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A B S T R A C T

Millions of people worldwide are required to work when their physiology is tuned for sleep. By forcing wake-
fulness out of the body’s normal schedule, shift workers face numerous adverse health consequences, including
gastrointestinal problems, sleep problems, and higher rates of some diseases, including cancers. Recent studies
have developed protocols to simulate shift work in rodents with the intention of assessing the effects of night-
shift work on subsequent sleep (Grønli et al., 2017). These studies have already provided important contribu-
tions to the understanding of the metabolic consequences of shift work (Arble et al., 2015; Marti et al., 2016;
Opperhuizen et al., 2015) and sleep-wake-specific impacts of night-shift work (Grønli et al., 2017). However, our
understanding of the causal mechanisms underlying night-shift-related sleep disturbances is limited. In order to
advance toward a mechanistic understanding of sleep disruption in shift work, we model these data with two
different approaches. First we apply a simple homeostatic model to quantify differences in the rates at which
sleep need, as measured by slow wave activity during slow wave sleep (SWS) rises and falls. Second, we develop
a simple and novel mathematical model of rodent sleep and use it to investigate the timing of sleep in a si-
mulated shift work protocol (Grønli et al., 2017). This mathematical framework includes the circadian and
homeostatic processes of the two-process model, but additionally incorporates a stochastic process to model the
polyphasic nature of rodent sleep. By changing only the time at which the rodents are forced to be awake, the
model reproduces some key experimental results from the previous study, including correct proportions of time
spent in each stage of sleep as a function of circadian time and the differences in total wake time and SWS bout
durations in the rodents representing night-shift workers and those representing day-shift workers. Importantly,
the model allows for deeper insight into circadian and homeostatic influences on sleep timing, as it demonstrates
that the differences in SWS bout duration between rodents in the two shifts is largely a circadian effect. Our
study shows the importance of mathematical modeling in uncovering mechanisms behind shift work sleep
disturbances and it begins to lay a foundation for future mathematical modeling of sleep in rodents.

1. Introduction

Night-shift workers are awake at times when their sleep propensity
is high and are required to sleep when sleep propensity is low. As a
whole, this work population reports more sleep difficulty than the
general public (Ursin et al., 2009), and night-shift workers report more
insomnia than day- or evening-shift workers (Pilcher et al., 2000;
Torsvall et al., 1989). Recent studies have shown that night-shift
workers show a higher propensity for occupational errors and accidents

(Ursin et al., 2009; Van Dongen et al., 2017), and in the long run, night-
shift workers also have increased risk of developing a wide range of
adverse health outcomes, such as cancer, cardiovascular disease, dia-
betes and gastrointestinal disorders (Kecklund and Axelsson, 2016;
Knutsson, 2003). In many cases, the relationship between shift work
and health issues may be mediated by shift work-related sleep problems
(Knutsson, 2003).

Sleep is a state characterized by well-defined changes in brain ac-
tivity as seen in the electroencephalogram (EEG). Optimal sleep quality
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is regulated by a sleep homeostatic process (process S) and the en-
dogenous circadian clock (Process C) (Daan et al., 1984). Process S is a
mathematical representation of sleep pressure that builds up during
wakefulness and dissipates with time in sleep. The amount of slow
waves in the EEG of slow wave sleep (SWS) is considered a good in-
dicator of sleep homeostasis (Dijk et al., 1987; Franken et al., 1991;
Huber et al., 2000). The second component, the oscillatory Process C,
also plays a role in the timing of sleep and wakefulness, and is con-
trolled and coordinated by the circadian pacemaker located in the su-
prachiasmatic nuclei (SCN) of the brain. The SCN synchronize daily
rhythms in numerous physiological functions, including core body
temperature. Process C also modulates alertness and cognitive perfor-
mance, even as sleep need builds. Although Process S and Process C are
not specific measurable quantities, homeostatic aspects of sleep as well
as circadian aspects of sleep can be altered experimentally. Process S
can be altered by enforcing sleep restriction, for instance, and Process C
can be altered by changing the light/dark cycle or by lesioning the SCN.
Alterations in either or both of these two processes results in changes in
subsequent sleep structure (A. Borbély et al., 2016; Edgar et al., 1993).

Night-shift work induces a mismatch between work demands and
the homeostatic and circadian factors that promote sleep drive. The
immediate effects of night-shift work are often manifested as decre-
ments in alertness and cognitive performance on duty, and insufficient
sleep after work (Folkard and Tucker, 2003; Gumenyuk et al., 2014;
Kazemi et al., 2016). One explanation is a temporal mismatch between
sleep opportunities and circadian rhythmicity. Working during the
circadian alertness nadir causes state instability, resulting in lapses,
slowing of cognitive processes, microsleeps or sleep attacks measured
by EEG activity (Doran et al., 2001). Although high homeostatic sleep
pressure makes it relatively easy to fall asleep after night-shift work, the
circadian system at this time facilitates wakefulness. As a result, the
daytime sleep is usually shortened even in the face of remaining
homeostatic sleep drive. The dissipation of homeostatic sleep drive after
night-shift work is thus incomplete compared to sleep following day-
shift work (Torbjörn Akerstedt and Wright, 2009). Understanding this
phenomenon is increasingly important as sleep problems related to the
work schedule may underlie acute cognitive impairments or long-term
health risks associated with shift work.

Recently, we established a rodent model of shift work by subjecting
rats to enforced ambulation in slowly rotating wheels for 8 h per day,
either at the time of day when the animal is primed for sleep, (“rest-
work”; to simulate night-shift work) or at the circadian time when the
animal is physiologically primed for wakefulness (“active-work”; to
simulate day-shift work). Rest-work, in contrast to active-work, forces
subjects to recover sleep during the endogenous active phase. Based on
this model, we have observed a progressive intrusion of spontaneous
cortical slow waves and microsleeps during rest-work across four con-
secutive days, which was not observed during active-work (Grønli et al.,
2017). Similar findings have been observed in human studies, and
likely contribute to decreased alertness during the night shift (T.
Akerstedt et al., 1987; Torsvall and Akerstedt, 1987; Torsvall et al.,
1989). We also found that rest-work does not constitute a simple sleep
deprivation, but instead causes a redistribution of sleep. The sleep lost
during work in the resting phase is largely compensated by more sleep
in the normal circadian activity phase. Importantly, the distribution of
sleep is not only affected by working in the resting phase but also by
working in the active phase (since subjects working during the active
phase do get some sleep during the work period). Overall, this rodent
model of shift work increased the daily time awake and decreased the
daily time in sleep in both active-workers and rest-workers as compared
with the undisturbed baseline condition. The total Slow Wave Energy in
non-Rapid Eye Movement (NREM) sleep during the 4-day work sche-
dule was not different in rest-workers from that of active-workers
(Grønli et al., 2017). Therefore it does not appear that the sleep de-
privation induced to the rest-workers by initiating their work at zeit-
geber time 2 (ZT2) had a significant effect as compared to the active-

