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A B S T R A C T

This study explored the taxonomy of cognitive impairment within temporal lobe epilepsy and characterized the
sociodemographic, clinical and neurobiological correlates of identified cognitive phenotypes. 111 temporal lobe
epilepsy patients and 83 controls (mean ages 33 and 39, 57% and 61% female, respectively) from the Epilepsy
Connectome Project underwent neuropsychological assessment, clinical interview, and high resolution 3T
structural and resting-state functional MRI. A comprehensive neuropsychological test battery was reduced to
core cognitive domains (language, memory, executive, visuospatial, motor speed) which were then subjected to
cluster analysis. The resulting cognitive subgroups were compared in regard to sociodemographic and clinical
epilepsy characteristics as well as variations in brain structure and functional connectivity. Three cognitive
subgroups were identified (intact, language/memory/executive function impairment, generalized impairment)
which differed significantly, in a systematic fashion, across multiple features. The generalized impairment group
was characterized by an earlier age at medication initiation (P < 0.05), fewer patient (P < 0.001) and parental
years of education (P < 0.05), greater racial diversity (P < 0.05), and greater number of lifetime generalized
seizures (P < 0.001). The three groups also differed in an orderly manner across total intracranial (P < 0.001)
and bilateral cerebellar cortex volumes (P < 0.01), and rate of bilateral hippocampal atrophy (P < 0.014), but
minimally in regional measures of cortical volume or thickness. In contrast, large-scale patterns of cortical-
subcortical covariance networks revealed significant differences across groups in global and local measures of
community structure and distribution of hubs. Resting-state fMRI revealed stepwise anomalies as a function of
cluster membership, with the most abnormal patterns of connectivity evident in the generalized impairment
group and no significant differences from controls in the cognitively intact group. Overall, the distinct under-
lying cognitive phenotypes of temporal lobe epilepsy harbor systematic relationships with clinical, socio-
demographic and neuroimaging correlates. Cognitive phenotype variations in patient and familial education and
ethnicity, with linked variations in total intracranial volume, raise the question of an early and persisting so-
cioeconomic-status related neurodevelopmental impact, with additional contributions of clinical epilepsy factors
(e.g., lifetime generalized seizures). The neuroimaging features of cognitive phenotype membership are most
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notable for disrupted large scale cortical-subcortical networks and patterns of functional connectivity with bi-
lateral hippocampal and cerebellar atrophy. The cognitive taxonomy of temporal lobe epilepsy appears influ-
enced by features that reflect the combined influence of socioeconomic, neurodevelopmental and neurobiolo-
gical risk factors.

1. Introduction

A longstanding pursuit in the neuropsychology of epilepsy has been
an understanding of the signatures of cognitive abnormality associated
with the disordered pathophysiology of specific epilepsy syndromes
(Helmstaedter and Witt, 2012; Lin et al., 2012). This classic approach
led to early appreciation of impaired memory in temporal lobe epilepsy
(TLE), dysexecutive function in frontal lobe epilepsy, attentional dis-
ruption in absence epilepsy, language-related problems in Rolandic
epilepsy, and dysexecutive behavior in juvenile myoclonic epilepsy
(Elger et al., 2004; MacAllister and Schaffer, 2007). In addition, the
association of cognitive abnormalities with clinical epilepsy character-
istics (e.g., age of onset, seizure frequency/severity, duration of dis-
order) further clarified the presence, nature and severity of associated
cognitive morbidity (Baxendale and Thompson, 2010; Dodrill and
Matthews, 1992; Rudzinski and Meador, 2013). Early neuropatholo-
gical and imaging studies contributed to an understanding of the links
between syndrome-specific cognitive findings and anomalies in brain
structure, a notable example being hippocampal pathology reflected in
cell loss and gliosis and MRI-defined hippocampal atrophy linked with
memory impairment in TLE (Lencz et al., 1992; Rausch, 1987; Sass
et al., 1992; Sass et al., 1990; Trenerry et al., 1993). This general model,
tracking cognition as a function of the taxonomy of the epilepsies and
their associated clinical features, has served the field well (Loring,
2010; Novelly, 1992).

But some incongruities in the classic model have accumulated over
the years, in part due to studies involving broad-based neuropsycho-
logical assessment comprehensively overviewing human cognition as
well as by head-to-head cognitive comparisons of epilepsy syndromes.
Rather than the expected selective cognitive abnormalities linked to
syndrome-specific pathophysiology, either a) more widespread and
arguably unexpected cognitive anomaly has been reported when epi-
lepsy syndromes are studied in depth (e.g., generalized cognitive ab-
normalities in focal epilepsies) (Braakman et al., 2015; Guimaraes et al.,
2007; Hwang et al., 2019; Marques et al., 2007; Oyegbile et al., 2004;
Rzezak et al., 2007) or, b) in head-to-head comparisons of two or more
epilepsy syndromes, considerably shared versus unique syndrome-

specific cognitive abnormality is notable (Baxendale and Thompson,
2010; Braakman et al., 2015; Bremm et al., 2019; Guimaraes et al.,
2007; Hwang et al., 2019; Jackson et al., 2013; Marques et al., 2007;
Oyegbile et al., 2004; Rzezak et al., 2007; Smith, 2016; Wang et al.,
2011), or c) particular cognitive impairments (e.g., dysexecutive func-
tion) have been found to cut across multiple epilepsy syndromes
(Conant et al., 2010; Neri et al., 2012; Stretton and Thompson, 2012;
Verche et al., 2018; Verrotti et al., 2015; Wandschneider et al., 2012).

These empirical findings, summarized in narrative, systematic and
meta-analytic reviews (Fonseca Wald et al., 2019; Loughman et al.,
2014; Nickels et al., 2016; Smith, 2016; Wickens et al., 2017; Wilson
and Baxendale, 2014), appear complementary to modern neuroimaging
studies detecting more extended than anticipated abnormalities in brain
structure and connectivity within several epilepsy syndromes (Keller
et al., 2015; Lin et al., 2007; McDonald et al., 2008; Nuyts et al., 2017;
Otte et al., 2012; Slinger et al., 2016; van Diessen et al., 2014; Whelan
et al., 2018), contributing to the contemporary perspective that neu-
ropsychological abnormalities result from disruption in widely dis-
tributed cognition-dependent neuronal circuitry (Rayner and Tailby,
2017; Rayner et al., 2019; Wilson and Baxendale, 2014).

