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ABSTRACT Objective: The presence of right ventricular hypertrophy (RVH) accounts for approximately
5-10% in young adults. The sensitivity estimated by commonly used 12-lead electrocardiographic (ECG)
criteria for identifying the presence of RVH is under 20% in the general population. The aim of this study is to
develop a 12-lead ECG system with the related information of age, body height and body weight via machine
learning to increase the sensitivity and the precision for detecting RVH. Method: In a sample of 1,701 males,
aged 17-45 years, support vector machine is used for the training of 31 parameters including age, body height
and body weight in addition to 28 ECG data such as axes, intervals and wave voltages as the inputs to link
the output RVH. The RVH is defined on the echocardiographic finding for young males as right ventricular
anterior wall thickness > 5.5 mm. Results: On the system goal for increasing sensitivity, the specificity is
controlled around 70-75% and all data tested in the proposed method show competent sensitivity up to 70.3%.
The values of area under curve of receiver operating characteristic curve and precision-recall curve using the
proposed method are 0.780 and 0.285, respectively, which are better than 0.518 and 0.112 using the Sokolow-
Lyon voltage criterion, respectively, for detecting unspecific RVH. Conclusion: We present a method using
simple physiological parameters with ECG data to effectively identify more than 70% of the RVH among
young adults. Clinical Impact: This system provides a fast, precise and feasible diagnosis tool to screen RVH.

INDEX TERMS Electrocardiographic system, right ventricular hypertrophy, support vector machine, phys-
iological parameters, young adults.

I. INTRODUCTION
The applications of artificial intelligence (AI) have emerged
in many aspects worldwide based on the huge improvements
in technology and big data availability. Machine learning
is a technique, integrating AI and computation, back and
forth to find the best outcome in the model which has been
successfully used in the decision making for clinical disease
diagnosis and the risk prediction [1]–[13]. For example, [5]
uses the machine learning by training hundreds of electrocar-
diographic (ECG) features to identify the pathological hyper-
trophic cardiomyopathy (HCM) [14]. Relying on themachine
learning or deep learning techniques, the physicians in next

generation can make more accurate and fast judgements on
the prognosis and disposals of a disease. In addition, AI can
provide relevant and cost-effective medical service in the
medically underserved regions.

Right ventricular hypertrophy (RVH) is mostly secondary
to some pathological conditions such as chronic lung
disease [15], pulmonary embolism [16], systemic arterial
hypertension with left ventricular hypertrophy [17], [18] and
primary pulmonary arterial hypertension [19], [20]. In some
cases, RVH is involved in congenital cardiac diseases such
as atrial or ventricular septal defects [21], pulmonary valve
stenosis [22] and hypertrophic cardiomyopathy (HCM) [23].
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The presence of RVH has been associated with heart failure
and cardiovascular disease events in middle and old-aged
individuals [24], [25]. Since most of the RVH phenotypes
represent a presence of underlying pathologic diseases, it is
important to identify it at younger ages. However, the RVH
prevalence in young adults is low, approximately 5-10% [26],
making it difficult to be screened out. The currently most
used tool for detecting the presence of RVH among the
general population is 12-lead surface electrocardiography
(ECG) [27]. Several ECG-based criteria such as the inter-
pretations by Myers et al. and Sokolow-Lyon have been pro-
posed for years [28], [29]; however, the performances of these
ECG-based criteria for RVH consistently yield high speci-
ficity but low sensitivity. To our best knowledge, there have
been a few studies implemented by machine learning and
deep learning for the ECG features to detect left ventricular
hypertrophy [4], whereas the performance is only suboptimal
in the general population. It is possible that a use of machine
learning by solely the ECG features might not be good
enough to fit for clinical requirements. In another respect,
Tison et al. use the deep learning of convolutional neural
network for training the ECG features to predict pulmonary
arterial hypertension, which shows an excellent result [6].
However, the machine learning methods have rarely been
utilized for detecting the presence of RVH.

In this paper, we use a large sample of the military mem-
bers taking age, body height and body weight as well as
a number of ECG features into considerations for machine
learning by the support vector machine (SVM) technique
to relate to RVH. The rest of this paper is organized as
follows. The materials and pre-test results for input features
are revealed in Section II. Section III presents the proposed
algorithm regarding the system for screening out RVH in
detail. The experimental results are displayed in Section IV.
We conclude this paper in Section V.