workers.
While previous research clearly demonstrates that night-shift work

has a major impact on sleep architecture, the exact mechanisms un-
derlying these changes are not yet fully understood. Important ques-
tions remain, particularly: 1) Does the simulated work shift induce
changes in Process S as compared to baseline? 2) What are the me-
chanisms underlying differences in sleep architecture between active-
workers and rest-workers during the workweek? Our aim in the current
study is to answer these questions through the development and ana-
lysis of mathematical models. We use two different mathematical
models to quantify differences between simulated night- and day-shift
work and to investigate putative mechanisms responsible for the
changes in sleep architecture. For the first research question, we apply a
recently developed simple homeostatic model of sleep (Process S)
(Rempe and Wisor, 2014). We apply this model to determine if slow
wave activity (SWA) time dynamics change between rest-workers and
active-workers during work days, as compared to baseline. To address
the second question, we develop a hybrid model that makes use of a
stochastic process to determine sleep state and bout duration at any
given time in polyphasic rodents. The sleep state is determined prob-
abilistically within constraints set by the homeostat and a circadian
rhythm. The standard two-process (Processes S and C) model is effec-
tive at tracking trends in SWA on the time scale of hours to days. This
more advanced mathematical framework presented in this paper pre-
dicts the shorter-term dynamics of sleep and wakefulness and allows us
to make predictions about the mechanisms underlying those dynamics.

2. Materials and methods

2.1. Ethical approval

This study was carried out in accordance with Norwegian laws and
regulations, and The European Convention for the Protection of
Vertebrate Animals used for Experimental and Other Scientific
Purposes. The protocol was approved by the Norwegian Animal
Research Authority (permit number: 2012463).

2.2. Data collection

Male Wistar rats (nTach:WH, Taconic, Silkeborg, Denmark) were
kept under 12:12 light-dark (LD) conditions with gradual transitions
between the light and dark phases, from 0600 to 0700 for lights-on and
from 1800 to 1900 for lights-off, respectively. Accordingly, 0600 was
labelled as lights on (zeitgebertime, ZT0) and 1800 was labelled as
lights off (ZT12). To simulate shift work in humans, rats were exposed
to enforced ambulation for 8 h per day, centered either in the rats’
normal active phase (active-workers “AW”; ZT14-22; n = 12) or in the
rats’ normal rest phase (rest-workers “RW”; ZT2-10, n = 15). The an-
imals were placed in automatically rotating wheels (Rat Running
Wheel, TSE running wheel system, Bad Homburg, Germany; 24 cm
diameter; 3 rpm; a total of 1440 revolutions per session; yielding
1.086 km of linear distance) equipped with feeders to provide food and
water ad libitum. In the 16 h intervals between enforced ambulation
sessions, all animals remained undisturbed in their home cages. All
wheels, feeders and water bottles were cleaned with a 5% ethanol so-
lution after each workday. Work schedules were repeated for four days.
See (Grønli et al., 2017) for more details.

Electroencephalogram (EEG) and electromyogram (EMG) were
continuously monitored throughout a 24 h undisturbed baseline period,
and through the 4-day work protocol (workdays W1 to W4). See Fig. 1
for an overview of the protocol.

For assessment of sleep-wake patterns, the animals underwent sur-
gery for the implantation of transmitters to record EEG and EMG (4ET
and F40-EET, Physiotel, Data Sciences International; St. Paul, MN).
Telemetry signals were collected through receivers (RPC-2/RPC-3, Data
Sciences International) placed directly beneath the animals’ home cage
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or next to the rotating wheel during forced ambulation. The EEG and
EMG signals were visually inspected and classified for sleep state using
Neuroscore software (version 2.0.1, Data Sciences International).
Wakefulness, SWS and Rapid Eye Movement sleep (REMS) were
manually classified in 10-s epochs. For the purpose of manual scoring,
based on criteria from Neckelmann and Ursin (Neckelmann and Ursin,
1993), the EEG signals were filtered with high-pass at 0.5 Hz and low-
pass at 35 Hz. EMG signals were filtered with high-pass at 5 Hz. In
addition to the time spent in sleep and wakefulness, the spectral char-
acteristics of the EEG were analysed on unfiltered EEG signals by offline
Fast Fourier Transform analysis, and artefacts were removed. EEG SWA
was calculated for each epoch as the spectral power in the 1–4 Hz
range. See (Grønli et al., 2017) for more details. Some of the experi-
mental data presented in the current study (Fig. 5 panel A, Fig. 6 panels
B and C) were published in (Grønli et al., 2017).

2.3. Simple homeostatic model

To quantify the dynamics of SWA during SWS we employed a pre-
viously published modeling framework (Rempe and Wisor, 2014).
Following the approach of Franken (Franken et al., 2001), after finding
all 5 min overlapping segments that consisted of at least 90% SWS, we
computed and plotted the median power in the EEG signal in the 1–4 Hz
range during these segments. To quantify the temporal dynamics of
SWA during SWS, we fit these data points with a simple homeostatic
model (Process S) that rises during epochs classified as wakefulness or
REMS and declines during SWS.

The equations for Process S are the following:

= − −+
−∆

S UA UA S e( ) Wake or REMSt t
t

T1 i

= + −+
−∆

S LA S LA e( ) SWSt t
t

T1 d

The upper and lower asymptotes (UA, LA), were found (separately
for each recording) in the same way as in a previous study (Franken
et al., 2001): UA was chosen as the 99% level of the distribution of SWA
during SWS. The lower asymptote, LA, was chosen as the intersection of
the histogram curves of SWA during REMS and SWA during SWS. The
only free parameters left in the model were the time constants: Ti and
Td.

The rates at which S rises and declines (Ti and Td respectively) were
optimized by minimizing the Root Mean Square Error between the
model output and the data. Process S was fit to each individual re-
cording, and time constant values were optimized for two different
subsets of each recording: the baseline day and the workdays. The

asymptotes that Process S approached were fixed constants, but differed
between recordings. The average values of Ti and Td reported here are
averages of the optimized values for each recording.

2.4. Markov chain model

We employ an adapted version of a Markov Chain model put forth
by (Kemp and Kamphuisen, 1986). A Markov Chain uses random
numbers (with constraints) to simulate transitions between sleep states
as well as the amount of time spent in each state. When the model is in
one state, two computations must be made: first, how long does the
current episode last, and second, which state does it transition to next.
The duration of episodes and the probability of transitioning to another
state are functions of a homeostatic process and a circadian process
(Process S and Process C, respectively), from the two-process model of
sleep regulation (Achermann and Borbély, 1994; Borbély et al., 2016;
Daan et al., 1984), but with different parameter values for the time
constants for Process S. We model sleepiness as S-C and alertness as 1-
(S-C) following other published work using the two-process model
(Achermann and Borbély, 1994; Borbély and Achermann, 1992; Daan
et al., 1984; Folkard and Akerstedt, 1989).

2.4.1. Modeling accurate episode durations
To model the time spent in a particular state, we first determined

the probability distribution of episode durations using all the baseline
experimental data (both AW and RW) and we used MATLAB’s distfit
tool to optimize the parameters of the distribution to fit the data. To
generate random numbers from these probability distributions we used
MATLAB’s makedist function.