Moreover, no perspective seems able to adequately account for the
individual variability inherent in cognition and associated underlying
neurobiology within any epilepsy syndrome. An alternative paradigm is
that within any epilepsy syndrome, and perhaps across epilepsy syn-
dromes, there are so-called latent groups or cognitive phenotypes that
exhibit distinct patterns of cognitive and perhaps associated neurobio-
logical abnormality. In this view cognitive variability within an epi-
lepsy syndrome becomes a core focus of investigation. A developing
literature has demonstrated the existence of cognitive subtypes within
well-characterized epilepsy syndromes, examined most frequently in
TLE given the careful study of these patients as part of the presurgical
process (Elverman et al., 2019; Hermann et al., 2007; Kaestner et al.,
2019; Reyes et al., 2019; Rodríguez-Cruces et al., 2018). While the
overall modal cognitive profile may be one of broader than expected
abnormalities, subgroups of patients appear to exist including some
with surprisingly intact cognition, some with syndrome-specific cogni-
tive impairment, and others with generalized nonspecific cognitive

Table 1
Participants. Controls and TLE characteristics (2nd and 3rd columns) and the three cognitive phenotype groups (4th through 6th columns). Generalized Cognitive
Impairment (Generalized-CI), Focal Cognitive Impairment (Focal-CI) and No Cognitive Impairment (No-CI) – refer to TLE patient subgroups identified through the
clustering analysis in Section 2.3.1. †Based on adjusted hippocampal z-score of<−1.5. If based on z < −1.0, 43% of TLE exhibited hippocampal atrophy. ‡One
value missing from Generalized-CI. Please see text for interpretation of significant differences. (last column).

Groups Controls All TLE Generalized-CI Focal-CI No-CI p (ANOVA/χ2)

N 83 111 20 34 57 –
Age (years) [Mean ± SD] 33.8 ± 10.6 39.6 ± 11.5 38.2 ± 13.5 36.6 ± 11.1 41.9 ± 10.4 0.17
Gender (Male/Female) 36/47 43/68 8/12 15/19 20/37 0.91
Education (years) [Mean ± SD] 15.8 ± 2.7 14.7 ± 2.7 12.3 ± 2.0 13.6 ± 1.7 16.2 ± 2.4 < 0.001
Mother Education (year) [Mean ± SD] 14.6 ± 2.7 13.5 ± 2.7 12.6 ± 2.7 13.8 ± 2.3 13.6 ± 2.9 < 0.05
Father Education (years) [Mean ± SD] 14.8 ± 2.8 13.8 ± 2.9 11.9 ± 2.1 13.2 ± 2.0 14.7 ± 3.1 < 0.001
Race (Caucasian/Non-Caucasian) 74/9 91/20 10/10 26/8 55/2 < 0.05
Duration of Seizures (years) [Mean ± SD] – 16.8 ± 13.9 21.3 ± 16.7 13.2 ± 12.9 17.4 ± 13.2 0.17
Recurring Seizure Onset Age (years) [Mean ± SD] – 22.8 ± 13.6 16.8 ± 11.9 23.4 ± 11.5 24.5 ± 14.6 0.17
Drug Onset Age (years) [Mean ± SD] – 25.7 ± 13.6 18.3 ± 11.1 24.4 ± 11.2 29.0 ± 14.5 < 0.05
Number of Anti-epileptic Drugs [Mean ± SD] – 1.8 ± 0.9 2.4 ± 0.7 1.8 ± 1.0 1.7 ± 0.9 0.07
Seizure Laterality (Left/Right/Bilateral/Uncertain) – 57/25/9/20 9/6/2/3 17/9/2/6 31/10/5/11 0.91
Seizure Controlled for > 1 year (Yes/No) – 61/50 8/12 20/14 33/24 0.66
Hippocampal Atrophy (HA) [unilateral/bilateral]† 2.5% 23% 33% [7%/26%] 23% [13%/10%] 20% [11%/10%] <0.05
Generalized Seizure History (Yes/No) – 55/56 16/4 15/19 24/33 <0.05
Number of Lifetime Generalized Seizures (0–5/6–50/51+)‡ – 61/40/9 3/11/5 19/12/3 39/17/1 < 0.001
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impairment. The number of investigations examining neuroimaging
correlates of these subgroups is more limited, but with some evidence
that increasingly distributed neurobiological abnormalities are asso-
ciated with increasingly broad cognitive impairments (Dabbs et al.,
2009; Hermann et al., 2007; Kaestner et al., 2019; Reyes et al., 2019;
Rodríguez-Cruces et al., 2018; 2020).

Here we continue to address the overarching hypothesis that cog-
nition in epilepsy exhibits a taxonomy that only partially overlaps with
syndrome-specific expectations. Our first aim is to identify the under-
lying cognitive phenotypes in a large group of participants with TLE
from the Epilepsy Connectome Project (ECP) (Cook et al., 2019; Hwang
et al., 2019). These patients are more representative of the general
population of TLE patients as only a subset are medication-resistant and
in need of surgical evaluation or eventual surgery. The second aim is to
identify the network disruptions associated with these phenotypes, fo-
cusing on patterns of abnormality in resting-state functional MRI (rs-
fMRI) as well as regional and network-based analyses of cortical-sub-
cortical covariance in structural MRI. The final aim is to characterize
the relationship of identified cognitive phenotypes to relevant clinical
and sociodemographic predictors—including factors reflective of so-
cioeconomic status which are under-investigated in this literature.

2. Materials and methods

2.1. Participants

Participants included 111 TLE patients and 83 healthy control vo-
lunteers prospectively enrolled from the ECP (See Table 1) (Cook et al.,
2019; Hwang et al., 2019). ECP is a two-site research project involving
the Medical College of Wisconsin and the University of Wisconsin-
Madison, reviewed and approved by the IRB (Institutional Review
Board) at the Medical School of Wisconsin and all participants provided
written informed consent, all procedures consistent with the Declara-
tion of Helsinki.

Eligible TLE patients were between the ages of 18 and 60, had tested
full-scale IQ (Intelligence Quotient) at or above 70, spoke English flu-
ently, with no medical contraindications to MRI. The diagnosis of TLE
was supported by two or more of the following: 1) described or ob-
served clinical semiology consistent with seizures of temporal lobe
origin, 2) EEG evidence of either Temporal Intermittent Rhythmic Delta
Activity or temporal lobe epileptiform discharges, 3) temporal lobe
onset of seizures captured on video EEG monitoring, or 4) MRI evidence
of mesial temporal sclerosis or hippocampal atrophy. Patients with any
of the following were excluded: 1) lesions other than mesial temporal
sclerosis causative for seizures, and 2) an active infectious/auto-
immune/inflammatory etiology of seizures.

The TLE cohort is not a surgical sample with a modest proportion
(34%) of participants who underwent ictal monitoring. This in turn has
limitations, primarily in regard to unequivocal seizure lateralization.
However, the proportion of patients who underwent ictal monitoring is
quite similar to the prevalence of medication refractory epilepsy (Kwan
and Brodie, 2000). In this regard the cohort is less biased toward
medication refractory/surgical TLE and therefore more representative
of TLE in general. Nonetheless we appreciate the inherent limitations in
using seizure frequency reports provided by patients and extracted from
medical records.

The controls were healthy adults between the ages of 18 and 60.
Exclusion criteria included: Edinburgh Laterality (Handedness)
Quotient less than +50; primary language other than English; history
of any learning disability, brain injury or illness, substance abuse, or
major psychiatric illness (major depression, bipolar disorder, or schi-
zophrenia); current use of vasoactive medications; and medical con-
traindications to MRI.

