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Gait analysis in cats and other animals is generally performed with custom-made or
commercially developed software to track reflective markers placed on bony landmarks.
This often involves costly motion tracking systems. However, deep learning, and
in particular DeepLabCutTM (DLC), allows motion tracking without requiring placing
reflective markers or an expensive system. The purpose of this study was to validate
the accuracy of DLC for gait analysis in the adult cat by comparing results obtained with
DLC and a custom-made software (Expresso) that has been used in several cat studies.
Four intact adult cats performed tied-belt (both belts at same speed) and split-belt
(belts operating at different speeds) locomotion at different speeds and left-right speed
differences on a split-belt treadmill. We calculated several kinematic variables, such as
step/stride lengths and joint angles from the estimates made by the two software and
assessed the agreement between the two measurements using intraclass correlation
coefficient or Lin’s concordance correlation coefficient as well as Pearson’s correlation
coefficients. The results showed that DLC is at least as precise as Expresso with good
to excellent agreement for all variables. Indeed, all 12 variables showed an agreement
above 0.75, considered good, while nine showed an agreement above 0.9, considered
excellent. Therefore, deep learning, specifically DLC, is valid for measuring kinematic
variables during locomotion in cats, without requiring reflective markers and using a
relatively low-cost system.

Keywords: gait analysis, deep learning, markerless pose estimation, cat, kinematics

INTRODUCTION

Millennia ago, our ancestors illustrated animals in movement (e.g., hunting or fleeing), as depicted
in the cave of Lascaux, France. Around 350 B.C., Aristotle, a Greek philosopher, wrote De motu
animalium, latin for Movement of animals (Nussbaum, 1976), considered the first textbook dealing
with the analysis of movement and locomotion. Later on, in the 1870s, the French physician
and physiologist Étienne Jules Marey invented the photographic gun and chronophotography,
creating “videos” of various animals in motion, such as dogs, cats, horses, and sheep. This major
technological advance for studying motion and locomotion decomposed movement into series
of consecutive photographic pictures (Marey, 1873). Philippson (1905) divided the dog’s walking
cycle into several phases based on joint angular excursions and their transitions from flexion to
extension. In the late 1960s, Engberg and Lundberg combined, for the first time, kinematic and
electromyographic data during unrestrained locomotion in cats, establishing relationships between
muscle activity and changes in joint angles (Engberg and Lundberg, 1969).
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The study of locomotion requires characterizing kinematics,
including variables, such as joint angles, the distances traveled
by the limbs and temporal parameters, such as cycle and phase
durations (Shen and Poppele, 1995; Nam et al., 2009). Video
recordings capture these data by tracking limb movements using
reflective markers placed on bony landmarks (Lavoie et al., 1995;
Chau et al., 1998). Data are then analyzed by commercial or
custom-made software to extract desired variables. The price
of motion analysis systems varies but remains relatively high.
Moreover, the use of software imposes a certain rigidity in the
experience, as markers must be placed before the experiment.
This makes it difficult to adjust to potential changes or to perform
new measures unforeseen before recording. Placing markers on
animals can be time-consuming and potentially disruptive to the
animal (Bailey, 2018). Furthermore, errors in marker placement
can arise due to movement of the skin over the joints during
locomotion in animal models, especially in small rodents, but
also larger models, such as the cat and dog (Goslow et al., 1973;
Bauman and Chang, 2010). This can lead to inaccurate joint
angle measurements, particularly at the knee. Finally, the analysis
is subjected to human error. The performance of individual
experimenters can vary within and between analysis sessions
because of the repetitive nature of the task and the physical and
mental fatigue caused by it (Weber et al., 1980). Variations in
tagging accuracy between experimenters may also exist. There
is thus a need to develop low-cost, flexible, and accurate motion
analysis systems to characterize animal locomotion.

Since the 2000s, deep learning approaches, under the impetus
of big tech companies, have been implemented in many areas.
This technique, derived from machine learning, uses algorithms
organized in several layers that allow the computer to learn by
itself. Performance of the machine depends on the initial data
and the accumulation of different experiences. Deep learning
allows the creation of machines capable of beating the world
go champion, a traditional Chinese strategy game (Silver et al.,
2016), to recognize traffic signs on autonomous cars (Cireşan
et al., 2012), and is applied in several scientific fields [see
for review (Alipanahi et al., 2015; Hu et al., 2018)]. Motion
and behavioral analyses have also seen the development of
deep learning tools (Mathis and Mathis, 2020). Developed and
made available in 2018 by a German-American research team,
DeepLabCutTM (DLC) was quickly adopted by many laboratories
around the world as a reference tool to characterize behavior.
DLC is an open-source software package using deep learning
for motion tracking and markerless pose estimation. DLC is
a deep convolutional network based on two key elements
for pose estimation: deconvolutional layers and pretrained
residual network (ResNet). It uses feature detectors of one
of the best algorithms for human pose-estimation: DeeperCut
(Mathis et al., 2018; Nath et al., 2019). With DLC, the user
defines points of interest (e.g., specific body parts), which are
followed throughout video recordings, allowing high-throughput
locomotor screenings and frame-by-frame predictions. Thanks to
its considerable flexibility, DLC can be adapted to a wide variety
of models and studies, such as detailing cuttlefish predation
techniques (Wu et al., 2020), evaluating manual dexterity during
food-handling in mice (Barrett et al., 2020), or measuring

bradykinesia in people with Parkinson’s disease (Williams et al.,
2020). Implementing DLC in the laboratory is relatively cheap
and fast. The software is open source, hence free of charge, and
videos for analysis can be recorded from any device, independent
of quality and without requiring advanced programming skills.