For REMS episodes during baseline we found that the probability
distribution of their durations was best fit using a Burr Type II dis-
tribution (See Fig. 3G) which has the following probability density
function:
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where the optimal parameters values were found to be a=172.817,
c=2.629, k=4.751. This probability was found using all of the REMS
bouts during baseline and did not take into account time of day. We
found (see Fig. 3J) that REMS episode durations during the baseline day
are functions of sleepiness (Process S minus Process C). That is, when
sleepiness rose throughout the day, REMS episodes tended to get
longer. To account for this dependence on sleepiness, we modeled
REMS episode durations as y*αR*sleepiness where αR is a constant
scaling factor whose value was optimized (see section “Optimizing
parameter values”).

For SWS episode durations during baseline we also found that the
best type of probability distribution to fit the data was a Burr Type II
distribution (Fig. 3F). In this case, the optimized parameter values are:
a=17.7113, c=4.103,k=1.483. Similar to REMS episodes, we found
that during baseline SWS episode durations were not constant, but were
longer when sleepiness was high (Fig. 3I). Therefore, we modeled SWS
episode duration the same way as REMS duration: y*αS*sleepiness
where αS is a constant scaling factor whose value was optimized (see
section “Optimizing parameters”).

Consistent with previous studies (Lo et al., 2004), wake episodes in
the baseline portion of the data were better fit with a power law dis-
tribution than an exponential distribution (Log likelihood value of
-2137 vs -2159, Fig. 3E). Using MATLAB’s distfit tool, the power law
distribution is formulated as follows:

= ⎛
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+
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σ
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σ
1 1 ( ) k1 1

where the optimal parameter values were found to be: k = 0.231707, σ

Fig. 1. Overview of the experimental design. All rats underwent a 24-h
baseline recording in an 12/12 LD cycle. The animals were then split into two
groups: Active-workers (AW) and Rest-workers (RW). Each animal underwent
8 h of forced ambulation on a motorized running wheel. ZT: Zeitgeber time.
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= 217.976, and θ = 1. The parameter θ sets the lower bound (in terms
of epochs) for the wake distribution. In our experimental data we found
that wake episode duration during baseline was a function of alertness
(Fig. 3H). Consistent with how we modeled REMS durations and SWS
durations, we modified this baseline distribution by multiplying it by
the alertness measure (1-(S+C)) with a scaling factor. During work
episodes, the model was forced to remain in the wake state regardless of
the output of the Markov Chain model.

Interestingly, the same report of episode durations (Lo et al., 2004)
showed a “hump-like tail” in the distribution of wake episode durations
at large time scales. This means that especially long wake episodes are
more likely than the power law would predict. In fact, their data show
that long episodes, between about 5min and 30min are equally likely,
although none of these long episodes are very common. This feature
was thought to be caused by consolidated wakefulness due to physical
activity. To incorporate this feature into the model, we assumed that
long wake episodes were more likely when alertness is high. If the
model predicts that the next episode will be wakefulness, a decision is
made as to whether this wake episode will follow the power law dis-
tribution, or if it will be a rare “long-wake” episode. To determine if the
wake episode will be a “long-wake” episode, a uniform random number
is chosen and compared to alertness. If alertness is larger than the

random number, the wake episode will be a “long-wake” episode. See
details in the Supplemental Material. If the wake episode is not a “long-
wake” episode, its duration is calculated as y*αW*alertness where αW is a
constant scaling factor and y is a random variable generated using the
formula given above. If a long-wake episode is initiated, its duration is
determined by another random variable uniformly distributed between
5 and 30min.

Note that SWS episodes durations during baseline were not well fit
by an exponential distribution (log-likelihood ratio of −1966.08 vs
−1768.05 for Burr See Fig. 3F) even though others have found SWS
episodes to closely follow an exponential distribution (Lo et al., 2004).

2.4.2. Modeling transitions between sleep states
Once the model has determined the duration of the current episode,

it determines which state to transition to next. If the current state is
REMS, we found from the baseline data that the next state is roughly
equally likely to be SWS or wake, regardless of time of day. Therefore
we determine the next state by choosing a uniform random variable
between 0 and 1 and set the next state to wake if the random variable is
below 0.5 and to SWS if it is not.

During baseline, episodes of SWS are equally likely to transition to
wake or REMS early on, but throughout the day, wake becomes more

Fig. 2. A homeostatic model (Process S) quantifies differences in sleep slow wave dynamics between baseline days and work days. A When optimally fit to
data points representing median delta power (1–4 Hz) during 5-minute episodes of slow wave sleep, both the rising time constant (Ti) and the decay time constant
(Td) were significantly different between the baseline day and the workdays for the Rest-Workers (RW) group. Only Td was significantly different between baseline
and work days for the Active-Workers (AW) group. B The lower asymptote values (LA) were the same for both AW and RW groups during baseline and during the
workdays. The upper asymptote values (UA) was significantly larger during the work period for the AW group, but not the RW group. Also, UA was significantly
larger during the work period for the AW group as compared to the RW group. Representative fits of the Process S model to data from one recording from the AW
group (panel C) and one recording from the RW group (panel D). In the lower two panels data were normalized to the mean value during the 24 h baseline. Optimal
values for Ti and Td were found using the Nelder-Mead method. Alternating yellow and black bands indicate the timing of light and dark intervals, respectively.
*p< 0.05, **p< 0.01 unpaired t-test.
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likely than REMS. Therefore to choose the next state after a SWS epi-
sode, we compared a uniformly distributed random variable to a de-
creasing linear function of time during each 24 h day. If the random
variable is less than the linear function, the next state is REMS, if it is
more than the linear function, the next state is wake.

If the current state is wakefulness and a rare “long-wake” episode
has just happened, the model transitions to SWS. If the wake episode is
of usual duration (determined by the power law distribution) the model
determines if the next state will be REMS or SWS. Although transitions
from wake to REMS are rare in the data (see Tables 3 and 4), they are
present. We found that the few wake-to-REMS transitions that did
happen in the experimental data tended to happen when sleepiness was
very low. Therefore, we made the model transition from wake to REMS
only rarely and only if sleepiness is low. Otherwise a wake episode
transitions to SWS. For more details of how the model determines bout
duration and state transitions, see Supplementary Material.

To our knowledge this is the first model to combine a Markov Chain
approach with Processe S and Process C. Since Process S is scaled to be
between 0 and 1 and Process C is scaled to be between -0.25 and 0.25,
scaling factors were needed to get reasonable values for episode dura-
tions and numbers of transitions between states. Since this modeling
framework relies on random variables, each simulation is slightly dif-
ferent, similar to how individual recordings are slightly different.
Therefore, 50 simulations were run for each figure and average values
were plotted along with error bars representing standard error of the
mean.

2.4.3. Optimizing parameters
To optimize the fit of the model to the data, we first produced three

separate plots of the experimental data for each of the three states: the
number of episodes, the episode duration and the percentage of time
spent in each state. With five data points per graph (baseline plus four
work days) and two groups (AW and RW), this made for a total of 9 × 5
× 2 = 90 data points for matching the model output to the experi-
mental results.