The epilepsy and control groups differed in age (P < 0.05) but not
gender distribution (P = 0.13). Age was controlled in all analyses to be
described including cognition, graph theory, cortical thickness and

volume, and rs-fMRI.

2.2. Data acquisition

2.2.1. Neuropsychological assessment
All control and TLE participants underwent neuropsychological

evaluation targeting assessment of intelligence, language, visuo-
perceptual/constructional skills, learning and memory, executive
functions, and cognitive/psychomotor speed. A total of 18 cognitive
indices resulted, which included assessment of intelligence (Wechsler
Abbreviated Scale of Intelligence-2 Vocabulary and Block Design
subtests) (Wechsler, 2011), verbal learning and memory (Rey Auditory
Verbal Learning Test) including total words learned across trials (Rey,
1964), object naming (Boston Naming Test) (Kaplan et al., 1983), letter
fluency (Controlled Oral Word Association Test) (Heaton et al., 2004;
Spreen and Benton, 1977), semantic fluency (Animal Naming) (Heaton
et al., 2004; Strauss et al., 2006), spatial orientation (Judgement of Line
Orientation) (Benton et al., 1983), face recognition (Facial Recognition
Test) (Benton et al., 1983), speeded fine motor dexterity (Grooved
Pegboard, dominant and non-dominant hands) (Klove, 1963), and se-
lected subtests from the National Institutes of Health Toolbox-Cognitive
Battery including the Pattern Comparison Processing Speed Dimen-
sional Change Card Sort, List Sorting Working Memory, Flanker In-
hibitory Control and Attention, Picture Vocabulary, Oral Reading Re-
cognition, and Picture Sequence Memory tests (Carlozzi et al., 2014;
Carlozzi et al., 2015).

2.2.2. Neuroimaging
Per protocol, 55 controls and all TLE patients underwent neuroi-

maging. MRI was performed on 3T General Electric (GE) 750 scanners
at both institutions. T1-weighted structural images were acquired using
MPRAGE (reduced magnetization prepared gradient echo sequence,
TR/TE = 604 ms/2.516 ms, TI = 1060.0 ms, flip angle = 8°,
FOV = 25.6 cm, voxel size = 0.8 mm isotropic). Four 5-minute rs-fMRI
images acquired over two sessions using whole-brain simultaneous
multi-slice, gradient echo planer imaging (Moeller et al., 2010) (8
bands, 72 slices, TR/TE = 802 ms/33.5 ms, flip angle = 50°, ma-
trix = 104 × 104, FOV = 20.8 cm, voxel size = 2.0 mm isotropic) and
a 32-channel receive coil were concatenated. The participants were
asked to fixate on a white cross at the center of a black screen during
the scans for better reliability (Patriat et al., 2013).

2.3. Data processing

2.3.1. Neuropsychological data
Each raw test score was regressed on age for the control data. Other

demographic (e.g., gender, education) variables were of interest as
predictors of cluster membership and were not used for norming pur-
poses. Scores were normalized to z-scores with the mean and standard
error of the control data used to compute z-scores for the patients.
Regression assumptions were checked using both plots and statistical
tests. No obvious patterning nor deviations from linearity were seen in a
residual versus fitted value plot using the control data. Residual nor-
mality was investigated both visually using a quantile–quantile com-
parison plot as well as statistically using Shapiro-Wilks test.

The cognitive tests were then grouped by clinical consensus to five
domains, and the internal consistency of each cognitive domain was
subsequently evaluated by Cronbach’s alpha for the control group. Tests
with relationships to more than one domain (e.g., verbal fluency tasks,
which have both language and executive components) were placed in
the domain with which they had the highest item-total correlation. The
resulting domains were subsequently examined using Cronbach’s alpha
in the TLE group, followed by exploratory factor analysis to demon-
strate method invariance using principal axis factoring and Promax
rotation with Kaiser normalization.

With regard to available empirical methods for determining
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numbers of factors to retain, unfortunately there is no method that has
been found to be optimal under all circumstances. While many re-
commend parallel analysis, there have been concerns that it may be
overly lenient if the mean eigenvalue is used (Glorfeld, 1995) but sig-
nificantly underfactor at the 95th percentile in instances when factors
are correlated and the number of indicators per factor are small
(Crawford et al., 2010). Both of these conditions are present in the
current study. For our study, parallel analysis suggests three factors
when using the 95th percentile and six factors when using the mean.
Another more recently proposed measure, the empirical Kaiser criterion
(EKC), takes into account distributional considerations such as the size
of the first factor and has been found to perform as well or better than
parallel analysis in some cases in which factors are correlated and the
number of variables per factor was small (Braeken and van Assen,
2017). When combining the EKC with the traditional rule, the result
was a five-factor solution.

Composite scores were created for each domain using the mean z-
score for the component measures, and these composite scores were
then subjected to k-means clustering. The resulting clusters then served
as the basis for examination of their correlates with sociodemographic
and clinical seizure features and neuroimaging results.

2.3.2. MRI image preprocessing
MRI images were processed using the Human Connectome Project

(HCP) minimal processing pipelines (Glasser et al., 2013) which are
primarily based on FreeSurfer v5.3 (Dale et al., 1999) and FSL (Func-
tional MRI of the brain Software Library) (Jenkinson et al., 2012). In
brief, the function of this pipeline is to register T1-weighted images to
the Montreal Neurological Institute (MNI) space, segment the volume
into predefined structures, reconstruct white and pial cortical surfaces,
and perform FreeSurfer's standard folding-based surface registration to
a surface atlas. The functional portion of the pipelines removes spatial
distortions in the rs-fMRI images using spin echo unwarping maps,
realigns volumes to compensate for subject motion, registers to the
structural images, reduces the bias field, normalizes the 4D image to a
global mean, masks the data with the final brain mask and maps the
voxels within the cortical gray matter ribbon onto the native cortical
surface space. Details on the HCP processing pipelines can be found in
Glasser et al. (2013).

254 structural features generated by FreeSurfer’s standard re-
construction (recon-all) were extracted from the T1-weighted images,
including cortical thicknesses, surface areas, volumes and also sub-
cortical and global volumes. Surface areas and volumes were divided by
the total surface area and total gray matter volume respectively to
normalize for brain size. Then the structural features were normalized
through z-score transform.

Additional pre-processing was performed on the rs-fMRI images
using AFNI (Analysis of Functional Neuro-Images) (Cox, 1996). This
included motion regression using 12 motion parameters, regression-
based removal of signal changes in the white matter, CSF, global signal,
and band-pass filtering (0.01–0.1 Hz). There are ongoing efforts to
determine the best motion correction method for multiband images
(Hoinkiss et al., 2019; Williams and Van Snellenberg, 2019). Here, the
combination of preprocessing pipelines recommended by the HCP,
which included frame-wise registration to the single-band reference
image to correct for head motion (S. M. Smith et al., 2013) and re-
gressing 12 motion parameters (X/Y/Z, pitch/roll/yaw and their tem-
poral derivatives), as well as signals from WM, CSF and global signal
(Power et al., 2012) was considered adequate for our data. There were
no differences in absolute or relative RMS motion between the clusters
(P > 0.3).