Recently, a research team developed a C#-based analysis tool
coupled to DLC, called Visual Gait Lab (VGL). They tested this
tool for gait analysis in the mouse model and compared their
results to those commonly found in the literature (Fiker et al.,
2020). VGL consists of two parts. The first one is a graphical user
interface to install DLC and make it more user-friendly. Secondly,
VGL comes with a tool to track paw placements. The software
then integrates these results to measure certain gait variables,
such as stride length and stance duration. The results calculated
by VGL from estimates made on DLC were comparable to those
in the literature. The DLC estimates were therefore valid for a
mouse model. Is DLC for gait analysis also applicable to larger
animal models and for other types of measures, such as joint
angles?

The objective of the present study was to validate the accuracy
of DLC for gait analysis in the adult cat by comparing results
obtained with DLC and a custom-made software commonly used
in cat studies [e.g., (Lavoie et al., 1995; Chau et al., 1998; Bouyer
and Rossignol, 2003; Barriere et al., 2008; Martinez et al., 2013;
Escalona et al., 2017)]. We also provide an Excel spreadsheet and
MATLAB script for data analysis as Supplementary Material.

MATERIALS AND METHODS

Animals and Ethical Information
The Animal Care Committee of the Université de Sherbrooke
approved all procedures in accordance with the policies and
directives of the Canadian Council on Animal Care (Protocol
442-18). In the present study, we used four intact adult cats
(>1 year of age at the time of experimentation), two females
and two males, weighing between 3.6 and 4.7 kg. We followed
the ARRIVE guidelines for animal studies (Percie du Sert et al.,
2020). To reduce the number of animals used in research, we used
the cats in other studies to answer different scientific questions
(Harnie et al., 2018, 2019, 2021; Merlet et al., 2020, 2021).

Experimental Protocol
We trained cats to step on an animal treadmill composed of
two independently controlled running surfaces 120 cm long and
30 cm wide (Bertec Corporation, Columbus, OH, United States)
using positive reinforcement (food, affection) (Figure 1A).
A Plexiglas separator (120 cm long, 3 cm high, and 0.5 cm
wide) placed between the left and right belts ensured that the
left and right limbs stepped on separate belts. Cats performed
two types of quadrupedal locomotion: (1) tied-belt locomotion
from 0.4 to 1.0 m.s−1 in 0.1 m.s−1 increments with both
belts moving at the same speed and (2) split-belt locomotion
with the slow side stepping at 0.4 m.s−1 and the fast side
stepping from 0.5 to 1.0 m.s−1 in 0.1 m.s−1 increments. We
aimed to collect ∼15 cycles per trial. Reflective markers were
placed on the skin over bony landmarks: the iliac crest, greater
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FIGURE 1 | Experimental design and measured variables. (A) Reflective markers were placed on bony landmarks. The cat was then placed on a split-belt treadmill
for video recordings during locomotion. (B) Lengths, distances, and angles measured at contact and at liftoff. (C) Schematic diagram summarizing DLC steps
(adapted from Nath et al., 2019).

trochanter, lateral malleolus, metatarsophalangeal joint (MTP),
and at the tip of the toe.

Data Acquisition and General Analysis
Two cameras (Basler AcA640-100g) captured videos of the left
and right sides at 60 frames per second with a spatial resolution
of 640 × 480 pixels. We analyzed each video off-line using
our custom-made software called Expresso and with DLC. We
determined contact and liftoff of the right hindlimb by visual
inspection. We defined contact as the first frame where the
paw made visible contact with the treadmill surface while liftoff
corresponded to the frame with the most caudal displacement
of the toe. We analyzed several spatial parameters, such as the
distance between the toe and hip at contact and at liftoff, step
length, and stride length (Figure 1B). As the cat does not travel
actual distances on the treadmill, stride lengths were defined as
the distance between contact and liftoff of the limb added to
the distance traveled by the treadmill during the swing phase. It

was calculated by multiplying swing duration by treadmill speed
(Courtine et al., 2005; Thibaudier and Frigon, 2014; Dambreville
et al., 2015). We also measured joint angles for the hip, knee,
ankle, and MTP at contact and liftoff (Figure 1B). We analyzed
each variable from 2,500 cycles of quadrupedal locomotion in the
four intact cats.

Custom Software
The custom software, Expresso, was developed in the laboratories
of Trevor Drew and Serge Rossignol for gait analysis in the
cat. It tracks reflective markers positioned on a limb. Here, we
used the right hindlimb. At first, the experimenter specified the
position of the reflective markers on 3–5 frames at the beginning
of the video. The software then tags each reflective marker for all
following frames. Expresso extrapolates knee position from the
reflective markers of the greater trochanter and lateral malleolus.
The positioning of the tags is often inaccurate for several frames,
and we must reposition them manually frame-by-frame. The
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calculation of spatial values, such as step length, stride length, and
the distance between the toe and hip requires manual tagging,
in each desired frame, of the markers or regions of interest. For
calibration, we used two markers placed in the same plane as the
cat spaced 10 cm apart.