The five model parameters that were varied in order to optimize the

fit to the data are the following: Ti (the rising time constant of Process
S), Td (the falling time constant of Process S), and three scaling factors:
αW,αS, and αR. Since our simple homeostatic model (Fig. 2) predicted a
different value of Ti and Td between baseline days and workdays, we
first optimized all 5 of the parameters for the baseline day alone both
for the AW group and the RW group. This required minimizing the error
between the model and the experimental data for 9 data points for each
group: number of episodes of each state, episode duration of each state,
and percentage of time in each state.

Once optimum values had been determined for the baseline, we next
optimized the parameters during the work period by minimizing the
differences between the model output and the experimental data for the
four workdays. This led to 4 × 3 × 3 = 36 data points for the AW
group and another 36 for the RW group that we tuned the model to
reproduce as best as possible.

For the optimization of the model during the baseline day we con-
verted the multiobjective problem with 18 objectives (3 sleep measures
× 3 sleep states × AW and RW cases) into a single objective problem
by taking the average of the Normalized Root Mean Square errors be-
tween simulation output and experimental results for all 18 of the data
points and then computing an unbiased average of these points. Once
the multiobjective optimization problem was turned into a single ob-
jective optimization problem, MATLAB’s fminsearch was used to
optimally choose Ti, Td, and the scaling factors to minimize the dis-
crepancy between the model output and the data. The same procedure
was carried out to optimize parameter values for the work period ex-
cept now there were 4 × 9 × 2 = 72 values (4 workdays, 9 measures,
AW and RW cases). Again this multiobjective optimization was con-
verted to a single objective optimization by computing an average of
the 72 values and then fminsearch was used to optimally choose
values of Ti, Td, and the scaling factors for the work period.

Note that the parameters used for the rising and declining rates of
Process S in the Markov Chain model were optimized and are not the
same as those used in the Simple Homeostatic modeling shown in
Fig. 2, (note the Ti and Td values in Tables 1 and 2).

Table 1
Parameter Values for the homeostatic Process S model used in Fig. 2. The values of the time constants Ti and Td were optimized to minimize the sum of square
residuals between the simulation of Process S and delta power during 5-minute episodes of slow-wave sleep. UA and LA represent the upper and lower asymptotes for
Process S respectively. UA and LA are not optimized values, but are found using the approach described in Methods. There were no significant differences in the
values of LA between baseline and workdays or between Active-work (AW) and Rest-work (RW) groups. The only statistically significant differences in the values of
UA (shown in bold) were for the AW group between baseline and workdays (p = 0.03) and between AW and RW during the four workdays (p = 0.007).

Baseline Workdays

Ti (optimized) Td (optimized) UA LA Ti (optimized) Td (optimized) UA LA

AW 12.475± 0.598 4.161± 0.210 2.591±0.083 0.363± 0.022 10.748± 0.175 2.556± 0.047 3.139±0.206 0.370±0.042
RW 13.623± 0.332 4.418± 0.111 2.696±0.138 0.341± 0.022 9.654± 0.209 2.659土0.147 2.415±0.122 0.326±0.026

Table 2
Optimized parameter values for the Markov Chain simulations. All parameters were optimized separately for the baseline and for the workdays. Simulations for
the Active-work (AW) and Rest-work (RW) groups during baseline used the same optimal parameters as we assumed there were no differences in the two groups
during baseline. The scaling parameters (αW, αS, and αR) were the same for AW and RW groups, although there were different between the baseline and workdays.
The only differences in parameters between the AW and RW groups are the optimal values of the time constants Ti and Td during the work period. Note how for the
AW group, Td (but not Ti) becomes smaller during the workdays as compared to baseline. This is consistent with the simpler Process S homeostatic model (Fig. 2).
Also, Ti (but not Td) becomes smaller in the work period as compared to the baseline for the RW group. This is also consistent with the results presented in Fig. 2. Ti
and Td have units of hours, all the other parameters are dimensionless.

Baseline Workdays

Ti Td αW αS αR Ti Td αW αS αR

AW 17.159 2.180 0.600 1.133 1.100 17.071 1.453 0.700 1.212 1.370
RW 17.159 2.180 0.600 1.133 1.100 15.532 2.254 0.700 1.212 1.370
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3. Results

3.1. Homeostatic model

Using the previously described simple homeostatic model (Rempe
and Wisor, 2014), Process S was simulated to trace the dynamics of
SWA during SWS. By optimizing the choices of the rising time constant
(Ti) and the falling time constant (Td), we found that Td values ex-
hibited a significant reduction for both RW (p<0.001) and AW
(p<0.05) during the four-day work protocol compared to 24 h base-
line while Ti was smaller (p< 0.001) during the work protocol only for
the RW case (see Fig. 2A). Note that compared to human sleep, where
sleep is generally consolidated, normal rodent sleep is polyphasic: there
are many more transitions between states and episode durations are
much shorter. The frequent interruptions of SWS episodes by wake and
REMS in rodents may act to decrease the overall decay of Process S as
compared to human sleep. On the contrary, longer duration of SWS
episodes in RW and AW (p<0.001, both as reported in (Grønli et al.,
2017) and shown in Fig. 6B) during work compared to baseline may
explain the faster decay of sleep pressure indicated by the reduction in
Td values. Ti values were also significantly reduced in RW relative to
their baseline control values (see Fig. 2A), though not in AW. The fact
that Ti is not significantly smaller in the AW group during work as
compared to baseline indicates that forcing rats to work during their
normal active phase may not be sufficient to significantly accelerate the
accumulation of sleep need (reflected in changes in Ti). In contrast,
forced work during the normal resting phase seems to accelerate the
accumulation of sleep need (reflected in a smaller value of Ti compared
to baseline). Thus, the model predicts that 8 h forced activity induces
changes in the homeostatic behavior; the decay of SWA is faster in both
groups during the work period compared to during the 24-hour base-
line. The lower asymptote (LA) did not change between the baseline
day and the workdays for either the AW or the RW and there were no
group differences either (Fig. 2B). However, in the AW group, the upper
asymptote (UA) was significantly larger during the work days as com-
pared to baseline, and the value of UA during workdays is higher in the
AW group than in the RW group. Fig. 2 panels C and D show one re-
presentative run of the simulation for the AW case and the RW case
respectively. Table 1 lists optimized values of the time constants Ti and
Td during baseline and the work period as well as computed values of
UA and LA for each period. These values are similar to those found from
other labs (Franken et al., 2001) although larger than we found in an
earlier study that did not involve simulated shift work (Rempe and
Wisor, 2014). The increase in the upper asymptote in the AW case may
compensate for the faster rising of Process S during work as it allows
Process S to rise farther than it would ordinarily. The asymptote values
did not change significantly between baseline and the work period for
the RW group. While this model is helpful in quantifying the time
course of SWA during SWS, it does not provide enough detail to model
individual sleep episodes.

