Xiao et al. BMC Genomics (2021) 22:650

https://doi.org/10.1186/512864-021-07954-y B M C G enom iCS

RESEARCH Open Access

Transcriptome analysis reveals the ®
molecular mechanisms of heterosis on
thermal resistance in hybrid abalone

Qizhen Xiao'?", Zekun Huang'*', Yawei Shen'? Yang Gan'”, Yi Wang'? Shihai Gong'?, Yisha Lu'~, Xuan Luo'?,
Weiwei You'" and Caihuan Ke'?"

Check for
updates

Abstract

Background: Heterosis has been exploited for decades in different animals and crops due to it resulting in
dramatic increases in yield and adaptability. Hybridization is a classical breeding method that can effectively
improve the genetic characteristics of organisms through heterosis. Abalone has become an increasingly
economically important aquaculture resource with high commercial value. However, due to changing climate,
abalone is now facing serious threats of high temperature in summer. Interspecific hybrid abalone (Haliotis gigantea
Q X H. discus hannai &, SD) has been cultured at large scale in southern China and has been shown high survival
rates under heat stress in summer. Therefore, SD has become a good model material for heterosis research, but the
molecular basis of heterosis remains elusive.

Results: Heterosis in thermal tolerance of SD was verified through Arrhenius break temperatures (ABT) of cardiac
performance in this study. Then RNA-Sequencing was conducted to obtain gene expression patterns and
alternative splicing events at control temperature (20 °C) and heat stress temperature (30 °C). A total of 356 (317
genes), 476 (435genes), and 876 (726 genes) significantly diverged alternative splicing events were identified in H.
discus hannai (DD), H. gigantea (SS), and SD in response to heat stress, respectively. In the heat stress groups,
93.37% (20,512 of 21,969) of the expressed genes showed non-additive expression patterns, and over-dominance
expression patterns of genes account for the highest proportion (40.15%). KEGG pathway enrichment analysis
showed that the overlapping genes among common DEGs and NAGs were significantly enriched in protein
processing in the endoplasmic reticulum, mitophagy, and NF-kB signaling pathway. In addition, we found that
among these overlap genes, 39 genes had undergone alternative splicing events in SD. These pathways and genes
may play an important role in the thermal resistance of hybrid abalone.

Conclusion: More alternative splicing events and non-additive expressed genes were detected in hybrid under
heat stress and this may contribute to its thermal heterosis. These results might provide clues as to how hybrid
abalone has a better physiological regulation ability than its parents under heat stress, to increase our
understanding of heterosis in abalone.
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Background

Heterosis, or hybrid vigor, refers to the phenomenon in
which hybrid offspring surpass their parents in the de-
sired character [1]. A batch of hybrid livestock (e.g., pig)
and crops (e.g., rice) have shown better performance in
growth and environmental adaptation when compared
with their parents, therefore it has received extensive re-
search [2]. Various genetic models have been put for-
ward to explain heterosis, including dominance,
overdominance, and epistatic hypothesis [3]. Recently,
the overdominance hypothesis has been supported by a
lot of experimental research [4-6], in which non-
additive effects are described as a consequence of genetic
differences between the homozygous parents and their
heterozygous hybrids [7]. The discussion of the genetic
basis of heterosis has lasted for nearly a century, but that
of the molecular mechanism of heterosis still remain
elusive Next-generation sequencing (NGS) technologies
offer the potential to uncover the molecular mechanism
of heterosis at the transcriptional level [8]. The identifi-
cation of non-additive genes is accomplished based on
their expression patterns which may finally shape com-
plex traits of hybrid organisms. Genome-wide changes
in gene expression have been documented in hybrids of
maize [9], rice [10], soybean [11], wheat [12], cotton
[13], yellow catfish [14], pearl oyster [15], pufferfish [16],
sea cucumber [17] and black seabream [18]. Transcrip-
tomic analysis provides an efficient way to explore heter-
osis, and its results mainly include abundant differential
expressed genes and alternative splicing (AS) events. AS
refers to the regulatory processes to produce variably
spliced mRNAs by selecting various combinations of
splice sites within a pre-mRNA in eukaryotes. In
humans, approximately 98% of multi-exonic genes are
alternatively spliced, and alternative splicing producce
diverse transcripts and proteins [19]. AS can significantly
impact the transcriptome and proteome by creating
multiple isoforms that can maintain the diversity of pro-
tein in eukaryotes [20]. Five AS events types have been
recognized in animals, including skipped exons (SE), al-
ternative 5’splice sites (A5SS), alternative 3’splice sites
(A3SS), retained introns (RI), and mutually exclusive
exons (MXE) [21]. As a post-transcriptional regulation
process modulating gene expression, AS has been re-
ported to play an important role in heterosis establish-
ment [22].