II. DATA COLLECTION AND FEATURES SELECTION
A. DATA COLLECTION
This study includes a sample of 1,701 military males of
17-45 years from the ancillary cardiorespiratory fitness
and hospitalization events in armed forces (CHIEF) sub-
study implemented in the Hualien Armed Forces General
Hospital in Hualien city, Taiwan, R.O.C. Each participant
underwent a 12-lead ECG and a transthoracic echocar-
diography at the same visit for an annual routine health
examination. The design and rationale of this study has
been described previously [30]–[42]. The 12-lead ECG fea-
tures were obtained from two ECG manufacturers’ prod-
ucts including CARDIOVIT MS-2015 (Schiller AG, Baar,
Switzerland) and TC70 CARDIOGRAPH (Philips, Amster-
dam, Netherlands). The ECG signal in each leadwas recorded
with a duration of 2.5 seconds and the sampling frequency
of 500 Hz. The echocardiography was operated by utiliz-
ing the IE33 (Philips, Amsterdam, Netherlands). All the
ECG and echocardiography procedures were performed by

a senior certificated technician. The 28 ECG features used
in the proposed method include heart rate, the axes of P,
QRS, and T waves in Lead II, and the durations of P wave,
PR interval, QRS interval, QT interval and QTc interval in
Lead II, and the amplitudes of R waves in limb Leads I,
II, III, aVR, aVL and aVF and S wave in Lead aVL, and
the amplitudes of R and S waves in chest Leads V1-V6,
which are obtained by either CARDIOVITMS-2015 or TC70
CARDIOGRAPH. In addition, a population of 176 military
females of ages 17-42 years from the ancillary CHIEF sub-
study, is treated as another test set using the male model
trained by the SVM machine learning for age, anthropo-
metrics and ECG features. The comparison methods are the
Sokolow-Lyon voltage criterion for RVH [29], defined as a
composite of amplitudes R-V1+(S-V5 or S-V6) > 10.5 mm
for both males and females, and Myers et al. [28] voltage
criterion, defined as (R-V1/S-V1 ratio > 1) or (R-V5/S-V5
ratio or R-V6/S-V6 ratio < 1) or (R-V1 > 6 mm) for both
males and females, respectively, where the voltage of 0.1 mV
represents 1 mm.

The diagnosis of RVH is based on the recommendations of
the American Society of Echocardiography [43]. Quantifica-
tion of right ventricular wall thickness (RVWT) is measured
by M-mode and 2-dimensional methods at the onset of QRS
complex of end diastole in echocardiographic parasternal
long axis view. Echocardiographic RVH for young male
adults is defined to be RVWT > 5.5 mm which is approxi-
mately the 95th percentile in the military males [44]. In addi-
tion, echocardiographic RVH for young female adults is
defined to be RVWT> 5.2mm,which is determined based on
the 95th percentile of our military females. The cut-off points
for the echocardiographic RVH for both male and female
adults are suggested as RVWT > 5.0 mm which are fit for
the suggestion by the American Society of Echocardiogra-
phy [43]. To devise the proposed machine learning method,
the data for the male samples are partitioned into 80% for
training with cross validation and 20% for test. This study
protocol has been approved by the Institutional ReviewBroad
of Mennonite Christian Hospital (No. 16-05-008) in Hualien,
Taiwan.

B. PRE-TEST FOR INPUT FEATURES
Several physiological parameters are stepwise added on
the 28 ECG features, as the input parameters for SVM
machine learning to find the most efficient system for clin-
ical use at the initial stage. These physiological parameters
include age, body height, body weight, waist circumference,
systolic blood pressure (SBP) and diastolic blood pressure
(DBP). The preliminary results of additional physiological
parameters and adopted 28 ECG features are listed in Table 1.
In the stepwise pre-test, we only use training set and test
set for the SVM model to compare the performances of
different ECG-based combinations. As revealed from the
combinations in Table 1, the largest area under curve (AUC)
of Precision-Recall (PR) curve and the competent AUC of
Receiver Operating Characteristic (ROC) curve in the test
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TABLE 1. Preliminary performances of additional physiological parameters and adopted 28 ECG features.