Time-series data from four 5-minute rs-fMRI scans acquired in a
single session were concatenated. 360 time-series from Glasser
Parcellation (Glasser et al., 2016) plus 19 FreeSurfer subcortical regions
(Fischl et al., 2002) were extracted per subject. Pairwise Pearson cor-
relations between 379 time series (71,631 connections) were calculated

and Fisher-z transformed for generating connectivity matrices.

2.3.3. Graph theory measures
Symmetric matrices of 87 nodes (descriptions in Supplementary

Table 1) were calculated for the healthy controls and each TLE cluster
group based on the Desikan‐Killiany probabilistic atlas. Matrices were
calculated based on the partial correlations between node volumes
controlling for intracranial volume (ICV). Subsequently, both global
and local measures were calculated from thresholded matrices ranging
from 15% to 35% density. This was calculated using a combination of
proportional thresholding and minimum spanning tree (see Garcia-
Ramos et al., 2015 for further methodological details). In short, the
thresholding method used a combination of the minimum spanning tree
of the graph plus a proportional threshold of the density of interest; we
refer to these matrices as having a hybrid threshold. Global measures
were acquired at different hybrid thresholds in order to ensure that
results hold regardless of network density. Local measures were cal-
culated at a hybrid threshold of 25%. The Force Atlas 2 algorithm of the
open source software Gephi 9.2 (https://gephi.org) was used for the 2D
visualization of modularity and community structures
(scaling = 2000).

2.4. Comparisons between TLE clusters

2.4.1. Structural brain
Freesurfer's QDEC (Query, Design, Execute, Contrast) was used to

perform surface-based analysis for cortical volume (age, gender, ICV
covariates) and thickness (age and gender covariates) measurements.
Each subject's native surface measures were mapped to the atlas surface
of “fsaverage” to allow between-subject comparisons. Surface data were
smoothed with a 10-mm FWHM (full-width-at-half-maximum) filter. To
correct for multiple comparisons, a Monte-Carlo simulation was im-
plemented with a cluster forming threshold set to P = 0.05. Clusters
were tested against an empirical null distribution of maximum cluster
size built using synthesized Z distributed data across 10,000 permuta-
tions, producing cluster wise P-values fully corrected for multiple
comparisons. Also compared across groups was estimated ICV (adjusted
for age and gender), total gray and white matter, cerebellum and hip-
pocampus (adjusted for age, gender, and ICV), all processed using
Freesurfer v5.3, using ANCOVA and MANCOVA.

2.4.2. Graph theory
The MATLAB-based Brain Connectivity Toolbox (http://www.brain-

connectivity-toolbox.net/) was used to calculate graph theory mea-
sures. Weighted-symmetric adjacency matrices were created for each
group based on the correlation coefficient of the volume covariance
between each pair of nodes. Matrices were proportionally thresholded
after the Minimum Spanning Tree (MST) was added as its backbone (see
Garcia-Ramos et al., 2015, for details). To statistically investigate group
differences, each group matrix was resampled by replacement (i.e.,
bootstrapped) a total of 500 times. Since results from graph theory
measures can occur by chance, each graph measure was calculated on
500 random matrices with the same number of nodes and degree dis-
tribution as the pertinent graphs. In this way, the null hypothesis could
be tested. P-values were corrected for multiple comparisons for each of
the global and local measures. Specifically, Bonferroni correction for
the global analyses was based on the standard alpha level of 0.05 di-
vided by the number of tests (three in total) multiplied by the permuted
matrices of two groups (5002) to the power of the number of thresholds
used (11 in total). For the betweenness centrality analysis, Bonferroni
correction was based on the standard alpha level of 0.05 divided by the
number of nodes (87 in total) and multiplied by the permuted matrices
of two groups (5002 in total). Graph theory measures were obtained
from each resampled matrix at different hybrid thresholds (i.e., com-
bination of MST and proportional threshold), and averages for the
global measures were used for evaluations.
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The global measures investigated included global efficiency, tran-
sitivity, community structure, and modularity index (Q), using mod-
ularity Louvain algorithm, and were calculated over a range of hybrid
thresholds (0.15–0.35; 0.02 intervals). These measures have been
thoroughly described in previous work (Garcia-Ramos et al., 2016).
Global efficiency examines network integration (Wang et al., 2010).
Transitivity characterizes the level of segregation of the network, i.e.,
the degree of clustering of nodes in the network. Finally, the commu-
nity structure indexes the configuration of a network into segregated
communities, while modularity index speaks to how easily the com-
munities are identified by the algorithm. Given that the modularity
algorithm provides a statistical estimate for each output (Blondel et al.,
2008), we calculated modularity 1000 times for each group, and the
highest proportion was chosen as the number of modules in that group.
Betweenness centrality was calculated for each group at a hybrid
threshold of 25%. The threshold of 25% was chosen by calculating an
average across all four groups for each global measure in order to find a
maximum (or minimum) value on the curve that results across
thresholds. Although subtle, the only measure giving, in this case a
maximum in the analysis was the transitivity graph, which resulted in a
threshold of 25%. Betweenness centrality represents the relevance of a
node for the communication between other nodes in the network
(Boccaletti et al., 2006). Nodes with high betweenness centrality fa-
cilitate global integrative processes, serving as “highways” to ease
“traffic” flow in the network (Sporns et al., 2007).

2.4.3. Resting state functional connectivity
Unique pairwise correlations in the connectivity matrices were

compared between the healthy controls and each of the three clusters,
using GLM (reduced generalized linear model), with chronological age
as a covariate. P-values were corrected for multiple comparisons using
the Benjamini-Hochberg false discovery rate correction based on the
standard alpha level of 0.05.

2.5. Data availability

Efforts are ongoing to release raw DICOM (digital imaging and
communications in medicine) data from the ECP through the CCF
(Connectome Coordination Facility, www.humanconnectome.org/soft-
ware/connectomedb) (Hodge et al., 2016) at Washington University in
St. Louis.

2.6. Statistical analysis

Details regarding analyses of the cognitive and all imaging data
(regional and network approaches, and resting-state) are specified in
the pertinent sections.

3. Results

Table 1 provides an overview of the control and TLE participants as
well as the cognitive phenotype groups across sociodemographic and
clinical variables.

3.1. Neuropsychology

Final Cronbach’s alphas for the five cognitive domains in the control
group suggested reasonably strong internal consistency:
Language = 0.812 (N = 34), Executive Function/Processing
Speed = 0.701 (N = 79), Memory = 0.847 (N = 35),
Visuospatial = 0.695 (N = 31), and Motor Speed = 0.785 (N = 83).
After creating composite scores for the patients with TLE based on these
domains, one participant was an extreme outlier in the Motor Speed
domain and was removed. The Cronbach’s alphas for the five domains
in this group based on the remaining 111 participants with TLE also
showed reasonably strong internal consistency: Language = 0.879,

Executive Function/Processing Speed = 0.777, Memory = 0.774,
Visuospatial = 0.683, and Motor = 0.862. Factor analysis yielded five
factors with eigenvalues> 1, which corresponded well to the five do-
mains created based on theoretical justification and the Cronbach’s
alpha results in the controls. All but two measures (Picture Sequence
Memory and Pattern Comparison Processing Speed) showed substantial
loadings (pattern coefficients > 0.45) on the factor corresponding to
the domain it had been assigned, and all but one measure (Picture
Sequence Memory) showed its highest loading on that domain.
Consistent with published literature, all mean cognitive domain scores
for the TLE group were significantly (P < 0.05) lower than controls
across all domains (Sidak corrected).