Abalone has become an increasingly economically im-
portant aquaculture resource with high commercial
value. However, ocean warming is predicted to greatly
affect marine ecosystems [23], this seriously affected the
abalone farming industry. Elevated temperature can in-
crease oxygen consumption of aquatic animals, largely
influencing the most metabolic processes in ectotherms
[24]. Harmful end-products, such as reactive oxygen
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species (ROS), would also be produced and cumulated
under heat stress [25]. In recent years, the abalone farm-
ing industry has experienced a notable expansion in
China, whose yield accounting for more than 90% of the
global aquaculture production (FAO, 2019). The Pacific
abalone Haliotis discus hannai (DD), the main aquacul-
ture abalone species in China, is naturally distributed in
temperate water [26]. Due to the natural climate condi-
tions in Fujian Province (the main abalone producing
area in China), Pacific abalone is now facing serious
threats of high temperature in summer. This pattern is
exacerbated by increasingly serious global climate
change [23]. To resolve this problem, new abalone spe-
cies that can withstand high temperatures were intro-
duced to China. The Xishi abalone H. gigantea (SS),
which is naturally distributed along the coasts of Japan,
has a wide range of temperature adaptability [27]. The
hybrid H. gigantea Q x H. discus hannai & (SD) was pro-
duced on large-scale and has been approved to exhibit
heterosis in growth rate, survival rate, sub-low salinity
adaptability, and thermal resistance [27-29]. Therefore,
SD is a good model for heterosis research, the molecular
basis of which remains elusive.

The objective of this study is to uncover the molecular
mechanisms underlying the high superiority of
temperature resistance in an interspecific hybrid. Ther-
mal tolerance of hybrid (SD) and its parents (SS and
DD) was first assessed through ABT measurements, to
validate the heterosis of SD at physiological levels. Then
RNA-Sequencing (RNA-Seq) was conducted to obtain
gene expression patterns and alternative splicing events.
These results might provide clues as to how hybrid aba-
lone has a better physiological regulation ability than its
parents under thermal stress, which also increase our
understanding of heterosis in abalone.

Results

The comparison of growth traits

At the beginning of the breeding experiment, the three
populations were not significantly different (P> 0.05) in
shell length and total weight. After seven months, the
shell lengths of DD, SS and SD abalones were 37.69 +
0.51, 32.72 £ 0.89, and 42.80 + 1.37 mm, respectively. The
average weights of DD, SS and SD abalones were 7.69 +
0.35, 4.37 £ 0.45, and 9.10 + 1.06 g, respectively. The shell
length and total weight of SD abalone were significantly
higher than its parents (P < 0.05). The survival rate of SD
was higher than that of DD and SS during high-
temperature months (July to September) (Fig. 1).

ABT measurement of cardiac performance

ABTs of DD, SS and SD were 30.66 +0.8°C, 31.87 +
0.59 °C and 32.38 £ 0.71 °C, respectively (Fig. 2A). ABTs
of SD were significantly higher than those of DD and SS
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Fig. 1 (A) The seawater surface temperature. (B) The survival rate of three abalone populations from May 2020 to Nov 2020. (C) The shell length
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(P<0.05). The hybrid abalone SD exhibited the best
thermal tolerance, while DD was shown to be most sen-
sitive to heat stress, indicating the heterosis of thermal
resistance in hybrid SD.

Transcriptome sequencing and identification of DEGs

In total, an average of 43.65 million raw reads per speci-
men (40.89-47.38 million raw reads) were obtained
through RNA-sequencing. Then 39.22-44.99 million
clean reads were filtered from each sequencing sample,
while 71.66-88.11% of the reads were aligned to the ref-
erence genome. A principal component analysis (PCA)
based on the whole genome gene expression profiles

showed that six groups (3 populations x 2 treatment
groups) clearly separated in the PC1 x PC2 score plot
(Fig. 2B), with PC1 explaining 29% and PC2 explaining
25% of the total variance.