After properly placing all tags, the software exports several
files. A first file provides values of angles. In addition, the software
provides a graph showing the evolution of each angle during a
step cycle, averaged over all cycles whose values are interpolated
over 256 bins. Another file contains X and Y coordinates in
cm of the manually noted points (i.e., the greater trochanter
reflective marker and the tip of the right and left toes). This allows
measurement of variables, such as the distance between the toe
and hip at contact and liftoff, as well as step and stride lengths
in Excel or MATLAB. Expresso also exports a file that lists all
the frames determined by visual inspection where contacts and
liftoffs of the right hindlimb occurred.

DeepLabCutTM (DLC)
We installed DLC on a computer running a Windows OS
with Intel Core i7 8700 3.2 GHz, 12Mo (Intel R©) processor
and a GeForce RTX 2070 8 GB graphics card (Asus R©) with a
graphics processing unit (GPU) by Nvidia R©. We then installed
the latest driver for our graphics card, the Nvidia CUDA
package allowing graphical computations and TensorFlow, an
open-source software library created by Google for machine
learning and deep learning. We implemented DLC 2.1.8.2.
according to the development team’s recommendations (Nath
et al., 2019) in an Anaconda environment, called DLC-GPU with
its specifications available online1. DLC is written in Python 3.6.x.

The training with DLC consisted of several steps. First, we
created our project defined by a project name, a username and
a set of videos to create a training dataset. A config.yaml file
is created, allowing us to define our points of interest or “body
parts,” as DLC calls them, or to set the number of frames to
extract. DLC then extracted 30 random frames per video from
a total of 30 videos. Videos from all four animals during tied- and
split-belt locomotion were used, including at least one video at
each speed. We determined the number of frames to be extracted
per video a priori with pilot testing. Via the DLC interface, we
marked on each selected frame, the location of our points of
interest. DLC tracked six points of interest on the right hindlimb,
one on the left hindlimb and two calibration points, spaced 10 cm
apart, allowing pixel-to-cm conversion. All of the labeled frames
were available for visual inspection and could be corrected if
needed. The set of labeled frames provided a training dataset
and served as a basis for a pre-trained network (ResNet). The
pre-trained network was refined end-to-end to adapt its weights
to predict desired features, such as our points of interest. Then
the network trained with over 1,030,000 iterations, generally
taking between 8 and 12 h where DLC ran autonomously (e.g.,
overnight). We then evaluated the performance of the trained
network on the training and test frames. The trained network
analyzed videos, generating extracted pose files. The software
allows several outputs, including a video with points of interest on

1https://github.com/DeepLabCut/DeepLabCut/blob/master/conda-environments

each frame that we can link to form a skeleton. In addition to this
visual output, DLC exports an excel file containing, for each video
frame, X and Y coordinates of each point of interest in pixels
as well as the likelihood (from 0 to 1) that the point of interest
was properly positioned, in accordance with the training dataset
and the other video frames. We then moved on to the network
refinement stage. If the trained network did not appropriately
generalize to unseen data in the evaluation and analysis step, we
extracted additional frames with inadequate results and predicted
labels were manually corrected. DLC extracted, from each video,
30 random frames among the putative outlier frames. We then
replaced the misplaced points on the selected frames to create an
additional set of annotated images that could be merged with the
original dataset. This active-learning loop can be done iteratively
to robustly and accurately analyze videos with potentially large
variability (i.e., experiments that include many individuals over
long time periods). The network was then trained again with
the new updated dataset with the same number of iterations.
Once the training was deemed optimal, we analyzed the other
remaining videos with this training. The set of code lines required
for these operations is available by the DLC development team
(Nath et al., 2019). A quick schematic summary of the DLC
methodology is shown in Figure 1C.

Measurements of Gait Variables Using
DLC Outputs
To obtain gait variables, we integrated DLC outputs containing
coordinates of points of interest into a custom-made Excel
program. This template is available as Supplementary Material.
With this program, we can calculate gait variables of interest from
the coordinates exported by DLC. The lengths, first expressed
in pixels, are converted into cm using the ratio calculated
from calibration markers (Figure 1B). The lengths in cm are
then used to calculate joint angles. We can also calculate the
speed of movement during overground locomotion or measure
movement variables, such as stride length, on a treadmill by
indicating the speed of the treadmill. Finally, to obtain average
curves showing the evolution of joint angles over a cycle, the
values of angles calculated frame-by-frame by the program
are interpolated on 256 bins using a short MATLAB script.
The Excel spreadsheet and MATLAB script are available as
Supplementary Material. The last spreadsheet of the Excel file
contains instructions for use.

Statistical Analysis
We tested gait variables for normality using quantile-quantile
plots (QQ-plots), which is a visual method to qualitatively assess
the normality of the distribution of a data set. The abscissa of
each point is equal to its value and the ordinate to the value that
would correspond to this point if the distribution of the data
was completely normal and followed a perfect Gaussian. If the
center of the scatter plot formed by the set of points is on the line
y = x (dotted red line in our graphs), with a slight deviation only
present at the extremities, we can assume a normal distribution.
In contrast, a large deviation at either end indicates significant
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influence of extreme values on the data’s distribution, making it
non-normal (Wilk and Gnanadesikan, 1968; Pleil, 2016).