3.2. Markov chain model

To understand the mechanism behind the differences in episode
duration we developed a Markov Chain model of sleep state. As de-
scribed in the Methods section, the Markov Chain model uses prob-
ability to predict the length of time spent in each sleep state and state
transitions. To generate a realistic hypnogram, the Markov Chain can
be thought of as a sequence of transitions between distinct states where
the time spent in the current state and the choice of the next state are
determined using random variables. The Markov Chain model produces
realistic simulations of rodent sleep with frequent transitions between
stages (Fig. 3), both for the AW case (panel A) and the RW case (panel
C). Panels B and D show 10 h of the same data as shown in panels A and
C respectively. In each panel hypnograms for individual recordings are
plotted in the upper portion of the panel and hypnograms for individual

runs of the model are plotted in the lower portion of the panel. In-
dividual simulations don’t match exactly during baseline because of the
randomness built into the model, just as individual recordings from
experimental data don’t have identical hypnograms during the baseline
period. To generate realistic random durations of episodes, we first
determined the probability distribution of episode durations found
during the baseline period using all subjects in the previous study
(Grønli et al., 2017). The durations of wake episodes occurring during
the baseline day of the experiment were better fit with a power law than
an exponential (Fig. 3E), while SWS and REMS episode durations were
better fit with a Burr type XII distribution rather than an exponential
distribution (Fig. 3 panels F and G respectively). In each case the blue
curve represents the optimized fit of an exponential model to the data.
The simulations shown in panels A-D used episode durations generated
by random variables whose cumulative probability distributions are
shown in panels E, F, and G. During the course of the baseline day,
wake episode durations generally became longer (Fig. 3H), while SWS
episode durations (Fig. 3I) and REMS episode durations (Fig. 3J) both
generally declined.

As shown in Fig. 4, the Markov Chain model replicates the relative
probability of each sleep state for both the RW and AW, during baseline
and between shifts. Each sleep state has similar percentages compared
to the experimental data, including circadian changes.

The values of the optimized parameters for the Markov Chain
model, during baseline and during the work days, are shown in Table 2.
Both the AW and RW groups have the same set of optimal parameters
during baseline and a different set of optimum parameters during the
work days. There are no differences in any of the parameters between
the AW and RW groups during baseline. Also, there were no differences
in the scaling factors between the AW and RW groups during the work
days. However, optimal values of the scaling factors were different
between baseline and workdays for both groups. The only parameter
differences between the simulations for the AW group and the RW
group are the values of Ti and Td during the workdays.

We counted the number of transitions between states for each day of
simulated data and compared the results to the experimental data.
Agreement between the experiments and the simulations is high during
the baseline day for both the AW and RW cases. Comparison of the state
transition counts in simulated vs. experimental data from the AW
condition by Student’s T yielded significant differences in the numbers
of R-to-W transitions only, during baseline and work day 1 (Table 3).
All other types of state transitions occurred at equal frequencies in the
real data set and in simulations. However, the agreement of the ex-
perimental and simulated data for RW was less than for AW. Compar-
ison of the state transition counts in simulated vs. experimental data
from the RW condition by Student’s T (Table 4) yielded significant
differences in the numbers of SWS-to-Wake, SWS-to-REMS and REMS-
to-SWS transitions, though not for any other types of state transitions.
In simulated data from RW, SWS-to-Wake transitions were more fre-
quent than in experimental data by roughly 40% on work days 1, 3 and
4. SWS-to-REMS and REMS-to-SWS transitions were less frequent in
simulations than experimental data by 25–40% for the RW condition on
work days 1 and 2. In both the AW and RW cases the experimental data
and the simulations show a similar trend: fewer state transitions during
the work days as compared to the baseline day.

The number of episodes in each state across days is well matched by
the model (Fig. 5). The experimental data and the simulation output
show a significant decrease in the number of wake episodes, SWS epi-
sodes and REMS episodes (panels A, B, and C respectively) in all four
work days as compared to baseline. While the experimental data show
only two differences between AW and RW (SWS episodes on W4 and
REMS episodes on W1), the simulation does not show any group dif-
ferences in the number of episodes. The simulation predicts fewer SWS
episodes in W1 and W2 compared to the experimental data for the RW
group (panel B right side), and fewer REMS episodes for the RW group
on each day and fewer REMS episodes for the AW group on the baseline
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day and the first 3 work days (panel C right side). Average episode
durations for each state (shown in Fig. 6) show similar patterns across
the work days and similar group differences in the simulation output as
in the experimental data. Specifically, for both SWS and REMS the
model correctly reproduces significant increases in episode durations
for all work days as compared to baseline. In the case of SWS, the model
also replicates significant differences between groups during the work

period. For REMS episodes, the model predicts differences between the
AW and RW groups although this group difference was not seen in the
experimental data. When simulating the AW case the model produces
slightly shorter wake episodes during baseline (compared to the ex-
periment) and slightly longer wake episodes on W2, while the RW si-
mulation produces shorter Wake episodes on W4 (panel A right side).
The model shows much less variation in SWS episode durations than the

(caption on next page)
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Fig. 3. The Markov Chain generates hypnograms that are similar to recorded hypnograms. Shown are individual recordings and individual simulations for
active-workers (AW) (A) and resting-workers (RW) (C) during a 24 h baseline and a 4-day work protocol. The upper row in each panel shows recorded data and the
lower panel shows the simulation output. Note the gaps representing work periods starting in the first active phase (ZT14–22) after baseline for the AW group (panel
A), and during the first inactive phase (ZT2–10) after baseline for the RW group (panel C). Vertical lines indicate sleep state changes. Yellow and black bars denote
times of lights-on and lights-off respectively. Panels B and D show 10 h of the same data shown in panels A and C. The black rectangles at the bottom of the simulation
output in panels A and C indicate the location of the expanded sections shown in panels B and D respectively. Note the occurrence of long Wake (W) episodes in the
recordings and the simulations shown in panels B and D. REMS=rapid eye movement sleep, SWS= slow wave sleep. Panels E, F, and G show the cumulative
probability distributions for the durations of Wake, SWS and REMS episodes respectively. Panels E,F,G were generated using experimental data recorded during the
baseline. Wake episode durations were better fit with a power law than an exponential (red curve and blue curve respectively), while SWS and REMS episode
durations were better fit with a Burr type XII distribution rather than an exponential distribution. In each case the blue curve represents the optimized fit of the
exponential model to the data. Panels H, I, and J show changes in episode duration over the course of the baseline day for wake, SWS, and REMS respectively. Data
are binned into 2-hour bins. Error bars indicate standard error of the mean.

Fig. 4. Sleep/Wake profile of baseline and four work days. Plots of sleep state timing for the Active-workers (AW) (panel A) and Rest-workers (RW) (panel B)
cases. The upper plot in each panel shows the experimentally recorded data and the lower plot shows the output of the model. Alternating yellow and black bands at
the top of each panel indicate the timing of light and dark intervals, respectively. Dark brown bands in each panel indicate the time spent in forced ambulation.
REMS= rapid eye movement sleep, SWS = slow wave sleep. The upper plots in both panels are reproduced from (Grønli et al. 2017).

Table 3
The number of transitions between states in the active-work case. Each entry contains the mean plus or minus the standard deviation of numbers of each type of
transition in each day. Note the close agreement between data and simulation in the baseline day and similar trends between experimental data and simulation
output over the days of the experiments. W=workdays 1 to 4, SWS= slow wave sleep, REMS= rapid eye movement sleep. Asterisks indicate significant Bonferroni
corrected T tests for simulation vs analogous experimental data.