Between the C and H groups, a total of 3880 DEGs in
SS (referred to as “SS_CvsH”), 4436 DEGs in DD (re-
ferred to as “DD_CvsH”), and 3713 DEGs in SD (re-
ferred to as “SD_CvsH”) (Fig. 3B) were identified, with
1966 DEGs common to all three comparisons. Among
these DEGs, 573, 1291, and 985 genes were specifically
expressed in SD, DD, and SS. In addition, the numbers
of overlap DEGs between SD_CvsH and DD_CvsH, SD_
CvsH and SS_CvsH, and DD_CvsH and SS_CvsH were



Xiao et al. BMC Genomics (2021) 22:650

Page 4 of 14

Populations B DD E3 sD E3 ss B
T 1
ok
| N

34 —
Q
(s}
C
8
) [
832 >
5 2
m [Te}
<< N
&
O
o

30

N
o

DD SD

Populations

Ss

\

50

25

o

Fig. 2 (A) The comparisons of thermal tolerance in three abalone populations base on ABT. xindicates P < 0.05; =sxindicates P < 0.01. (B) Principal
component analysis plot based on the whole genome gene expression profiles

[ J
[ ]
[
A Treatment
AA @ Control
'. @ Heat
Populations
@ DD
‘ A sp
al W ss
|
mu
|
-25 0 25
PC1: 29% variance

2663, 2413, and 2448, respectively. Among the DEGs,
the number of down-regulated genes was higher than
the number of up-regulated genes (Fig. 3A). The results
of KEGG pathway enrichment analysis showed that
those 1966 common DEGs in three populations were
enriched in the following pathways: protein processing
in endoplasmic reticulum (57 genes), NF-«B signaling
pathway (25 genes), antigen processing and presentation
(16 genes), osteoclast differentiation (22 genes), Toll and
Imd signaling pathway (27 genes), fluid shear stress and
atherosclerosis (32 genes), necroptosis (30 genes), and
apoptosis (19 genes) (Fig. 3C). And these 573 specifically
expressed DEGs in SD enriched in the following path-
ways: arginine and proline metabolism (9 genes), MAPK
signaling pathway (7 genes), lysosome (18 genes), trypto-
phan metabolism (8 genes), cysteine and methionine
metabolism (9 genes), glutathione metabolism (7 genes)
(Fig. 3D).

The interaction analysis between population and en-
vironment was carried out using R DESeq2 package with
padj <0.05 and |log2FoldChange| > 1 as the significance
threshold to estimate the interaction effect on gene ex-
pression. The results showed that there were 143 signifi-
cantly different genes in the comparison of “(heat SS-
control SS) - (heat SD-control SD)”, and 26 significantly
different genes in the comparison of “(heat DD-control
DD) - (heat SD-control SD)”, and 236 significantly dif-
ferent genes in the comparison of “(heat SS-control SS) -
(heat DD-control DD)”. There were a total of 261 DEGs
influenced by interaction effects from population and

environment. These genes were related to endocrine re-
sistance, apoptosis, Toll and Imd signaling pathway,
MAPK signaling pathway, and cytokine-cytokine recep-
tor interaction.

Expression patterns of non-additive genes

A total of 91.98% (20,206 of 21,969) of the genes de-
tected in the C groups of three populations showed non-
additive expression patterns (Fig. 4A), classified into six
distinct classes: high-parent dominance (HPD), low-
parent dominance (LPD), under-dominance (UDO),
over-dominance (ODO), negative partial-dominance
(NPD), and positive partial-dominance (PPD). Of 20,206
genes, 1354 (6.70%), 1559(7.72%), 7061 (34.94%), 5590
(27.67%), 2280 (11.28%) and 2362(11.69%) showed HPD,
LPD, ODO, UDO, PPD, and NPD, respectively. ODO
and UDO accounted for more than half of non-additive
genes (Fig. 4B). The results of KEGG enrichment path-
way analysis showed that 7061 ODO genes enriched in
the following pathways: sphingolipid signaling pathway
(65 genes), TNF signaling pathway (61 genes), apoptosis
(95), chemokine signaling pathway (57 genes), EGFR
tyrosine kinase inhibitor resistance (45 genes), and au-
tophagy (71 genes) (Fig. 4C). The results of KEGG en-
richment pathway analysis showed that those 5590 UDO
genes enriched in the following pathways: oxidative
phosphorylation (71 genes), thermogenesis (114 genes),
citrate cycle (TCA cycle) (27 genes), protein processing
in endoplasmic reticulum (84 genes), glycolysis/
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gluconeogenesis (25 genes), basal transcription factors
(23 genes), and glucagon signaling pathway (46 genes).
A total of 93.37% (20,512 of 21,969) of the genes de-
tected in the H groups of three populations showed
non-additive expression patterns (Fig. 4D). Of 20,512
genes, 1119 (5.46%), 1278 (6.23%), 8235 (40.15%), 5819