The psychometric tests falling within each cognitive domain were as
follows: Language (WASI Vocabulary, Boston Naming Test, ToolBox
Picture Vocabulary, Oral Reading); Executive/processing speed (Letter/
Category Fluency, ToolBox Dimensional Change Card Sort, Flanker
Inhibitory Control and Attention Test, Pattern Comparison Processing
Speed, List Sorting Working Memory); Memory (RAVLT Total and
Delayed Recall, ToolBox Picture Sequence Memory); Visuospatial
(WASI Block Design, Judgment of Line Orientation, Facial Recognition);
and Motor speed (Grooved Pegboard).

The mean cognitive domain z-scores were then subjected to k-means
clustering. Three methods for determining the optimal number of
clusters that have shown strong performances relative to other fre-
quently used cluster validity indices in comparison studies (Tibshirani
et al., 2001; Vendramin et al., 2010) were examined for cluster sizes up
to five. The gap statistic compares the obtained within cluster sum of
squared distances from the mean with the expected values under a re-
ference null distribution and the optimal cluster number is the one that
maximizes the distance between the observed variance and that ob-
tained with the uniform distribution (Tibshirani et al., 2001). Both the
silhouette width statistic (Rousseeuw, 1987) and the PBM index
(Pakhira et al., 2004) incorporate both within-group (cohesion) and
between-group (separation) distances. The gap statistic and the PBM
index suggested a three-cluster solution, while the silhouette width
statistic favored a two-cluster solution. Given that two of the three in-
dices suggested an optimal cluster number of three, which is highly
interpretable and consistent with prior research in the area, the three-
cluster solution was chosen.

Three groups were identified (Fig. 1). Generalized Cognitive Impair-
ment (Generalized-CI) (N= 20, 18% of TLE group) reflecting significant
impairment affecting all domains, Focal Cognitive Impairment (Focal-CI)
(N = 34, 31%) demonstrated by particularly abnormal language,
memory and executive function/processing speed, and No Cognitive
Impairment (No-CI) (N = 57, 51%) where performance was intact and
comparable to controls across all domains. One-way ANOVAs with post-
hoc Games-Howell tests performed in each domain showed that Gen-
eralized-CI performed more poorly than all other groups across all
domains. Focal-CI performed more poorly than controls in all domains
and more poorly than No-CI in all domains except Motor Speed.

3.2. Sociodemographic and clinical correlates

Cluster groups differed in several sociodemographic and clinical
variables (one-way ANOVA for continuous or Fisher Exact Test for ca-
tegorical variables). P-values were corrected with Benjamini-Hochberg
false discovery rate for multiple comparisons. Years of education dif-
fered for patients (P < 0.05); patients’ mothers (P = 0.022), with less
education in Generalized-CI versus controls (P = 0.041); and fathers’
(P < 0.001), with less education in Generalized-CI (P = 0.002) and
Focal-CI (P = 0.017). Age was significantly older in No-CI versus
control groups (P = 0.001). Generalized-CI had the largest proportion
of non-Caucasian participants (P < 0.001), the presence and greatest
number of lifetime generalized tonic-clonic seizures (P < 0.01), and
youngest age of first anti-epileptic drug intake (P < 0.05). There were
no significant differences between clusters across other demographic
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(gender, handedness) or clinical seizure variables (age of onset or
duration of epilepsy, mono- versus polytherapy).

There was no significant association between cognitive phenotype
and laterality defined by interictal EEG (left, right, bilateral) (P = 0.55)
or ictal monitoring (P = 0.23). That said, only a subset of TLE parti-
cipants (34%) underwent ictal monitoring, another indication of the
less severe nature of the epilepsy of this cohort. The presence vs absence
of ictal monitoring (a potential indication of medication resistant sei-
zures) was not associated with cognitive phenotype membership
(P = 0.24).

3.3. Regional analysis

Supplemental File 1 depicts the results for regional analyses of
cortical volume and thickness compared to controls. In brief, there were
limited focal and not stepwise volume and thickness abnormalities
across phenotypes. Generalized-CI and No-CI exhibited reduced cortical
thickness primarily in the anterior and inferior temporal lobes bilat-
erally, while Focal-CI did not differ from controls. Cortical surface vo-
lume was increased in Generalized-CI in middle frontal regions

bilaterally. Focal-CI demonstrated increased volume restricted to the
right middle frontal region. No-CI had increased volume in the left
middle frontal region and precentral gyrus, and bilaterally in post-
central gyrus and the precuneus/cuneus.

3.4. Volumetric analyses

Examination of total ICV (ANCOVA with age and gender covariates)
was significant (F= 6.4, P < 0.001) with smaller volume compared to
controls in Generalized-CI (P = 0.006) and Focal-CI (P = 0.001).
Generalized-CI and Focal-CI had smaller left and right cerebellar cortex
than No-CI (P = 0.001 and 0.002). There were nonsignificant trends
(P > 0.10) of less total gray and white matter in Generalized and Focal
CI compared to No-CI and controls. Examination of subcortical volumes
(MANCOVA with age, gender, ICV as covariates) revealed significant
group effects for left (P < 0.007) and right (P < 0.001) cerebellar
cortex. Compared to controls, all TLE groups had smaller left
(P’s < 0.05) and right (P’s < 0.02) cerebellar cortex volumes with
stepwise declines across phenotype groups.

Adjusted (age, ICV) hippocampal volumes were derived and at a
conservative threshold (z ≤ -1.5), 23% of the TLE group exhibited
unilateral (12.4%) or bilateral (10.3%) hippocampal atrophy. Using a
more liberal threshold (z < -1.0), 43% of the TLE sample exhibited
hippocampal atrophy pointing to the presence but less severe nature of
hippocampal atrophy in this TLE group. As expected, the rate of hip-
pocampal atrophy (z ≤ -1.5) in the TLE group compared to controls
was significantly elevated (P = 0.037). Of those TLE patients with
hippocampal atrophy, 55% were unilateral and 45% were bilateral
(using z ≤ -1.5 threshold). The association of hippocampal atrophy
(none, unilateral, bilateral) with cognitive phenotype distribution was
significant (Chi Square = 20.7, df = 9, P < 0.014) indicating that
bilateral hippocampal atrophy was associated with the generalized
cognitive impairment cluster (No-CI, Focal-CI, Generalized-CI = 10%,
10%, 26%).