When finding a normal distribution, we compared the results
of Expresso and DLC using two-way mixed effects, absolute
agreement and single rater intraclass correlation coefficient
(ICC). Several scoring systems have been used to categorize
ICC estimates (Cicchetti, 1994; Koo and Li, 2016). We used
the one proposed by Koo and Li (2016), which is stricter
and with higher standards to assess agreement. This scoring
system defines four levels of agreement according to the ICC
score: less than 0.5 represents poor agreement, between 0.5
and 0.75 is moderate, between 0.75 and 0.9 is good and if the
score exceeds 0.9, the agreement is considered excellent. As
the ICC is only valid for normally distributed data, we used
a non-parametric equivalent for data not normally distributed,
termed Lin’s concordance correlation coefficient (CCC) (Lin,
1989, 2000). As the CCC is different from the ICC, we used
another scoring system. For this test, a score of less than 0.90
represents poor agreement, between 0.90 and 0.95 is moderate,
between 0.95 and 0.99 is substantial and an almost perfect
agreement corresponds to values over 0.99 (McBride, 2005). We
also measured Pearson’s correlation coefficient (CC) between
the values obtained with Expresso and DLC to assess the linear
relationship between the two measures. This statistical test is
possible for both normally and non-normally distributed data.
A conventional interpretation of the CC is: a score between
0 and 0.10 represents a negligible correlation, between 0.10
and 0.39 is a weak correlation, between 0.40 and 0.69 is
a moderate correlation, between 0.70 and 0.89 is a strong
correlation, and between 0.90 and 1 is a very strong correlation
(Schober et al., 2018).

Finally, we also assessed the agreement between Expresso
and DLC for each parameter using Bland–Altman plots with
means ± standard deviations. The abscissa of each point is the
mean value between its estimates by Expresso and DLC and the
ordinate is the difference between the estimate by Expresso and

DLC. The mean of these differences as well as the interval ±1.96
SD are also represented to visualize the agreement between the
two methods according to the user’s conditions, and to detect
visual bias or an anomaly in our agreement measurements. For
example, if most points occur above or below the axis y = 0, it
indicates a computational bias (over or underestimation) in one
of the two methods. In contrast, a homogeneous distribution of
data around the line y = 0 shows consistency between measures
obtained with the two methods and the agreement measured
(Giavarina, 2015; Kalra, 2017). Analyses were made with SPSS
Statistics 20.0 (IBM Corp., Armonk, NY, United States).

RESULTS

The results reported here are based on an analysis of 2,500 cycles
obtained from 177 trials in four adult cats (41–47 trials per
cat). We pooled data from tied-belt and split-belt locomotion at
different speeds and slow-fast speed differences, respectively.

Step Length/Stride Length
We defined step length as the distance between the left and right
hindpaws at right hindlimb contact. Average step length values
measured by Expresso and DLC were 19.84 cm and 19.99 cm,
respectively (Table 1). The QQ-plot follows the y = x line,
showing only a slight deviation at its upper end (Figure 2A). We
assumed a normal distribution for these data. The ICC score of
0.997 indicates excellent agreement, with a CC of 0.998 (Table 1
and Figure 2B). The homogeneous distribution of points around
the y = 0 line on the Bland–Altman plot shows no bias between
Expresso and DLC measurements (Figure 2C).

Average stride length values measured by Expresso and DLC
were 48.23 cm and 48.04 cm, respectively (Table 1). The QQ-
plot shows a small deviation at its upper end and a larger one
at its lower end (Figure 2D). We cannot assume a normal
distribution for these data. We therefore measured the agreement

TABLE 1 | Summary of Expresso and DLC comparisons.

Variables Expresso DLC ICC CC

Step length (cm) 19.84 ± 4.78 19.99 ± 4.77 0.997 [0.995–0.998] 0.998*

Hip distance at contact (cm) 11.55 ± 1.58 11.48 ± 1.59 0.987 [0.984–0.990] 0.988*

Hip distance at liftoff (cm) −14.39 ± 3.81 −14.33 ± 3.80 0.998 [0.998–0.998] 0.998*

Hip angle at liftoff (cm) 135.21 ± 13.67 135.69 ± 13.60 0.971 [0.968–0.973] 0.971*

Knee angle at contact (◦) 114.97 ± 6.39 115.20 ± 5.86 0.870 [0.860–0.880] 0.874*

Knee angle at liftoff (◦) 118.43 ± 11.51 121.02 ± 11.02 0.891 [0.786–0.934] 0.915*

Ankle angle at contact (◦) 115.14 ± 10.09 112.85 ± 9.21 0.919 [0.766–0.960] 0.948*

Ankle angle at liftoff (◦) 139.30 ± 12.82 139.62 ± 12.29 0.973 [0.971–0.975] 0.974*