(28.37%), 2047 (9.98%) and 2014 (9.82%) showed HPD,
LPD, ODO, UDO, PPD, and NPD, respectively. ODO
account for the highest proportion, more than 40% of
non-additive genes (Fig. 4E). The results of KEGG en-
richment pathway analysis showed that 8235 ODO genes
enriched in the following pathways: phospholipase D
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signaling pathway (94 genes), axon guidance (100 genes),
growth hormone synthesis, secretion and action (72
genes), chemokine signaling pathway (64 genes), EGFR
tyrosine kinase inhibitor resistance (51 genes), autophagy
(149 genes), B cell receptor signaling pathway (42 genes),
and mTOR signaling pathway (68 genes) (Fig. 4F). The
results of KEGG enrichment pathway analysis showed
that 5819 UDO genes enriched in the following path-
ways: ribosome (117 genes), oxidative phosphorylation
(80 genes), metabolism of xenobiotics by cytochrome
P450 (40 genes), thermogenesis (118 genes) RNA trans-
port (98 genes), and ribosome biogenesis in eukaryotes
(61 genes).

Identification of AS events

The divergence of AS events between the C and H
group among three populations were characterized. For
a total of 356 (317 genes), 476 (435 genes), and 876 (726
genes) significant divergence AS events were identified
in DD, SS, and SD, respectively (Fig. 5A-5C). The hy-
brid SD exhibited the most dramatic AS events and
genes in response to heat stress, comparing with its par-
ent SS and DD species. These divergence AS events in-
cluded skipping exons (90.03-91.73%) and mutually
exclusive exons (8.27-9.97%). The results of KEGG
pathway enrichment analysis showed that 317 DAS
genes in DD enriched in the following pathways:
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ubiquitin mediated proteolysis (9 genes), RNA transport
(10 genes), glutathione metabolism (6 genes), and Toll
and Imd signaling pathway (6 genes) (Fig. 5D). The re-
sults of KEGG pathway enrichment analysis showed that
435 DAS genes in SS enriched in the following pathways:
protein processing in endoplasmic reticulum (12 genes),
NF-«B signaling pathway (7 genes), RIG-I-like receptor
signaling pathway (6 genes), and mRNA surveillance
pathway (7 genes) (Fig. 5E). The results of KEGG path-
way enrichment analysis showed that 726 DAS genes in
SD enriched in the following pathways: ubiquitin medi-
ated proteolysis (17 genes), NF-«B signaling pathway (12
genes), Toll-like receptor signaling pathway (8 genes),
RNA transport (16 genes), and NOD-like receptor sig-
naling pathway (10 genes) (Fig. 5F).

Integrated analysis of DEGs, DAGs, and NAGs

First, the common DEGs of three populations (“Com-
mon_DEGs”) and ODO genes of heat stress group (“H_
ODO_NAGs”) were analyzed. There were 545 common
genes between “Common_DEGs” and “H_ODO_NAGs”.
The results of KEGG enrichment pathway analysis

showed that those genes enriched in: protein processing
in endoplasmic reticulum (19 genes), NF-xB signaling
pathway (8 genes), and mitophagy (7 genes) (Fig. 6D). In
addition, we found that among these 545 genes, 39 genes
had undergone alternative splicing event in SD (“SD_
DAGs”) (Fig. 6A), and the expression levels of these
genes in each group were shown in the Fig. 6C. These
genes including Rel/ (Nuclear factor NF-xB p110), SYK
(Tyrosine-protein kinase SYK), SCARBI (Scavenger re-
ceptor class B member 1), TLRI(Toll-like receptor 1),
and MUCI(Mucin-1). Alternative splicing of TLRI gene
in SD were shown in Fig. 6B. These genes may play an
important role in the thermal resistance of hybrid
abalone.