TABLE 2. Characteristics of study participants (Males).

set are observed when age, body height, body weight and
the 28 ECG parameters are the inputs to relate to the output
RVH. Thus, these 31 parameters are decided as the input
features of our machine learning model. The baseline values
of each parameter for the study participants are demonstrated
in Table 2. The label of RVH is by the criterion of RVWT
> 5.5 mm for young males. As revealed in Table 2, the
characteristics in those with and those without RVH are
presented as mean ± standard deviation for continuous data
and compared by independent t-test. A p-value < 0.05 is
regarded significant. It is notable that older age, greater body

height and body weight are observed in those with echocar-
diographic RVH.

III. PROPOSED METHOD
We use the 31 input parameters consisting of age, body
height, body weight and the 28 ECG features for machine
learning on the basis of the preliminary results from the pre-
test. The SVM model for these features to relate to the pres-
ence of RVH in the youngmilitarymales is chosen asmachine
learning technique. The reasons for selecting the SVMmodel
are according to its merits ofmemory efficiency, effectiveness
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FIGURE 1. Data partition of the datasets and cross validation.

in high dimensional spaces and very successful discrimina-
tive models in many applications [3], [5], [12], [13], [45].
In addition, SVM could provide efficient operation process
by taking less training time and running time. Therefore, the
SVM is utilized as the machine learning technique which can
be practical in an ECG equipment.

A. DATA PRE-PROCESSING AND CROSS VALIDATION
Because of different dynamic ranges for various input fea-
tures, the Min-Max normalization is used to normalize
the original data of 31 input features into the interval
[0-1]. A linear transformation on the original data for each
feature is performed by Min-Max normalization for data
pre-processing.

The partition of experimental data is exhibited in Fig. 1.
The normalized data of 1,701 military males are divided into
the total training and validation set and the test set with
4:1 ratio. The total training and validation set is segmented
into four equal sample size groups. Within the four groups,
one group is taken as the validation set for validating the
model, and the other three groups are used as the training
set. Fig. 1 also shows the data partition of four folds. Each
fold has similar proportions of Non-RVH and RVH cases.
The 4-fold cross validation process repeats the training and
validation procedures for four times. Each of the four groups
is utilized once as the validation set. The values of the area
under curve (AUC) of the PR curves for the four folds are
averaged and taken as a single performance.

Table 3 lists the data numbers composed by four folds.
Non-RVH samples predominate and RVH samples occupy
only a small percentage in our data since the prevalence
of RVH in the young adults is about 10%. For example,
in the 1st cross validation, the numbers for training data and
validation data are 1,020 (Non-RVH: 921, RVH: 99) and
340 (Non-RVH: 300, RVH: 40), respectively. This imbalance

TABLE 3. Data numbers in the training and validation set for 4-fold cross
validation.

phenomenon between Non-RVH and RVH groups is evi-
dent. In [46], Chawla et al. propose the synthetic minor-
ity over-sampling technique (SMOTE), which is a popular
over-sampling method. We apply SMOTE to solve the prob-
lem of imbalance data. SMOTE mainly creates new minority
class samples by selecting a near minority class neighbor
randomly and interpolating. In the viewpoint of geometry,
the process of SMOTE can be regarded as the interpolation
between twominority class samples and thus expand the deci-
sion space for RVH samples. It benefits the SVM classifier to
provide a better prediction rate on RVH samples.

As shown in Table 3, the SMOTE is utilized in the process
of 4-fold cross validation. The training data for RVH groups
are pre-processed by SMOTE to be the same amount with
the numbers of non-RVH groups as 921, 922, 909 and 911,
respectively, for the four folds.

B. MACHINE LEARNING MODEL
The binary classifier, support vector machine [47]–[49],
is used by the proposed method for machine learning. SVM
estimates the hyperplane that best discriminates Non-RVH
and RVH classes in a high dimensional space according to
a maximum separation margin criterion. Generally speaking,
a good separation is realized by the hyperplane that has the
largest distance to the nearest training data points of Non-
RVH and RVH classes, since the larger the margin, the lower
the generalization error of the SVM classifier. Soft-margin
SVM, which is adopted in our method, allows a certain
number of mistakes and preserves margin as wide as possible
and some outliers are inside or on the incorrect side of the
margin.