Baseline W1 W2 W3 W4

Wake -> SWS (data) 182.92±13.74 129.00± 9.27 104.08± 8.89 104.67± 9.22 96.67±13.04
Wake -> SWS (simulation) 180.08±2.95 111.42± 1.49 108.50± 2.09 106.75± 2.03 107.67± 2.96

Wake -> REMS (data) 6.92± 3.39 3.00± 1.33 2.25± 1.18 3.58± 2.33 3.50± 1.36
Wake -> REMS

(simulation)
2.17± 0.42 2.00± 0.25 3.42± 0.38 2.25± 0.35 2.75± 0.52

SWS -> Wake (data) 130.25±10.06 92.33± 6.91 73.25±4.97 76.33± 6.55 68.67±8.96
SWS -> Wake (simulation) 142.67±2.76 90.33± 2.27 88.08±1.83 87.25± 1.53 86.58±2.55

SWS -> REMS (data) 79.92± 8.03 59.58± 4.67 51.75±4.79 50.42± 4.20 43.83±6.27
SWS -> REMS (simulation) 79.42± 2.73 46.25± 1.94 44.75±1.93 43.00± 1.78 45.75±1.12
REMS -> Wake (data) 57.92± 5.99 39.33± 5.13 32.17±5.37 30.75± 5.03 30.00±5.44
REMS -> Wake

(simulation)
39.92± 1.59* 23.17± 1.57* 23.67±1.38 21.83± 1.42 23.83±1.11

REMS -> SWS (data) 40.75± 7.35 30.50± 4.86 30.75±4.05 31.75± 4.02 29.08±5.19
REMS -> SWS (simulation) 41.42± 2.43 25.33± 1.45 24.33±1.31 23.50± 1.26 24.67±0.95
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Table 4
The number of transitions between states in the rest-work case. Each entry contains the mean plus or minus the standard deviation of numbers of each type of
transition in each day. Note the close agreement between data and simulation in the baseline day and similar trends between experimental data and simulation
output over the days of the experiments. W=workdays 1 to 4, SWS= slow wave sleep, REMS= rapid eye movement sleep. Values are presented as mean± standard
deviation. Asterisks indicate significant Bonferroni corrected T tests for simulation vs analogous experimental data.

Baseline W1 W2 W3 W4

Wake -> SWS (data) 170.60± 11.05 98.40± 8.82 106.93± 11.21 94.93± 7.05 97.87±7.81
Wake -> SWS (simulation) 183.07± 2.49 109.40± 1.95 108.93± 2.47 110.47± 1.81 109.27± 1.82

Wake -> REMS (data) 3.67± 1.01 2.93±0.92 3.47± 1.27 3.60± 1.63 3.80± 1.13
Wake -> REMS (simulation) 3.13± 0.47 2.20±0.35 2.67± 0.41 2.40± 0.36 2.47± 0.27
SWS -> Wake (data) 122.40± 9.13 63.33± 5.68 74.20±8.41 62.20± 3.40 62.40±3.83

SWS -> Wake (simulation) 147.13± 2.65 87.27± 1.87* 86.93±2.25 89.13± 1.88* 87.47±1.81*
SWS -> R (data) 87.80±6.69 67.40± 4.80 58.80±3.05 51.00± 4.11 52.00±4.48
SWS -> R (simulation) 75.80±1.72 45.53± 1.36* 43.73±1.10* 44.87± 1.47 46.53±2.11
R -> Wake (data) 49.87±4.27 36.07± 5.05 33.13±4.81 31.47± 4.85 33.80±4.67
R -> Wake (simulation) 39.67±1.22 24.13± 1.11 24.47±0.93 23.87± 1.00 24.13±1.42

R -> SWS (data) 50.33±7.51 41.13± 5.08 37.47±4.55 34.40± 3.98 36.00±4.31
R -> SWS (simulation) 39.27±1.12 23.53± 1.15* 21.93±1.15* 23.27± 1.35 24.87±1.15

Fig. 5. Comparison of Experimental Data to model output: numbers of episodes of each state. In the experimental data (left panels) both the Active-work (AW)
and Rest-work (RW) groups showed fewer wake episodes (upper left panel), fewer slow-wave sleep (SWS) episodes (middle left panel), and fewer rapid eye
movement sleep (REMS) episodes (lower left panel) between workdays (W1 to W4) as compared to baseline, with no difference between the two groups except SWS
episodes on W4 and REMS episodes on W1. The simulation output (right column) showed very similar numbers of episodes of each state and the same statistical
differences between baseline and workdays. Only REMS episodes on W1 showed a significant difference between AW and RW. Error bars in the simulation panels
represent SEM from 50 simulations. Asterisks in all panels indicate significant differences between RW (n = 15 in experimental data) and AW (n = 12 in ex-
perimental data); * p<0.05, ** p< 0.01, *** p< 0.001, and hashes denote significant differences compared to baseline: # p< 0.05, ## p<0.01 and ###
p<0.001. When AW and RW data points overlay, asterisks above the data point refer to RW and asterisks below the data refer to AW. Open and filled triangles above
graphs in right hand panels represent significant differences compared to experimental data for the AW and RW groups respectively. One triangle: p<0.05, two
triangles: p< 0.01, three triangles: p< 0.001.
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experimental data do, and it generates SWS episodes that are shorter
than those in the experimental data for workdays 1 through 3 for both
groups and also on W4 for the AW group (panel B right side). The si-
mulation matches REMS episode durations for both groups on each day
except W1 when REMS durations are too short for the RW case (panel C
right side).

The experimental data show that the percentage of time spent in
wakefulness rises modestly yet significantly during the workdays as
compared to the baseline day for both AW and RW groups. On work-
days 1 and 3 the RW group shows a slightly higher percentage of time
spent in wakefulness as compared to the AW group, while on workday 4
it shows a slightly lower percentage compared to AW (Fig. 7A left
panel). The simulation output reproduces a modest yet significant in-
crease in the percentage of time spent in wakefulness as compared to
baseline for the RW group, but not for the AW group. The model pre-
dicts a significant decline for the AW group compared to baseline, but a
significantly larger portion of time spent in wake during all four work

days for the RW group as compared to the AW group (Fig. 7A right
panel). Compared to the experimental data, the simulation predicted
more time in wakefulness during the baseline and less for each workday
for the AW group. On days W1, W3, and W4 the model predicts a sig-
nificantly lower percentage of time in Wakefulness. The experimental
data exhibit a significant decline in the percentage of SWS as compared
to baseline in all four work days in both AW and RW groups and sig-
nificantly more time spent in SWS for the AW group as compared to the
RW group during workdays 2 through 4 (Fig. 7B left panel). The model
also shows a significant decline in SWS percentage during the work
week as compared to baseline in the RW group but not the AW group
and a higher percentage of SWS in the AW group as compared to the
RW group for all four work days (Fig. 7B right panel). While the si-
mulation correctly predicts the SWS percentage of the baseline day,
both the AW group and the RW group are higher than the experimental
data for each work day. Both the experimental data (Fig. 7C left panel)
and the simulation (Fig. 7C right panel) show that REMS comprises