Discussion

In this study, ABT was used to evaluate and compare
the thermal resistance of abalones DD, SS, and their hy-
brid SD. The heterosis in thermal tolerance of hybrid SD
was verified through ABT of cardiac performance —
ABTs of SD were significantly higher than those of DD
and SS. Therefore, SD is a good model for further
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studying heterosis in thermal tolerance of abalone. Ac-
cording to the results of ABT, the thermal resistance of
SD was increased by 0.51 °C and 1.72 °C compared with
SS and DD. The result is consistent with our previous
studies, in which the better thermal resistance of SD was
confirmed by the results of LT5,, Kaplan—Meier cumula-
tive survival curves, CTM, ABT, survival, and growth

rate [28]. The average sea surface temperatures have in-
creased by 0.6°C in the last century and global
temperature are predicted be increase at least 2 °C in the
next 50 years [30]. A rise in thermal resistance of 1°C
could play a crucial role in abalone’s survival in the fu-
ture world. In addition, SD also has super-parent heter-
osis in growth traits (Fig. 1C and D). After seven months
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of culture, SD exhibited significant growth and survival
advantages over DD and SS, especially in high-
temperature months (Fig. 1B). This result is consistent
with the result of ABT that SD has better temperature
resistance. Some studies also have been conducted to
obtain hybrid abalones with better environmental adapt-
ability: H. rufescens 9 x H. corrugate & [31], H. gigantea
Q x H. discus hannai & [29], H. hannai Q x H. fulgens &
[29, 32], H. rubra @ x H. laevigata & [33]). However,
none of the molecular mechanisms explain heterosis in
abalone, which is compounded by complex allelic and
genic interactions, and epigenetic regulation. Over the
years, a lot of efforts have been made in exploring the
intricate molecular basis of heterosis [34, 35], benefiting
from the development of high-throughput sequencing
technology. The number of DEGs between the C and H
group in SD was less than its parents, possibly because
the thermal-tolerant SD remained relatively stable under
environmental heat stress. In the study of hybrid abalone
[33], the heart rates and metabolic rates of the hybrid
abalone were more stable at high temperatures than its
parents, suggesting that hybrids were less sensitive to
the changes in temperatures. This higher transcriptome
variation in the thermal-sensitive populations has oc-
curred in other species, including the Pacific abalone (H.
discus hannai) [26], greenlip abalone (H. laevigata) [36],
snail (Chlorostoma funebralis) [37], and redband trout
(Oncorhynchus mykiss gairdneri) [38]. AS events can be
considered as a post-transcriptional regulation that acts
as an effective strategy to mediate complex biological
processes [39]. It is known to change protein function
by altering signals for trafficking, phosphorylation, and
glycosylation [40]. It is a key player in response to abi-
otic stresses, including the heat stress [41]. In this study,
much more AS events were discovered in SD (876),
comparing with its parents (356 in DD and 476 in SS),
suggesting that hybridization may bring more AS poten-
tial. These AS events were from 726 genes in SD, ac-
counting for 3.30% of the genes in the whole
transcriptome. However, only 1.98 and 1.44% of the
transcripts were detected to be involved in the AS events
in SS and DD, respectively. This indicated that the in-
volvement of alternative splicing in the gene expression
regulations and phenotypic variations in hybrid abalone
SD [42]. Similarly, there were more AS events in the
heat tolerant catfish than in the intolerant catfish. In
heat-intolerant catfish, the thermal stress induced 29.2%
increases in alternative splicing events and 25.8% in-
creases in alternatively spliced genes [43]. In the hybrid
poplar (Populus alba 9 x P. glandulosa 3), it was found
that the proportion of alternatively spliced genes in hy-
brid was higher than that of the parent, therefore the
more isoforms caused by AS contributed more for the
hybrid’s growth [44].
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According to the difference in genes expression be-
tween hybrids and that its parents, gene expression pat-
terns can be divided into additive or non-additive
expression [45]. The complementation of additive and
non-additive genetic effects was the genetic basis of hy-
brid traits. Variations in the expressions of the additive
and non-additive genes are more correlated with genetic
distance than with genome dosage, and the expression
of the non-additive genes is more common in the inter-
specific hybrids than in the intraspecific hybrids [46, 47].
In this study, the gene expression patterns of hybrid aba-
lone and its parents were analyzed. The results showed
that the non-additive genes accounted more than 90% of
the total genes. ODO and UDO accounted for the high-
est proportion, more than half of non-additive genes.
This suggests that the non-additive effects may contrib-
ute more than the additive effects in heterosis of thermal
resistance in SD. This conclusion in similar to our previ-
ous research, compared to purebred, most stress-
induced proteins of hybrids abalone exhibited over-
dominance by proteomic analysis, and this may have
been related to disease resistance [48]. Also, this conclu-
sion as shown in other heterosis studies of hybrids, in-
cluding maize [49], Arabidopsis [50], clam [51], oyster
[52].