A training vector in Non-RVH or RVH class with associ-
ated label is processed by Min-Max normalization. We syn-
thesize and increase the minority data (RVH group) in
the training set by using SMOTE. The linear SVM clas-
sifier generates the weight vector to construct the hyper-
plane, which is obtained by solving the objective function
with the L2 norm regularization and loss function for the

VOLUME 8, 2020 1900510



G.-M. Lin, H. H.-S. Lu: 12-Lead ECG-Based System With Physiological Parameters and Machine Learning

FIGURE 2. Flowchart for the selection of optimized hyperparameter.

TABLE 4. Data numbers of total data.

soft–margin SVM evaluated on the training set and weighted
by hyperparameter C. The hyperparameter C decides the
trade-off betweenminimizing the training error andmaximiz-
ing the margin. To make the decision based on the training
data, the output class (Non-RVH or RVH class) of valida-
tion set or test set can be predicted by the input feature
vector.

The optimization for the selection of hyperparame-
ter C is implemented by grid search. The training pro-
cess by grid search is iterated until the hyperparameter
reaches to end value. As shown in Fig. 2, the optimized
hyperparameter is chosen with the highest average PR
AUC of the 4-fold cross validation among the candidates
of C .

After the optimized hyperparameter is determined, the
SVM model is trained by the data in the total training and
validation set as shown in Fig. 3. The data in total train-
ing and validation set for RVH group are pre-processed
by SMOTE, and the number is raised to 1,221 as shown
in Table 4.

FIGURE 3. Flowchart of training and test procedures of proposed method.

IV. EXPERIMENTAL RESULTS
The proposed RVH screening method is coded by scikit learn
v0.20.2 software with Python [50]. The initial test value, the
increment and the end test value of the hyperparameter are
listed in Table 5.

A. PERFORMANCE MEASUREMENT
To find the most appropriate test cut-off probability [51] for
the SVMmethod, the specificity around 70-75% is chosen as
the criterion as shown in Fig. 3. Performance evaluation con-
sists of several standard measurements including accuracy,
specificity, sensitivity (recall), precision, F1 score, the AUC
of ROC curve and the AUC of PR curve [52], [53].

Accuracy, specificity, sensitivity(recall) and precision are
defined by true positive (TP), true negative (TN), false posi-
tive (FP) and false negative (FN) as listed in (1) – (4). F1 score
represents the harmonic average of the precision and recall as
denoted in (5).

Accuracy =
TP+ TN

TP+ TN + FP+ FN
, (1)

Specificity =
TN

TN + FP
, (2)

Sensitivity (Recall) =
TP

TP+ FN
, (3)

Precision =
TP

TP+ FP
, (4)

F1score =
2× Precision× Recall
Precision+ Recall

. (5)

B. RESULTS AND DISCUSSION
Table 6 tabulates the data numbers and screening results
for RVH of the 4-fold cross validation with the optimized
hyperparameter. In the validation sets, the RVH prevalence
is ranged from 8.2-12.1% as shown in Table 6. The values
of F1 score, the AUCs of ROC and PR curves are similar
across the four folds. Fig. 4 shows the respective ROC curves
and PR curves for the four folds. The average AUC of ROC
curve is 0.718 and the average AUC of PR curve is 0.261. The
prediction results of the total training and validation set, test
set and total data are listed in Table 7. In the total training
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TABLE 5. Hyperparameter optimization.

TABLE 6. Data numbers and performances for 4-fold cross validation.

FIGURE 4. ROC and PR curves for the 4-fold cross validation.

and validation set, the SMOTE is applied for solving the
imbalance in sample sizes between the non-RVH and RVH
groups to increase the prevalence of RVH to 50%. Therefore,
the precision, the F1 score and the AUC of PR curve of the
total training and validation set are superior to those of the
other two datasets. In the test set and total data, the prevalence
of RVH is around 10%. The results of the test set regarding
accuracy, specificity, sensitivity, precision and F1 score are

70.4%, 70.2%, 72.2%, 22.2% and 34.0%, respectively, which
are consistent with the results of the total data. Fig. 5 com-
pares the ROC curves and the PR curves for various datasets
including the total training and validation set, the test set
and the total data. The three datasets reveal similar AUCs
of the ROC curves. We compare the proposed SVM-based
machine learningmethod with the Sokolow-Lyon voltage and
the Myers et al. voltage criteria for RVH as listed in Table 8.
All data of the 1,701 military males are tested.With the speci-
ficity of 70.0%, chosen between 70-75%, our SVM-based
method provides much better sensitivity 70.3% compared to
19.4% and 15.4% for the Sokolow-Lyon and the Myers et. al
voltage criteria, respectively. Fig. 6 compares the ROC curves
and the PR curves between the Sokolow-Lyon voltage cri-
terion and the proposed SVM-based method for screening
RVH. The results show that the proposed SVM-based method
has much better performance compared with the traditional
Sokolow-Lyon voltage criterion.