Fig. 6. Comparison of Experimental Data to Model Output: Episode Duration. A In the experimental data (left panel), Wake episode durations changed only
slightly with no significant difference between baseline (B) and workdays (W1 to W4) except Rest-work (RW) at W2 which was significantly lower than baseline.
There was no significant difference between RW and Active-work (AW) until W4. In the simulation output (right panel), wake episode durations were similar to those
in the experimental data, but the RW group changed slightly from baseline in all four workdays and there was a small but significant difference between work groups
for each of the work days. B In the experimental data, both groups showed an increase in slow-wave sleep (SWS) episode duration between workdays as compared to
baseline (left panel), with the AW group experiencing longer durations compared to the RW group. Significant differences between baseline and workdays and
between AW and RW was captured with the mathematical model (right panel). C In the experimental data (left panel) REM sleep episodes became significantly longer
between workdays as compared to baseline with no difference between AW and RW until W4. In the simulations the differences between baseline and workdays was
captured accurately, although a difference between AW and RW was introduced. Error bars in the simulation panels represent SEM from 50 simulations. Asterisks in
all panels indicate significant differences between RW (n = 15 in experimental data) and AW (n = 12 in experimental data); * p<0.05, ** p< 0.01, ***p< 0.001,
and hashes denote significant differences compared to baseline: # p<0.05, ## p<0.01 and ### p<0.001. Open and filled triangles above graphs in right hand
panels represent significant differences compared to experimental data for the AW and RW groups respectively. One triangle: p<0.05, two triangles: p< 0.01, three
triangles: p< 0.001.
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about 10% of the baseline day and changes during the work week are
small (a decrease in the experimental data and a small increase in the
simulation output). In the experimental data the AW group showed a
slightly lower percentage of REMS compared to the RW case for days
W1 and W2, while the simulation showed slightly higher percentage of
REMS throughout the four work days. The model prediction was not
significantly different compared to experimental data except for the
baseline day where it predicted too little REMS in each group and W1
where it predicted too much REMS for the AW group only. Compared to
the corresponding data in Figs. 5 and 6, the experimental data in Fig. 7
show little variation from animal to animal, which may explain why
some differences between the simulation and the experimental data are
significant even though they are small.

The modeling framework allows us to monitor the time course of
individual variables like the homeostat. While the homeostat begins at
nearly the same point at the end of a work shift in the AW and RW case,
it does not fall as low for RW between shifts as it does for AW (Fig. 8A).
This is because alertness is quite high between shifts in the RW case

(Fig. 8B), which leads to more wakefulness and therefore sleep pressure
is not alleviated as much between shifts. Alertness is higher between
shifts in the RW case because alertness depends on the circadian rhythm
(Process C), which is higher between shifts for the RW group than for
the AW group.

The Markov Chain simulation suggests that SWS episodes are
shorter for the RW than AW due primarily to the circadian modulation
of state transition probabilities. Specifically, Fig. 8B illustrates that al-
though sleepiness is very high right after work for the RW, it quickly
decreases as a result of increasing circadian alertness. Lower overall
sleepiness between shifts leads to shorter SWS episodes as compared to
the AW group.

4. Discussion

Knowing that simulated shift work makes a significant impact on
sleep architecture during a 4-day shift work protocol, the aims of the
current study were: 1) to quantify differences between baseline and

Fig. 7. Comparison of Experimental Data to Model Output: Percentage of time spent in each state. A In the experimental data (left panel), the percentage of
time spent in wakefulness (over each workday, W) increases modestly but significantly in both Active-work (AW) and Rest-work (RW) groups compared to baseline
(B). The experimental data showed a significant drop in the percentage of time spent in slow-wave sleep (SWS) as compared to baseline for both groups (B left panel)
and a lower percentage of time in SWS for the RW group on days W2, W3, and W4. The simulation reproduced the significant drop in the RW group, but not the AW
group and the model demonstrates a significantly longer SWS episodes for all four work days, rather than the W2-W4. The experimental data showed modest yet
significant drop in time spent in rapid eye movement sleep (REMS) for both AW and RW groups as compared to baseline with AW showing a significantly lower value
than RW on days W1 and W2. In the simulation RW was significantly lower than AW for all four work days while both groups showed a slight increase with respect to
the baseline value. Asterisks in all panels indicate significant differences between RW (n = 15 in experimental data) and AW (n = 12 in experimental data); *
p< 0.05, ** p< 0.01, ***p<0.001, and hashes denote significant differences compared to baseline: # p<0.05, ## p<0.01 and ### p<0.001. When AW and
RW data points overlay, asterisks above the data point refer to RW and asterisks below the data refer to AW. Open and filled triangles above graphs in right hand
panels represent significant differences compared to experimental data for the AW and RW groups respectively. One triangle: p<0.05, two triangles: p< 0.01, three
triangles: p< 0.001.
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work day slow wave dynamics for shift-workers and non shift workers,
and 2) illuminate possible mechanisms underlying changes in sleep
architecture induced by the shift work protocol. This includes changes
during the work period as compared to baseline and differences be-
tween groups during the work period. For the first aim, we quantified
the rising and falling rates of Process S for both the AW group and the
RW group during the 24 h baseline and the 4-day shift schedule. We
found that for both groups the time constant of the decay of Process S
during SWS is faster during the work week than during baseline, and
Process S also rises significantly faster during the workdays for the RW
group but not significantly so for the AW group.

For the second aim of the study we developed a hybrid model of
sleep in rodents that correctly predicts durations of individual sleep
states at all circadian phases. This model correctly reproduces the sleep
structure of the AW subjects and the RW subjects during both the
baseline and the work period. Specifically, it correctly reproduces
percentages of time spent in each state throughout the baseline day plus
the four days of the simulated shift work. It also correctly reproduces
many features of the sleep structure: the number of episodes of each
state, episode durations, and the percentage of time spent in each state.
Importantly, this mathematical model suggests that some of the dif-
ferences between sleep in the AW group and RW group can be ex-
plained by the circadian rhythm since the RW subjects are trying to
sleep when their circadian drive to sleep is low.

4.1. Homeostatic model

Using a simple homeostatic model, we found that although both of
the time constants differed between the baseline day and the work days
for the rest-workers, there were no significant differences in either of
the time constants between the rest-workers and active-workers. Hence,
this simple modeling framework seems to suggest that although
working alters the time course of homeostatic processes (as compared
to baseline), differences in the circadian timing of work does not seem
to fundamentally change Process S. This underscores the fact that
Process S is time- (hours being awake) and use- (level of activity) de-
pendent, and not circadian (time-of day being awake) dependent. This
is consistent with the standard interpretation of the two-process model:
that Process S and Process C act independently of one another. Recent
reports on the two-process model have suggested that Process S and
Process C are probably not truly independent, but are likely subject to

more complex interactions (van Diepen et al., 2014). Incorporating this
type of interaction between Processe S and Process C may help future
models corroborate experimental data even better.