Based on the integrated analysis of DEGs, DAGs, and
NAGs, pathways including protein processing in endo-
plasmic reticulum, mitophagy, and NF-«xB signaling
pathway suggests their important roles in heterosis of
thermal resistance in SD (Fig. 6D). The protein process-
ing in endoplasmic reticulum pathway is a sophisticated
quality-control system that play a vital role in adapting
to stressful environment conditions [53]. When exposed
to heat stress, it could help improve cells survival by en-
hancing the protein folding capacity in the lumen of the
endoplasmic reticulum [54]. The NF-xB signaling path-
way has a critical role in regulating various aspects of
the apoptotic program [55]. Heat stress induces cell
cytoskeleton reorganization and inflammatory responses.
The activation of NF-«B signaling pathways can protect
cells from thermally induced injuries [56]. Mitophagy is
an important mitochondrial quality control mechanism
that eliminates damaged mitochondria [57]. Acceleration
of metabolic processes could trigger damage of mito-
chondria and apoptosis, by an excessive production of
reactive oxygen species [58]. In this study, when exposed
to heat stress, elevated temperature can increase oxygen
consumption of abalone and produce harmful end-
products, such as reactive oxygen species, superoxide
anion, and hydroxyl radical. The activation of mitophagy
signaling pathways might ensure proper elimination of
dysfunctional mitochondria in abalone. In addition, we
found that among these 545 overlap genes, 39 genes had
undergone alternative splicing event in SD, which may
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play important roles in heterosis of thermal resistance in
SD. In particular, Syk is a key molecule that controls
multiple physiological functions in cells. Syk encodes a
cytoplasmic kinase that serves for multiple functions
within the immune system, to couple receptors for anti-
gens and antigen-antibody complexes to adaptive and in-
nate immune responses [59]. The activation of Syk
induces Ca®* release from intracellular pools through
tyrosine phosphorylation of PLC-g2 following oxidative
stress [60]. RELis a key factor in the induction of the
humoral immune response. The REL/NF-kB transcrip-
tion factors, Relish, Dorsal and Dif, are involved in Toll
and Imd signal transduction pathways of the innate im-
mune response [61]. In mammals, it is involved in the
inflammatory response, whose protein family is also in-
volved in hematopoiesis [62]. In C. gigas, based on hom-
ology to other invertebrates’ Rel cascade, the function of
the oyster pathway may serve to regulate genes involved
in innate defense and/or development [63]. In gastropod
abalone (H. diversicolor supertexta), the Rel homologue
had been identified and demonstrated to perform a cru-
cial role in the immune response [64]. In this study, the
REL may be involved in activation of NF-xB signaling
pathway to response for heat stress. SCARBI is a trans-
membrane protein belonging to the scavenger receptors
family and it plays important role in viral entry and
phagocytosis of apoptotic cells [65]. In sharimp (Marsu-
penaeus japonicus), SCARBI protects shrimp from bac-
teria by enhancing phagocytosis and regulating
expression of antimicrobial peptides [66]. In Chinese
mitten crab (Eriocheir. sinensis), SCARBI restricts bac-
teria proliferation by promoting phagocytosis [67]. In
our study, SCARBI was found to be upregulated in heat
stress, and its expression level in SD was higher than its
parents, which might be one of the reasons for heterosis
of abalone. TLR1 is a member of the Toll-like receptor
(TLR) family that form an effective defense against cellu-
lar damage and plays a key role in pathogen recognition
and innate immune activation [68]. In mammals, TLRI
and TLR2 can recognize exogenous peptidoglycans and
lipoproteins, and induce NF-kB activation to produce
various inflammatory cytokines [69]. In disk abalone (H.
discus discus), the transcript level of TLR in gill tissues
was up-regulated after the stress experiment, indicating
that TLR may play a role in the antibacterial and anti-
viral defense of disk abalone [70]. Due to the effect of al-
ternative splicing, more transcripts were generated in
TLR1, which may lead to increased protein polymorph-
ism and had an impact on the abalone. The RNA-seq
read counts and estimated exon inclusion level of
TLRIgenes at control and heat stress group in SD were
showed in Fig. 6B. Therefore, the increased expression
level of TLRI may enhance the resistance of abalone.
MUCI is a high-molecular weight (400 kDa), type I
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membrane-tethered glycoprotein, which has shown to
have anti-adhesive and immunosuppressive properties,
protects against infections [71]. In this study, in order to
respond to heat stress, abalone secreted a large amount
of mucus on the body surface for self-protection, the
MUCI may play a role in this process. Certainly, the
functions of these genes in abalone need further study.