We also compare the proposed SVM method using lin-
ear kernel with other three machine learning models: SVM
with radial basis function (RBF) kernel (non-linear) [54],
random forest (RF) [55] and gradient boosting decision tree
(GBDT) [56]. The hyperparameter optimization for the three
methods is listed in Table 5. The experimental results for
test set are shown in Table 9. The performances using SVM
models are superior to those of RF and GBDT models. The
SVM models with linear and RBF kernels provide similar
performances. As described in [57], if the number of input
features is large, mapping data to a higher dimensional space
may not be needed. In other words, the non-linear mapping
may not improve the performance. And only one hyperparam-
eter C is searched for linear kernel instead of (C, Gamma) for
the RBF kernel.

Furthermore, we also test the CHIEF military female sub-
cohort data (176 military females aged 17-42 years) with the
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TABLE 7. Prediction results of proposed method for various datasets.

TABLE 8. Performance comparison of proposed method and traditional
ECG voltage criteria.

TABLE 9. Performance comparison of various machine learning models
for test set.

label of echocardiographic RVH by the definition of RVWT
> 5.2 mm for young females using the proposed SVM-based
model trained by the military young males. The aver-

FIGURE 5. ROC and PR curves of proposed method for various datasets.

FIGURE 6. ROC and PR curves of proposed method and traditional ECG
voltage criteria.

age and standard deviation for each adopted physiological
and ECG features of the female participants with and without
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TABLE 10. Characteristics of study participants (Females).

echocardiographic RVH are listed in Table 10. Age and
body weight are two features with significant differences.
The prediction results for the female population are shown
in Table 11. The accuracy, specificity, sensitivity, precision
and F1 score of the female test set using the proposed SVM
method with linear kernel are 73.3%, 72.9%, 80.0%, 15.1%
and 25.4%, respectively, which are in line with the suboptimal
results of the male set. As compared to the SVMmethod with
RBF kernel, the traditional Sokolow-Lyon voltage [29] and
Myers et al. voltage criteria [28], the proposed SVM method
with linear kernel also provides better performance evaluated
by F1 score, the AUCs of ROC curves and PR curves. Fig. 7
shows the ROC curves and PR curves for the female’s test
data.

Fig. 8 exhibits the feature importance in the descending pri-
ority with regard to the overall 31 input features. We find that
body weight and age are the two most important predictors of
echocardiographic RVH in our SVMmodel. The other impor-
tant features of RVH with the coefficient magnitude ≥ 1

TABLE 11. Performance comparison of proposed methods and traditional
ECG voltage criteria for Female’s test data.

include heart rate, the R amplitudes in limb Lead I and chest
Lead V4, and the S amplitude in chest Lead V4.
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FIGURE 7. ROC and PR curves of proposed method and traditional ECG
voltage criteria for female’s test data.

FIGURE 8. Feature importance of the 31 input parameters.

V. CONCLUSION
This paper uses machine learning method to train physiologi-
cal parameters and ECG features in relation to the presence of

RVH.We develop a clinically effective ECG systemwith sim-
ple physiological parameters by utilizing the SVM technique
to screen RVH in a large sample of young adults. Compared
with the traditional ECG criteria including the Sokolow-Lyon
voltage and the Myers et al. voltage criteria for RVH, the pro-
posed SVM-based technique provides superior performances
with regard to sensitivity, precision, F1 score, and the AUCs
of ROC curves and PR curves. Furthermore, although the
proposed model of our ECG-based system is merely trained
upon the young males, the SVM-based method can be tested
properly for the young females as well. For future work,
this proposed ECG-based system with simple physiological
parameter inputs will be trained and tested specifically for
young females to further clarify the validity and the consis-
tency.
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