removal, and
could therefore be extremely beneficial for the general EEG
research community.

5. CONCLUSION AND FUTURE WORK

The applications of EEG are numerous and diverse, and
while this impacts the particularities of what components are
classified as part of the signal vs. artifacts, data homogeneity
is a common concern in this area of research. Building on
this data science perspective, in this work we appropriated
state-of-the-art data-driven methods to construct an end-to-
end unsupervised pipeline for general artifact detection and
correction. We introduced two new data-sets and demonstrated
that the inter-rater reliability of our artifact detection component
against expert annotators is comparable to reported inter-human
levels. Furthermore, we demonstrated how applying the complete
pipeline on a data-set can improve the performance of common
downstream analysis. The pipeline makes use of a wide range
of handcrafted clinically relevant features, and we believe the
released python package will be of use to many in the EEG
research community.
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