Conclusions

The heterosis of thermal resistance in SD was confirmed
in this study, by comparing ABTs among the abalones
from DD, SS, and SD populations. Then the transcrip-
tome analysis of hybrid abalone SD and its parents DD
and SS were conducted using RNA-sequencing. Varia-
tions in the alternative splicing genes and the diverse ex-
pression patterns of non-additive genes may result in
phenotypic and physiological differences in the thermal
resistance of hybrid abalone and its parents. We pro-
posed alternative splicing genes and non-additive genes
might play important roles on heat tolerance heterosis.
Overall, our study shed new insights on the molecular
mechanism for heterosis of thermal resistance in the in-
terspecific hybrid abalone SD. These findings might pro-
vide some suggestions for further studies of heat-
response mechanisms in mollusks. The key genes or
pathways would be great indicator for our follow-up
work. Combined these with the results with other stud-
ies, such as genome-wide association study (GWAS),
gene editing, and proteome, this could help develop
thermal-resistant abalones for abalone aquaculture
industry.

Materials and methods

Growth trait comparison experiment

A total of 180 juvenile abalones of each population (DD,
SS, and SD) were selected and divided into three net
tanks (65 x 40 x 60 cm) for culture experiments. During
the experiment, fresh seawater was constantly injected
into the tanks, and the salinity and dissolved oxygen
were kept at 32 ppt and 6 mg/L, respectively. All aba-
lones were fed once daily with Gracilaria ameneiformis,
and all the residual food particles and fecal debris were
removed 24 h after feeding. A thermometer (HOBO,
USA) was used for temperature monitoring during the
experiment. The shell length, body weight, and survival
rates were measured and recorded every two months.
Shell length was measured using Vernier calipers (accur-
acy, 0.01 mm), whereas body weight was measured using
an electronic balance (accuracy, 0.01 g). Statistical ana-
lysis was done with SPSS v24.0. One-way ANOVA was
conducted to compare the differences in growth traits
among three populations.
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Animal acclimation

The experimental abalones (SS, DD and hybrid SD) were
transported from Fuda Abalone Farm (Jinjiang, China)
to the lab for thermal tolerance assessment. Sixty indi-
viduals per stock with the same size (5.5-6.5 cm) were
randomly selected and then acclimated in a thermo-
controlled seawater recirculating system for seven days.
During the acclimation, salinity, dissolved oxygen, and
temperature were kept at 32 ppt, 6 mg/L and 20°C,
respectively. All abalones were fed once daily with
Gracilaria ameneiformis and all the residual food par-
ticles and fecal debris were removed 12h before the
experiment.

ABT of cardiac performance

The non-invasive Arrhenius break temperatures method
(ABT) was used for heart rate measurement described
by [26, 28]. Thirty individuals per population were used
to determine ABT. Abalones were placed in a transpar-
ent plastic box (30.0 x20.0 x 15.0cm), which was
immersed in a thermo-controlled water bath. The sea-
water in the plastic box was aerated and its temperature
was increased at a rate of 0.1°C/min from 20°C. A
thermometer (Fluke 54II, Fluke calibration, USA) was
used for temperature monitoring.

An infrared sensor was glued (Krazy Glue, Westerville,
OH, United States) to the shell above the heart of the
abalone. Then the fluctuations of heart beats were amp-
lified, filtered and recorded by an infrared signal ampli-
fier (AMPO3, Newshift, Leiria, Portugal) and Powerlab
(8/35, ADInstruments, March-Hugstetten, Australia).
Heart beat data were monitored and analyzed with soft-
ware LabChart v8.0. The ABT was defined as the
temperature at which the heart rate decreased dramatic-
ally, determined by using regression analyses to generate
the best fit line on both sides of a putative break point
[72]. To construct Arrhenius plots, heart rates were
transformed to the natural logarithm of beats min™ .
Temperatures are shown as 1000/K  (Kelvin
temperature). One-way ANOVA was conducted in SPSS
v24.0 to compare the differences in ABT among three
populations. P<0.05 was considered significant in
differences.

Heat stress experiment

The abalones were acclimated at 20 °C for 7 d in circu-
lating tank before the experiment. A thermometer (Fluke
5411, Fluke calibration, USA) was used for temperature
monitoring during the experiment. To minimize disturb-
ance from the external environment, the room was kept
dark during the experiment. For the heat stress experi-
ment, abalones were divided into two groups: the con-
trol group (C, 20°C) and the heat stress group (H,
30°C). For the C group, the water temperature was
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maintained at 20°C in a circulating water system tank
during the experiment. For the H group, the water
temperature was rose to 30°C at a rate of 1°C/h by
heater. The heat exposure time was 2 h. Then three indi-
viduals of three populations per group were collected.
Gill tissues dissected from abalones were immediately
frozen in liquid nitrogen, and finally stored at — 80 °C.