3.5. Graph theory analysis

Differences were evident in the morphological networks for each
cluster compared to healthy controls (Fig. 2). Even though controls
show different modules, they were not as integrated as seen in Focal-CI
and Generalized-CI. Interestingly, No-CI presented a community struc-
ture more organized than in controls.

Each TLE cluster showed a significant difference relative to healthy
controls for both transitivity (global clustering) and global efficiency,
with Generalized-CI the highest, followed by Focal-CI, then controls,
and finally No-CI (Fig. 3). Each patient group showed a significant

Fig. 1. Cognitive performance of three identified subgroups. Three clusters
were identified, with Generalized Cognitive Impairment (Generalized-CI) (red,
N = 20) being the most impaired overall, then Focal Cognitive Impairment
(Focal-CI) (yellow, N = 34), and No Cognitive Impairment (No-CI) the most
intact (blue, N = 57). Error bars represent standard deviations. (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 2. Community structure of morphological networks. Community structures of healthy controls, Generalized Cognitive Impairment (Generalized-CI), Focal
Cognitive Impairment (Focal-CI), and No Cognitive Impairment (No-CI) groups showed differences. Node abbreviations are the same as in Supplementary Table 1.
Same color nodes belong to the same module. The spatial distribution of nodes was calculated using the force-atlas graph algorithm, where nodes that demonstrated
stronger connections are located closer in space, while nodes with fewer connections tend to be farther apart in space. Bigger nodes represent the hubs of the network
using betweenness centrality. Calculated at a hybrid threshold of 25%.

B. Hermann, et al. NeuroImage: Clinical 27 (2020) 102341

6



difference relative to healthy controls for both transitivity (global
clustering) and modularity index (Q). No-CI was significantly lower
than controls regarding transitivity, while Generalized-CI and Focal-CI
were both significantly higher than controls. In terms of global effi-
ciency, the only group that was not significantly different from controls
was No-CI. Given that No-CI did not differ from controls with regard to
cognitive performance, similarities in global efficiency might be bene-
ficial in these patients and a positive trait for cognition. In terms of Q,
all three groups were significantly higher than controls, with General-
ized-CI the highest, followed by No-CI, and lastly Focal-CI.

Regarding network hubs (Fig. 4), controls showed six hubs (of nine)
from the frontal lobe, two in the parietal lobe (including the right
precuneus), and one from temporal areas. All three TLE groups also
showed two hubs in the temporal lobe. The group with generalized-CI
showed seven hubs (of 13) from the frontal lobe, Focal-CI showed just
four (of 16), and No-CI showed five (of 15). Interestingly, all groups of
patients showed subcortical hubs. Even though No-CI was the closest to
controls in terms of community structure, the distribution of hubs was
not as similar: controls having a high proportion in the frontal lobe,
whereas No-CI in frontal, parietal, and subcortical areas.

Given the possible influence of gender and laterality, additional
analyses were performed correcting for each of those measures while
simultaneously correcting for age and ICV, and they can be found in the
Supplemental Files 2 and 3. In summary, adjusting the covariates (from
age, to age and gender, to age and laterality) did not substantially alter
the results, especially in terms of community structure and the global
measures.

3.6. Resting state functional connectivity

The greatest number of significant (corrected P < 0.05) alterations
in resting state functional connectivity was found in Generalized-CI,
with no significant differences from controls observed for No-CI.
Compared to healthy controls, Generalized-CI showed increased cor-
relations (hyperconnectivity) for 167 connections and decreased cor-
relations (hypoconnectivity) for 503 connections (corrected P < 0.05)
(Fig. 5). 48 out of 670 were subcortical connections. Left and right Area
10d (anterior cingulate/medial prefrontal cortex); and right Areas 8Av,
8B and 8BL (dorsolateral prefrontal cortex) appeared most frequently
(> 25 times). Most changes were seen in connections from the bilateral
temporal and medial frontal lobes (also see Supplemental File 4 with
corrected P < 0.01).

Focal-CI showed five significant hyperconnectivity and 13 hypo-
connectivity differences compared to controls (corrected P < 0.05).
Five of the 18 significant differences overlapped with those of
Generalized-CI. No-CI showed no significant differences from controls
after correction.

Regarding potential impact of laterality on the findings, the resting
state analyses compared cluster groups to controls, so laterality could
not be entered as a covariate of no interest as it does not apply to
controls. We assessed whether there were significant differences in
resting state connectivity between TLE laterality groups. This was done
first using subjects classified as left, right and bilateral, then with just
left and right lateralization. There were no significant findings fol-
lowing correction (P > 0.15).

4. Discussion

This investigation reveals a taxonomy of cognitive abnormality in
TLE that only partially overlaps with expectations based on syndrome-
specific pathophysiology, the cognitive phenotypes influenced by di-
verse epilepsy, sociodemographic, and neuroimaging features reflecting
the combined influence of socioeconomic, neurodevelopmental and
neurobiological factors. First, while the overall cognitive profile of
participants with TLE revealed generalized cognitive impairment con-
sistent with prior reports, three specific subgroups were identified that
differed significantly in their presenting cognitive profiles, consistent
with an underlying cognitive taxonomy with two of the cognitive
clusters substantially independent of the primary underlying patho-
physiology. Second, several interesting and not previously reported
clinical and sociodemographic factors were associated with these cog-
nitive subtypes. Third, traditional neuroimaging markers of structural
abnormality (e.g., cortical volume) were less related to the cognitive
phenotypes than indices of connectivity (resting state) and broad net-
work analyses of cortical and subcortical volumes. Each of these points
will be addressed below.

4.1. Cognitive profiles

The average cognitive profile of the TLE participants suggested
generalized impairment, consistent with prior reports (Guimaraes et al.,
2007; Hwang et al., 2019; Marques et al., 2007; Oyegbile et al., 2004;
Rzezak et al., 2007), reflected in their abnormal performance compared
to controls across all five cognitive domains. In that context, the hy-
pothesis regarding underlying cognitive phenotypes was again con-
firmed, as the analytic approach identified three subgroups character-
ized by divergent neuropsychological profiles. Notable, and generally
underappreciated, was the large subset of epilepsy participants whose
cognitive status was indistinguishable from healthy controls across all
domains (No-CI), representing 51% of the cohort. The presence and
proportion of this group is important as it provides a contrast to the
view of TLE as a generally cognitively impairing disorder, instead
suggesting that a spectrum of cognitive presentations exist including a
completely intact group. To that point, the other notable group was the

Fig. 3. Comparisons of global measures. Global measures (transitivity, global efficiency, and modularity index) of Generalized Cognitive Impairment (Generalized-CI,
red, N = 20), Focal Cognitive Impairment (Focal-CI, yellow, N = 34), and No Cognitive Impairment (No-CI, blue, N = 57) groups showed differences compared to
healthy controls (grey). Each group was statistically significant against random at each density level (Bonferroni correction). *Each group statistically significant
compared to healthy controls after Bonferroni correction. †The groups of Generalized-CI and Focal-CI statistically significant to healthy controls. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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significant minority of patients with a heavy cognitive burden who
demonstrated significantly impaired performance across all cognitive
domains (Generalized-CI), representing 18% of this “focal” epilepsy
cohort. In spite of a focal epilepsy syndrome, cognition was globally and
severely impacted, affecting memory and all other tested cognitive
domains. The remainder (Focal-CI), representing 31% of the sample,
exhibited mildly depressed performance across several cognitive do-
mains but were especially impacted in expected domains including

language, memory, and executive function. Thus, there is a systematic
taxonomy of cognition embedded within this common focal epilepsy.