MTP angle at contact (◦) 154.12 ± 8.05 154.11 ± 7.31 0.902 [0.894–0.909] 0.906*

MTP angle at liftoff (◦) 155.03 ± 9.37 156.10 ± 9.80 0.879 [0.860–0.895] 0.885*

Variables Expresso DLC CCC CC

Stride length (cm) 48.23 ± 14.43 48.04 ± 14.49 1.000 [0.999–1.000] 1.000*

Hip angle at contact (◦) 92.19 ± 11.50 94.17 ± 10.81 0.937 [0.933–0.941] 0.954*

For Expresso and DLC, data are presented as the mean ± standard deviation. The table indicates values of the intraclass correlation coefficient (ICC), the concordance
correlation coefficient (CCC), and Pearson’s correlation coefficient (CC). *Significant at level 0.01.
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FIGURE 2 | Comparison of step and stride lengths measured with data from Expresso and DLC. (A) Step length QQ-plot where the red dashed line represents a
perfect normal distribution. (B) Step length scatter plot of values obtained with Expresso and DLC. (C) Bland–Altman plot of step length measurements from
Expresso and DLC. The solid red line is the mean difference between the two methods and black dashed lines show ±1.96 standard deviations. (D) Stride length
QQ-plot where the red dashed line represents a perfect normal distribution. (E) Stride length scatter plot of values obtained with Expresso and DLC.
(F) Bland–Altman plot of stride length measurements from Expresso and DLC. The solid red line is the mean difference between two methods and black dashed
lines show ±1.96 standard deviations.

using the CCC. The CCC score of 1.000 indicates very strong
agreement with a CC also of 1.000 (Table 1 and Figure 2E). The
homogeneous distribution of points around the y = 0 line on the
Bland–Altman plot shows no bias between Expresso and DLC
measurements (Figure 2F).

Distance Between the Toe and Hip at
Contact and Liftoff
The distance between the toe and hip is the horizontal distance
between the right hindpaw toe marker and the downward
projection of the hip marker. At contact, the paw is rostral to
the hip and the distance value is positive, while at liftoff it is
generally negative (i.e., caudal to the hip marker). Values of the
average distance between the toe and hip at contact measured
by Expresso and DLC were 11.55 cm and 11.48 cm, respectively
(Table 1). The QQ-plot follows the y = x line in its center
and shows no apparent deviation (Figure 3A), consistent with a
normal distribution. The ICC score of 0.987 indicates excellent

agreement, with a CC of 0.988 (Table 1 and Figure 3B). The
homogeneous distribution of points around the y = 0 line on the
Bland–Altman plot shows no bias between Expresso and DLC
measurements (Figure 3C).

The values of the average distance between the toe and hip
at liftoff measured by Expresso and DLC were −14.39 cm and
−14.33 cm, respectively (Table 1). The QQ-plot follows the y = x
line, showing only a slight deviation at its lower end (Figure 3D).
We assumed a normal distribution for these data. The ICC
score of 0.998 indicates excellent agreement, with a CC of 0.998
(Table 1 and Figure 3E). The homogeneous distribution of points
around the y = 0 line on the Bland–Altman plot shows no bias
between Expresso and DLC measurements (Figure 3F).

Joint Angles
With Expresso and DLC, we calculated joint angle values on a
frame-by-frame basis to determine their evolution over the step
cycle. For the hip, knee and ankle, a decreasing angle indicates

Frontiers in Neuroinformatics | www.frontiersin.org 6 August 2021 | Volume 15 | Article 712623

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-15-712623 August 13, 2021 Time: 17:21 # 7

Lecomte et al. Deep Learning for Gait Analysis

FIGURE 3 | Comparison of distance at hip at contact and at liftoff measured with data from Expresso and DLC. (A) Distance at hip at contact QQ-plot where the red
dashed line represents a perfect normal distribution. (B) Distance at hip at contact scatter plot of values obtained with Expresso and DLC. (C) Bland–Altman plot of
distance at hip at contact measurements from Expresso and DLC. The solid red line is the mean difference between the two methods and black dashed lines show
±1.96 standard deviations. (D) Distance at hip at liftoff QQ-plot where the red dashed line represents a perfect normal distribution. (E) Distance at hip at liftoff scatter
plot of values obtained with Expresso and DLC. (F) Bland–Altman plot of distance at hip at liftoff measurements from Expresso and DLC. The solid red line is the
mean difference between two methods and black dashed lines show ±1.96 standard deviations.

flexion (hip and knee) or dorsiflexion (ankle and MTP) of the
joint. Figure 4A shows an example of hindlimb joint angles from
one cat stepping at a treadmill speed of 0.4 m.s−1. Hindlimb
joint angles over the step cycle were similar with both methods
despite slight differences of a few degrees in certain parts of the
cycle. To illustrate that DLC provides similar data as Expresso for
the forelimbs, we measured joint angles at the shoulder, elbow,
wrist, and metacarpophalangeal joints. As can be seen, both
approaches generated similar forelimb joint angles across the
step cycle (Figure 4B). We did not perform additional statistical
comparisons for forelimb joint angles.

Hip Angle
We measured the hip angle at contact and liftoff. At contact,
average hip angle values measured by Expresso and DLC were
92.19◦ and 94.17◦, respectively (Table 1). The QQ-plot shows
two significant deviations at both ends (Figure 5A), and thus we
cannot assume a normal distribution for these data. We therefore

measured agreement using the CCC. The CCC score of 0.937
indicates moderate agreement, with a CC of 0.954 (Table 1 and
Figure 5B). The homogeneous distribution of points around the
y = 0 line on the Bland–Altman plot shows no bias between
Expresso and DLC measurements (Figure 5C).