RNA extraction, library construction and high-throughput
sequencing

Total RNA was extracted from the gills of the 18 sam-
ples using Trizol reagent (Gibco BRL, United States). To
check the purity and integrity of RNA, the Nanophoto-
meterR spectrophotometer (IMPLEN, Westlake Village,
CA, United States) and RNA Nano 6000 Assay Kit of
the Agilent Bioanalyzer 2100 system (Agilent Technolo-
gies, Santa Clara, CA, United States) were used. Library
preparation and sequencing were performed by Novo-
gene (Beijing, China). RNA-seq libraries were con-
structed according to the manufacturer’s protocol of the
Vazyme mRNA-seq library preparation kit (Vazyme) and
were sequenced to generate 150-nucleotide paired-end
reads on an HiSeq platform (Illumina).

Analysis of differential expressed genes (DEGs) and
alternative splicing events

Raw reads were filtered using fastp [73] with the follow-
ing parameters: -w 16 -z 6 -q 20 -u 30 -n 10 -1 150. The
clean reads were aligned to the reference genome of H.
discus hannai (DD) (unpublished data) using HISAT2
[74], generating BAM files. The BAM files were sorted
using samtools and then used to estimated gene abun-
dances of annotated genes in the reference genome
using StringTie [75] with the following parameters: -e —
B. The gene read counts were extracted using the pre-
pDE.py script included in StringTie, and then taken as
input for R DESeq2 package. The gene expression pro-
files were derived from the TMM normalization of the
read counts with rlog transformation using R DESeq2
package. The differentially expressed genes (DEGs) were
identified using R DESeq2 package with a false discovery
rate (FDR) <0.05 and |log2FoldChange| > 1. In order to
evaluate the effect of interaction of two factors (popula-
tion and environment), an interaction analysis was im-
plemented using R DESeq2 package with design:
population + environment + population: environment,
and padj <0.05 and |log2FoldChange| > 1 as the signifi-
cance threshold.

To identify AS events in hybrid SD and detect their
potential contributes to the heterosis of thermal toler-
ance, a genome-wide investigation of AS events in the
SD and its parents DD and SS were performed by RNA-
sequencing. Replicate multivariate analysis of transcript
splicing (rMATS) v4.0.1 [76] was used to identify
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Table 1 Criteria of gene expression mode in hybrid (for genes are not equally expressed in two parents)

Category Overdominance(-) Dominance Partial dominance(-) Additive Partial dominance(+) Dominance Over dominance(+)
(=) (+)
d/|a| (=0, 1.2) [-12,-08) [-08,-02) [-0.202] (0.2,08] 0.8,1.2] (1.2, +o0]

d/| a|=(Fy-p)/ | P1-P; |, Fy: the gene expression of SD, P;: the gene expression of SS, Py: the gene expression of DD, p: mean of the gene expression of SS and DD

differential alternative splicing events between the C
group and the H group. In each comparison, only the
exon junctions with the average aligned reads of six
samples greater than 5 remained for the subsequent ana-
lysis. Differential alternative splicing events were consid-
ered to be significant if the absolute change in “percent
spliced in” (denoted as Ay) was >0.1 with a false discov-
ery rate (FDR) of < 0.05.

Additive and dominance effect analysis

A subset of genes, which displayed additive and non-
additive gene expression, referring to the expression
levels in a hybrid that were significantly different from
the parental values, were obtained (Table 1). The degree
of dominance was measured using the ratio (d/|a|) of
the estimated dominance effect over the estimated addi-
tive effect:

d  hybrid-0.5%(parent, + parent,)
| a | | parent,—parent, |

The classifications were judged according to [77]:
additive = —0.20 to 0.20; partial dominance = 0.20 to 0.80
or — 0.80 to —0.20; dominance = 0.80 to 1.20 or — 1.20 to
—0.80; overdominance = > 1.20 or < — 1.20.

Integrated analysis of DEGs, DAGs, and NAGs

Integrated analysis was conducted for the common
DEGs of three populations and ODO genes of the heat
stress group and the DAGs of SD. The Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis of genes were conducted using R
clusterProfiler package [78], based on a modified Fisher’s
exact test with p < 0.05 and FDR cutoff < 0.05.
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