Important directions for future research include determining whe-
ther other epilepsy syndromes (e.g., frontal lobe epilepsy, juvenile
myoclonic epilepsy) also harbor discrete cognitive phenotypes and
whether there are shared phenotypes across diverse epilepsy syndromes
(e.g., intact, generalized impairment, syndrome-specific phenotype).
That this may be the case can be inferred by neuroimaging findings
from ENIGMA-Epilepsy (Whelan et al., 2018), a large-scale, global in-
itiative including 2149 epilepsy patients and 1727 healthy controls.
Identified were substantial regions of shared cortical and subcortical
atrophy as well as shared microstructural alterations across groups of
patients with TLE, extratemporal epilepsy and genetic generalized
epilepsy, in addition to syndrome-specific structural abnormalities.

Comparing the current findings to our original contribution
(Hermann et al., 2007) there are several similarities. Both investiga-
tions identified three cognitive clusters including “intact” and “gen-
eralized impaired” clusters, as well as a third cluster with “focal” cog-
nitive impairments. In the 2007 paper the “focal” group was
prominently impaired in immediate and delayed memory, but that
group was also significantly lower (albeit mildly) than controls across
all other cognitive domains including intelligence, language, percep-
tion, executive function and speed. Similarly, here the focal group
shows abnormalities in memory as well as language and executive
function. One might question whether “focal” is the best term for this
group as several domains are impacted and better might be “expected
for TLE”.

4.2. Cognitive phenotype associations

4.2.1. Sociodemographic and clinical factors
Years of education is considered a marker of “cognitive reserve”,

with less education linked to increased risk for age-related cognitive
change/decline and cognitive risk in the face of neurological and
medical insults (Stern, 2009; Stern et al., 2018). Here the results were
unexpected. Education was significantly different across groups, not
only for TLE patients but also for their mothers and fathers as well, with
education lowest in Generalized-CI. “Limited reserve” (i.e., less edu-
cation) appears not to be a characteristic consequent to epilepsy, but a
shared familial characteristic which may reflect socioeconomic impact
and risk (Glosser et al., 1997). In general, lower education has been
reported to be associated with the more impaired cognitive phenotype
in other investigations (Elverman et al., 2019; Rodríguez-Cruces et al.,
2018) suggesting that parsing the presence and broader correlates of
low personal and familial education is in order. In addition, racial di-
versity separated the cognitive phenotypes with the greatest diversity in
Generalized-CI, another potential socioeconomic indicator.

Among clinical epilepsy factors both the presence and the number of
lifetime generalized seizures and age of first anti-epileptic drug intake
discriminated the groups with more lifetime seizures and earliest age of
anti-epileptic drug treatment in the most impaired cluster (Generalized-
CI). Lifetime generalized tonic-clonic seizures has long been of interest
in the neuropsychology of epilepsy, linked to early reports of increased
risk of clinician-rated mental handicap (Lennox, 1960) and later related
to objective neuropsychological test performance (Dodrill and
Matthews, 1992). While these empirical associations are informative,
causality remains to be determined—with particular interest in the
contribution of socioeconomic disadvantage which may impact the
patient and family more broadly.

There were no significant differences between clusters across other
demographic (gender, handedness) or clinical seizure variables (age of
onset or duration of epilepsy, laterality of EEG focus, need for ictal
monitoring, mono- versus polytherapy).

4.2.2. Neuroimaging correlates of phenotypes
The underlying neurobiology of the cognitive phenotypes was

Fig. 4. Nodes with high betweenness centrality. The pattern of nodes with high
betweenness centrality differed among the four groups: (from top to bottom)
healthy controls, Generalized Cognitive Impairment (Generalized-CI), Focal
Cognitive Impairment (Focal-CI), and No Cognitive Impairment (No-CI) (cal-
culated at a hybrid threshold of 25%). Nodes with the same color represent the
same module (as in Fig. 2). Labels are the node abbreviations from
Supplementary Table 1.
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explored using traditional regional (vertex-based) examination of cor-
tical volume and thickness as well as volumes of subcortical and cere-
bellar volumes, network analysis of large-scale patterns of subcortical
and cortical covariance in gray matter volume—a more dynamic and
systems-based approach with which to interrogate relationships with
cognition, and rs-fMRI directly assessing disruptions in connectivity.

4.2.2.1. Structural correlates. The cognitive phenotypes revealed only a
modest association with traditional regional metrics of cortical volume
and thickness, and specifically not observed was a “stair-step”
association between the worsening cognitive impairment and vertex
results. In our earlier paper using a largely treatment resistant group
and a Freesurfer analysis of the clusters (Dabbs et al., 2009), an orderly
relationship existed between cluster group and the degree of
abnormality in cortical thickness. That relationship was not observed
here which in part we suspect may be related to the nature of the ECP
cohort as described previously (Section 2.1, Participants). In that TLE is
a network disorder and the ECP sample represents a more benign
profile than our previous refractory group, regional thickness/volume
estimates may not be sensitive enough, whereas the GT measures are
able to capture group differences. In point of fact, recent work with a
specific “language-impaired phenotype” showed that regional measures
of superficial white matter compromise did not reveal differences
between the language-impaired phenotype and healthy controls, but
network-based measures did (Kaestner et al., 2019).

Most evident were differences between controls and cluster groups
in estimated ICV (adjusted for age and gender), a reflection of ultimate
brain development and viewed as a marker of brain reserve (van
Loenhoud et al., 2018). Total ICV differed between controls and Gen-
eralized-CI and Focal-CI groups, but not No-CI. Imaging based markers
of brain reserve are uncommonly examined in the epilepsy literature.

There was also an association between the presence of bilateral
hippocampal atrophy and cluster membership with an increased rate of
atrophy in the Generalized-CI group. Previous analyses examining the
link between hippocampal pathology to cognitive phenotype have been
mixed with some reporting positive findings (Rodríguez-Cruces et al.,
2018) and others negative results (Elverman et al., 2019; Reyes et al.,
2019). The studies have varied in underlying methods and definitions
which may have contributed to this variability.