At liftoff, average hip angle values measured by Expresso
and DLC were 135.21◦ and 135.69◦, respectively (Table 1).
The QQ-plot follows the y = x line at its center, with slight
deviations at its extremes (Figure 5D). We assumed a normal
distribution for these data. The ICC score of 0.971 indicates
excellent agreement, with a CC of 0.971 (Table 1 and Figure 5E).
The homogeneous distribution of points around the y = 0 line on
the Bland–Altman plot shows no bias between Expresso and DLC
measurements (Figure 5F).

Knee Angle
At contact, average knee angle values measured by Expresso
and DLC were 114.97◦ and 115.20◦, respectively (Table 1).
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FIGURE 4 | Averaged angular displacements for the right hindlimb and forelimb across the step cycle. (A) Averaged angular displacements (mean ± SD) at the hip,
knee, ankle, and metatarsophalangeal (MTP) joints in the right hindlimb of an intact adult cat at a tied-belt speed of 0.4 m/s (n = 14 cycles). (B) Averaged angular
displacements (mean ± SD) at the shoulder, elbow, wrist, and metacarpophalangeal (MCP) joints in the right forelimb of an intact adult cat at a tied-belt speed of
0.4 m/s (n = 14 cycles). The vertical dotted lines mark swing onset in (A,B).

The QQ-plot shows no major deviation and its center follows
almost perfectly the y = x line (Figure 6A), consistent with
a normal distribution. The ICC score of 0.870 indicates good
agreement, with a CC of 0.874 (Table 1 and Figure 6B). The
homogeneous distribution of points around the line y = 0 line
on the Bland–Altman plot shows no bias between Expresso and
DLC measurements (Figure 6C).

At liftoff, average hip angle values measured by Expresso
and DLC were 118.43◦ and 121.02◦, respectively (Table 1). The
QQ-plot follows the y = x line at its center and shows a slight
deviation at its upper end (Figure 6D). We can assume a normal
distribution for these data. The ICC score of 0.891 indicates good
agreement, with a CC of 0.915 (Table 1 and Figure 6E). The
homogeneous distribution of points around the y = 0 line on the
Bland–Altman plot shows no bias between Expresso and DLC
measurements (Figure 6F).

Ankle Angle
At contact, average ankle angle values measured by Expresso
and DLC were 115.14◦ and 112.85◦, respectively (Table 1). The
QQ-plot shows only slight deviations at its lower and upper
ends and its center follows almost perfectly the y = x line
(Figure 7A). We assumed a normal distribution for these data.
The ICC score of 0.919 indicates excellent agreement, with a CC
of 0.948 (Table 1 and Figure 7B). The relatively homogeneous
distribution of points around the y = 0 line on the Bland–Altman
plot does not seem to show any bias between Expresso and DLC
measurements (Figure 7C).

At liftoff, average ankle angle values measured by Expresso
and DLC were 139.30◦ and 139.62◦, respectively (Table 1). The
QQ-plot shows two slight deviations at both ends but its center
follows the y = x line (Figure 7D). We can assume a normal
distribution for these data. The ICC score of 0.973 indicates
excellent agreement, with a CC of 0.974 (Table 1 and Figure 7E).
The homogeneous distribution of points around the y = 0 line on
the Bland–Altman plot shows no bias between Expresso and DLC
measurements (Figure 7F).

MTP Angle
At contact, average MTP angle values measured by Expresso
and DLC were 154.12◦ and 154.11◦, respectively (Table 1). The
QQ-plot shows a slight deviation at its upper end but its center
follows the y = x line (Figure 8A). We assumed a normal
distribution for these data. The ICC score of 0.902 indicates
excellent agreement, with a CC of 0.906 (Table 1 and Figure 8B).
The homogeneous distribution of points around the y = 0 line on
the Bland–Altman plot shows no bias between Expresso and DLC
measurements (Figure 8C).

At liftoff, average MTP angle values measured by Expresso
and DLC were 155.03◦ and 156.10◦, respectively (Table 1). The
QQ-plot has small deviations at its extremities and its center
follows the y = x line (Figure 8D). We can assume normal
distribution of these data. The ICC score of 0.879 indicates good
agreement, with a CC of 0.885 (Table 1 and Figure 8E). The
homogeneous distribution of points around the y = 0 line on the
Bland–Altman plot shows no bias between Expresso and DLC
measurements (Figure 8F).
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FIGURE 5 | Comparison of hip joint angles at contact and at liftoff measured with data from Expresso and DLC. (A) Hip angle at contact QQ-plot where the red
dashed line represents a perfect normal distribution. (B) Hip angle at contact scatter plot of values obtained with Expresso and DLC. (C) Bland–Altman plot of hip
angle at contact measurements from Expresso and DLC. The solid red line is the mean difference between the two methods and black dashed lines show ±1.96
standard deviations. (D) Hip angle at liftoff QQ-plot where the red dashed line represents a perfect normal distribution. (E) Hip angle at liftoff scatter plot of values
obtained with Expresso and DLC. (F) Bland–Altman plot of hip angle at liftoff measurements from Expresso and DLC. The solid red line is the mean difference
between two methods and black dashed lines show ±1.96 standard deviations.

DISCUSSION

The goal of the present study was to determine if measures
of gait variables obtained with DLC agree or differ with those
of a custom-made software that has been used in several cat
studies. We focused on variables commonly used in gait analysis,
including step and stride lengths, the horizontal distance of the
toe from the hip at contact and liftoff, as well as hindlimb joint
angles. Data are available upon request, including cat videos.

Agreement Between Measures
In this study, we showed that the estimates provided by DLC
agreed closely with those obtained with Expresso, a custom-
made software. Indeed, nine of the 12 variables measured
showed excellent agreement between DLC and Expresso based on
ICC or CCC scores.

Three joint angle values measured at the knee and MTP joints
did not meet excellent agreement but still qualified as good. The
knee angle at contact (ICC score: 0.870) and at liftoff (ICC score:
0.891) qualified as good agreement. Even if the agreement scores
were lower for these variables, they were still within an acceptable
range. Indeed, it has been suggested that it is important that
the lower limit of the 95% confidence interval of the ICC score
is at least 0.75 (Burdock et al., 1963; Lee et al., 1989). In our
study, the variables with excellent agreement and those with only
good agreement fulfilled this condition (Table 1). Thus, despite
somewhat lower agreement scores between Expresso and DLC for
certain variables, they remained relatively high.

The lower agreement of knee joint angles could be because
the skin moves around this joint during locomotion, changing
its relative position (Goslow et al., 1973; Kuhtz-Buschbeck et al.,
1994). Because the knee’s measured position with Expresso is
extrapolated, it may be less accurate than training based on direct
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FIGURE 6 | Comparison of knee joint angles at contact and at liftoff measured with data from Expresso and DLC. (A) Knee angle at contact QQ-plot where the red
dashed line represents a perfect normal distribution. (B) Knee angle at contact scatter plot of values obtained with Expresso and DLC. (C) Bland–Altman plot of knee
angle at contact measurements from Expresso and DLC. The solid red line is the mean difference between the two methods and black dashed lines show ±1.96
standard deviations. (D) Knee angle at liftoff QQ-plot where the red dashed line represents a perfect normal distribution. (E) Knee angle at liftoff scatter plot of values
obtained with Expresso and DLC. (F) Bland–Altman plot of knee angle at liftoff measurements from Expresso and DLC. The solid red line is the mean difference
between two methods and black dashed lines show ±1.96 standard deviations.

knee tags on a series of images with DLC. The knee joint remains
easily visible on a well-shaved cat limb during locomotion.

The other joint where the agreement is not excellent is the
MTP. Indeed, at liftoff, the agreement was good (ICC score:
0.879) and excellent at contact (ICC score: 0.902). This can be
explained by the variability of the position of the reflective marker
at the tip of the toe. Indeed, this marker can easily be displaced
when it rubs against the treadmill. Also, the tip of the toe is
a more subjective location than the anatomical landmarks for
other reflective markers. The position may vary slightly from one
experiment to another and between animals. Thus, the estimated
position is likely more consistent with DLC because it does not
rely on marker position.

When considering all variables, the two methods did not
systematically over- or underestimate the results, as shown
in Table 1 and in the Bland–Altman plots. Furthermore, the
variability of the measures by DLC and Expresso was similar,
as shown by similar standard deviations obtained with the two

methods (Table 1). Although the standard deviation was high for
the length variables (i.e., step/stride lengths and distance at hip at
contact and liftoff) this is because we pooled results from a range
of speeds and left-right speed differences. Step and stride lengths
and the relative position of the paw at liftoff increases with speed
in cats (Halbertsma, 1983; Frigon et al., 2017).

Figure 4 shows averaged values of the hindlimb and forelimb
joint angles over a step cycle in one cat at a tied-belt speed
of 0.4 m/s, calculated with Expresso and DLC. For the knee
angle, we observed a slightly greater decrease (flexion) with
DLC compared to Expresso in mid-stance. Although we did not
perform a statistical analysis to determine significant differences
between DLC and Expresso, DLC appears to better detect small
angle changes during locomotion. This is also visible for the
hip during stance. The forelimb joint angles measured with
DLC and Expresso also followed similar trajectories across
the step cycle, suggesting that DLC is equally effective for
forelimb measures.
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FIGURE 7 | Comparison of ankle joint angles at contact and at liftoff measured with data from Expresso and DLC. (A) Ankle angle at contact QQ-plot where the red
dashed line represents a perfect normal distribution. (B) Ankle angle at contact scatter plot of values obtained with Expresso and DLC. (C) Bland–Altman plot of
ankle angle at contact measurements from Expresso and DLC. The solid red line is the mean difference between the two methods and black dashed lines show
±1.96 standard deviations. (D) Ankle angle at liftoff QQ-plot where the red dashed line represents a perfect normal distribution. (E) Ankle angle at liftoff scatter plot of
values obtained with Expresso and DLC. (F) Bland–Altman plot of ankle angle at liftoff measurements from Expresso and DLC. The solid red line is the mean
difference between two methods and black dashed lines show ±1.96 standard deviations.