There were also differences between groups in left and right cere-
bellar cortex volumes with controls exhibiting greater volume com-
pared to all cluster groups. Cerebellar atrophy is a known complication
of the chronic epilepsies including TLE (Hagemann et al., 2002;
Hermann et al., 2005; Oyegbile et al., 2011); linked to iatrogenic
medication effects and the severity of epilepsy (e.g., lifetime general-
ized seizures) (Hagemann et al., 2002), and associated with cognitive
morbidity (Botez et al., 1989; Dabbs et al., 2009). The cerebellum has a
protracted development during which it is vulnerable to multiple bio-
logical and environmental insults (Tiemeier et al., 2010) and it is pos-
sible for atrophy to be out of proportion to the degree of cortical

atrophy (Hermann et al., 2005).
Relatedly, there is a substantial literature demonstrating associa-

tions between socioeconomic status (SES) and brain structure and de-
velopment involving multiple brain regions, including cerebellum
(Cavanagh et al., 2013; Conant et al., 2017; Farah, 2017, 2018; Jenkins
et al., 2019; Kim et al., 2019; Leijser et al., 2018). To our knowledge,
total ICV has not been examined in relation to economic or social dis-
advantage.

4.2.2.2. Graph theory analysis. While vertex-based analyses of cortical
volume and thickness did not reveal progressive abnormalities as a
function of worsening cognition (i.e., cluster membership), when brain
volumes were analyzed via network science techniques, interesting and
regular patterns associated with the cognitive phenotypes were
detected. Specifically, No-CI showed a configuration of morphological
covariance networks similar to the healthy controls. Modules in Focal-
CI and No-CI seemed more integrated than in controls or Generalized-
CI, which suggested a benefit from increased correlations of cortical
and subcortical volumes. In addition, Focal-CI and Generalized-CI
showed higher global clustering and efficiency compared to controls,
while No-CI was lower and clearly distinct from the others. Although
No-CI presented a global configuration similar to controls, it still did
not resemble controls in regard to node-specific measures. These
regional dissimilarities indicate an underlying morphological
development that might have been beneficial for the cognitive
superiority of No-CI with respect to the other cluster groups.

Although regional and network-based analyses were performed
using the same morphological data (i.e., volumetric data), the nature of
graph theory analyses provided another view of morphometric data
that rendered additional insights regarding how the cognitive pheno-
types differed in their morphological associations. This same pattern
was observed in a cohort of patients with uncomplicated childhood
onset epilepsies 50 years after their diagnosis (Garcia-Ramos et al.,
2017), where graph theory analyses of the morphological networks
revealed subtleties missed by conventional regional analyses. Further,
Reyes et al. (2019) recently demonstrated that TLE patients with an
isolated language impairment showed unremarkable regional analyses
but differences in network structure using graph theory analysis (Reyes
et al., 2019).

4.2.2.3. Resting state connectivity. Similarly, the analyses of resting state
connectivity revealed an orderly set of findings across the cognitive
phenotype groups. No-CI showed no significant connectivity differences
compared to the controls. Generalized-CI showed the most extensive
connectivity differences (670 out of 71,631 connections after FDR
correction), while abnormality in Focal-CI was present but less
extensive (18 connections) (Fig. 5 and Supplementary Fig. 1). While
the connectivity abnormalities lack pattern in Focal-CI, a large
proportion of abnormalities in Generalized-CI are from the medial
frontal and temporal lobe areas implicating notable dysconnectivity

Fig. 5. Resting-state connectivity changes in temporal lobe epilepsy. Resting-state connectivity changes of temporal lobe epilepsy (TLE) patients in three cognitive
impairment (CI) clusters, compared to healthy controls. Red lines indicate decreased connectivity (hypoconnectivity) in the patients, while blue lines indicate
increased connectivity (hyperconnectivity). Comparison of controls to the No-CI group did not reveal any significant changes in connectivity after correction. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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between these regions.

4.3. Conclusions

Patients with TLE exhibit a cognitive taxonomy consistent with the
presence of clinically important cognitive subtypes of TLE with neu-
robiological, clinical and sociodemographic correlates. Only one of the
three cognitive phenotypes bore a resemblance to the classic disordered
pathophysiology of TLE (Focal-CI). Differences in total ICV, smallest in
the most impaired cluster (Generalized-CI), raises the question of in-
fluence of an adverse neurodevelopmental impact as does the earlier
age at medication treatment in this cluster. Variations in patient and
parental education (lowest in Generalized-CI) and racial/ethnic di-
versity (highest in Generalized-CI) raise the possibility of adverse in-
fluences linked to lower SES. The possibility that early disadvantage
contributed to smaller ICV in Generalized-CI cannot be ruled out.
Population-based research has demonstrated higher rates of epilepsy in
disadvantaged populations, the disadvantage not due to social drift
(Magnusson and Zelano, 2019; Pickrell et al., 2015; Steer et al., 2014),
and racial and SES factors have been shown to influence features of
epilepsy presentation (Allen et al., 2018; Allen et al., 2019). As dis-
advantage is known to impact cognition, brain and behavior in the
general population, it appears important to more seriously consider
these factors in the neuropsychology of epilepsy (Baxendale and
Heaney, 2011).

Despite the largely unrevealing regional analyses of cortical gray
volume and thickness, subsequent analyses pointed to disordered
“networks” within cortical and subcortical gray matter with altered
patterns of connectivity demonstrated by graph theory and rs-fMRI
analyses, along with significant abnormalities in cerebellar cortex vo-
lume. Systematic variations in morphological covariance networks and
node specific metrics (graph theory analyses) in conjunction with al-
terations in temporal-frontal connectivity across the groups speaks to
the importance of disordered systems neurobiology underlying the
cognitive taxonomy of TLE, particularly in this arguably representative
(non-surgical) sample of TLE patients, althoughs the cognitive patterns
replicate those observed in group of mostly refractory patients
(Hermann et al., 2007). However, network-based analyses may be even
more important for understanding cognitive impairment in these less
intractable cases as their impairments are “unexplained” by traditional
regional atrophy metrics.

Lastly, Generalized-CI would appear to be at additional cognitive
risk in the face of increasing chronological age given their reduced
brain (ICV) and cognitive reserve, midlife cognitive compromise, and
contributions of known epilepsy-related risk factors (lifetime general-
ized seizures).

These results build upon our prior findings not only by replicating
the presence and nature of underlying cognitive phenotypes in a less
severely affected group of patients with TLE, but by expanding the
search for potential correlates to new areas of neuroimaging (rs-fMRI)
and the nature and sophistication of imaging analyses (network sci-
ence), with inclusion of sociodemographic factors that have been sig-
nificantly understudied as predictors in the epilepsy-cognition litera-
ture, and the use of contemporary cognitive metrics from the NIH
ToolBox Cognitive Battery.

4.4. Limitations and future directions

This investigation has limitations. The investigation is cross-sec-
tional which places limits on the ability to advance causal explanations
for reported findings, but testable hypotheses for future longitudinal
studies are clear. As noted, a weakness here is the lack of ictal mon-
itoring for all TLE patients, but a strength is the broader representa-
tiveness of this sample of TLE patients beyond the medically in-
tractable. Overall, across TLE patients of varying severity this emerging
literature has pointed consistently to a definable cognitive taxonomy

(Elverman et al., 2019; Reyes et al., 2019; Rodríguez-Cruces et al.,
2018). As studies of this type expand a fuller vision of the determinants
will evolve and examination of other epilepsy syndromes will further
inform the cognitive taxonomy of the epilepsies.
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