Advantages and Limitations
One advantage of DLC is that it allows for a more flexible
post-hoc analysis. Indeed, the developers defined it as “markerless
pose estimation of user-defined body parts with deep learning”
(Mathis et al., 2018), which removes the rigidity imposed
by placing reflective markers before experimentation.
Locating anatomical points of interest and placing markers
means anticipating all the variables to be measured prior to
experimentation. However, by analyzing videos with DLC, we
can identify points of interest not prepared for at the outset,
allowing for greater freedom in the use and exploitation of
video recordings. Beyond this flexibility in the analysis, DLC
and its markerless use has other important advantages for gait
analysis, especially in animals like the cat. Some animals can
be difficult and restless when placing reflective markers. This
can induce variability in the positioning of the markers because
of the cat’s movement, particularly at distal joints. Restraining

the cat can be a source of stress that makes the upcoming
experience more difficult (e.g., animal is less cooperative and
more aggressive). This can affect the cat’s locomotion and bias
the results (Amat et al., 2016). Another advantage is that marker
visibility is not required. For example, after a spinal cord injury,
one or both hindpaws may drag on the walking surface during
the stance-to-swing transition and part or all of the swing
(Bélanger et al., 1996; Drew et al., 2002; Hurteau et al., 2015).
Consequently, the camera can lose sight of the toe marker and
it can easily come off. We are currently measuring kinematics
using DLC in spinal-transected cats. The tracking by DLC is
equal or better than for intact cats (unpublished observations),
most likely because the animal mainly remains in the same
position on the treadmill as weight support is provided by an
experimenter and the forelimb are stationary. Additionally, the
main output provided by DLC is simple, namely a spreadsheet
containing predicted x and y coordinates of each point of interest
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FIGURE 8 | Comparison of metatarsophalangeal joint angles at contact and at liftoff measured with data from Expresso and DLC. (A) MTP angle at contact QQ-plot
where the red dashed line represents a perfect normal distribution. (B) MTP angle at contact scatter plot of values obtained with Expresso and DLC.
(C) Bland–Altman plot of MTP angle at contact measurements from Expresso and DLC. The solid red line is the mean difference between the two methods and
black dashed lines show ±1.96 standard deviations. (D) MTP angle at liftoff QQ-plot where the red dashed line represents a perfect normal distribution. (E) MTP
angle at liftoff scatter plot of values obtained with Expresso and DLC. (F) Bland–Altman plot of MTP angle at liftoff measurements from Expresso and DLC. The solid
red line is the mean difference between two methods and black dashed lines show ±1.96 standard deviations.

frame-by-frame that can be used by various software. We chose
an Excel spreadsheet to calculate our variables of interest from
these points for practical reasons but it remains the choice of
the experimenter.

Although we validated the use of DLC during treadmill
locomotion, it has been used for a wide variety of movements,
such as jumping in the spider (Brandt et al., 2021), reaching
movements in the rat (Parmiani et al., 2019), or cuttlefish
predation techniques (Wu et al., 2020). Studies that focus on
non-locomotor rhythmic movements would also benefit from
DLC. For instance, the paw-shake, which consists of rapid
oscillatory movements of the paw when the underside of
the paw contacts an irritant (Smith et al., 1985; Carter and
Smith, 1986). The rapid and vigorous movements during paw-
shake facilitate the loss of markers. DLC has already been
validated for three commonly used behavioral tests in mice
[e.g., open field test, elevated plus maze, and forced swim

test (Sturman et al., 2020)] and balance analysis in human
(Vonstad et al., 2020) against existing commercial solutions.
In humans, there are more sophisticated approaches, such
as optoelectronic systems that track light emitted (active) or
reflected (passive) by markers, which is then converted to
electrical signals to determine position in space (reviewed in
Prakash et al., 2018). However, such systems are more expensive
and complicated to implement.

A limitation of our current approach is that we only
reconstructed the movement in 2D. However, DLC can be used
for 3D analysis. With two cameras, it is possible to reconstruct
in three dimensions an entire side of the body and a full 3D
reconstruction of the body is possible with six cameras (Nath
et al., 2019). The main limitation of DLC is that it requires a GPU
to produce consistent results quickly. Although possible with a
central processing unit (CPU), analysis speed will be considerably
slower [divided by 10–100 (Mathis and Warren, 2018)]. Analysis
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speed also depends on video dimensions. A higher image
definition means more pixels and a slower DLC analysis (Mathis
and Warren, 2018). To target as many experimental designs as
possible, DLC does not rely on a predefined body model. Thus,
if points of interest are hidden and not visible throughout the
video, tracking these points will be more complex. However, as
DLC analysis is frame-by-frame, if the point of interest appears
on at least some frames, then it will be possible to detect on frames
where it is hidden (Nath et al., 2019).

To conclude, the mean values of the variables of interest
obtained with DLC matched with high agreement those obtained
with a commonly used custom-made software for cat locomotor
studies. The use of DLC reduces inter- and intra-individual
variability in marker placement, thanks to deep learning, while
being suitable for any style of movement or gait study regardless
of whether or not markers were placed. The implementation
of deep learning in laboratories worldwide for gait and motion
analysis, and more specifically DLC, seems to be a logical
direction because it is faster, more accurate and more repeatable
than existing commercial solutions while remaining easily
deployable, flexible to the needs of the experimenter and
relatively low cost.
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