The immediate effects of night-shift work (including a reduction in
alertness and performance on duty and changes in sleep architecture
during sleep after work) could not be explained by a model that only
includes a homeostatic component. One of the more curious experi-
mental results observed after simulated shift work in rats were that SWS
episodes occurring in the 16-hr interval between the work shifts were
shorter for the rest-workers than for the active-workers. This result
could in fact explain the immediate effects of night-shift work and was
one of the main motivations to construct and analyze a mathematical
model that could incorporate switches between the states. To simulate
individual SWS episodes we developed a Markov Chain model.

4.2. Markov chain model

A Markov Chain framework is a good choice for modeling sleep
architecture since each episode duration or state transition is impossible
to predict exactly, but we can say that some outcomes are more likely
than others based on alertness and sleepiness (which account for time of
day, and recent sleep history). Each experimental recording is different
than other recordings in terms of sleep metrics like average episode
durations and the numbers of state transitions, but there tend to be
patterns. In the Markov Chain model we hope to capture these overall
patterns as well as generate realistic individual recordings. Also, note
that although the state transitions are random, they are not uniformly
random. That is to say, not each state transition is equally likely at any
one time, but model is biased toward some transitions rather than
others. For example, if the current state of the model is SWS and
alertness is high the model is more likely to transition to REMS rather
than wake.

Several research groups have previously used models based on
Markov Chains to simulate sleep state transitions in human sleep
(Bianchi et al., 2012; Bizzotto et al., 2010; Kemp and Kamphuisen,
1986; Kjellsson et al., 2011; Yang and Hursch, 1973; Yassouridis et al.,
1999; Zung et al., 1965) and in rodents (Bari et al., 1981; Kostyalik
et al., 2014).

Although the idea of a mathematical model where episode durations
depend directly on sleepiness and alertness is novel, there is experi-
mental data to support the idea that episode duration is a function of

Fig. 8. Homeostat, sleepiness, and alertness in simu-
lations. A The simulated homeostat for both groups
(upper panel: Active-work, AW; lower panel: Rest-work,
RW) Shown in the average homeostat value for each epoch
averaged over 50 simulations. B Sleepiness (blue curves)
and Alertness (red curves) for both groups (upper panel:
AW, lower panel: RW). Shown are average values, aver-
aged over 50 simulations. In all panels, yellow and black
bars represent times of lights-on and lights-off respec-
tively. Vertical gray bands represent work shifts. Long-
wake episodes (indicated with red dots in panel B) tend to
happen when sleepiness is low. Long-wake episodes are
less common than regular wake episodes and tend to
happen when alertness is high.
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circadian time, at least in mice (Easton et al., 2004). Although some
previous studies, (Kemp and Kamphuisen, 1986) have included de-
pendence on clock time or other measures to describe some aspects of
the simulated sleep structure, to our knowledge our model is the first to
model rodent sleep, predicting episode durations using sleepiness and
alertness as inputs. Bari et al. (Bari et al., 1981) used sleep state tran-
sition functions to quantify aspects of rodent sleep like bout durations,
but did not use the model to generate realistic hypnograms. Kostyalik
et al. (Kostyalik et al., 2014) used a similar Markov Chain approach to
investigate the effects of escitalopram and REMS deprivation on the
transition rates between sleep states. However, they assumed that the
transition rates were essentially constant during an onset phase and
then again during a steady phase.

Whereas it was equally effective in predicting time spent in sleep
states for both AW and RW, modeling was not equally effective in
predicting state transition counts across the two groups. The prediction
of state transition frequency was better for AW (Table 3) than RW
(Table 4). Since model fitting was equally effective in predicting state
transitions in baseline, yielding no significant differences between si-
mulations and data in both AW and RW, the significant differences
between simulation and data that emerged on working days does ap-
pear to be an effect of the experimental manipulation. In this sense, the
model does not fully convey the basis for sleep disruption by RW. The
model emphasizes the interactions of the brain’s circadian clock and its
sleep homeostat. What additional process might influence sleep in a
shift work paradigm? The obligatory use of skeletal muscle during the
circadian resting phase might impact systemic sleep regulatory factors.
Skeletal muscle upon exertion, releases hormones (‘myokines’ including
interleukin 6, interleukin 8 and brain-derived neurotrophic factor
(Pratesi, 2013)). Circulating levels of interleukin 6 and interleukin 8
(Altara et al., 2015), and those of brain-derived neurotrophic factor
(Begliuomini et al., 2008) exhibit circadian fluctuations. Since inter-
leukin 6 (Morrow and Opp, 2005), interleukin 8 (García-García et al.,
2004) and brain-derived neurotrophic factor (Bachmann et al., 2012)
have all been shown to impact sleep, it is possible that the perturbation
of circulating myokines by enforced use of skeletal muscle in the resting
phase influences sleep. This factor is neither measured nor modeled
independently of the brain’s endogenous circadian and homeostatic
processes in the current study, and may thus limit the predictive utility
of the current model, rendering it less effective in predicting sleep in
RW rats than AW rats.

The Markov Chain model identifies mathematical parameter values
that simulate the duration of time that the individual will remain in a
given state before transitioning into another state. By using this model,
the present study suggests a putative mechanism behind the sleep dif-
ferences between the two types of simulated shift work. In the model
the length of SWS episodes depends on sleepiness. Consequently, ex-
posure to enforced ambulation for 8 h per day at the time of day when
the animal is primed for sleep forced subjects to recover sleep during
the endogenous active phase when Process C is high (and therefore
alertness is high and sleepiness is relatively low). This increase in
alertness (and decrease in sleepiness) meant that SWS episodes were
shorter as compared to the active-workers that sleep in-phase with their
circadian drive for sleep.

The Markov Chain simulation suggests that SWS episodes are
shorter for the rest-workers than active-workers due primarily to the
circadian modulation of state transition probabilities. Specifically,
Fig. 8B illustrates that although sleepiness is very high right after work
for the rest-workers, it quickly drops, not as a result of the homeostat
dropping, which is blunted in these animals compared to AW, but ra-
ther due to the circadian rhythm. Lower overall sleepiness between
shifts leads to shorter SWS episodes as compared to the AW group.

These results may imply that the degraded wake functioning ob-
served in both humans and animals, and in both field and laboratory
studies related to shift work, may derive primarily from the circadian
component. This vulnerability may not only be due to sleep loss, but

rather due to a mismatch between work demands and the brain's ability
to overcome the circadian challenges imposed by night-shift work.
Future animal and modeling studies should combine simulated shift
work with recovery in constant darkness, allowing study of the free-
running endogenous circadian rhythm, to further elucidate the possible
circadian mechanisms.

In our Markov Chain model the frequency distribution of episode
durations is skewed, not normal: episodes of any sleep state are more
likely to be short than long. This assumption is supported by experi-
mental data that show that in rats under normal conditions short bout
durations are more common than long ones (Trachsel et al., 1991).
However, that same study showed that after sleep deprivation, medium-
length SWS episodes become more frequent than short episodes
(Trachsel et al., 1991). Further refinements of the model may therefore
benefit from a more complicated distribution function that changes as a
function of sleep need.

In the Markov Chain simulations, the optimum value for Ti does not
change between baseline and workdays for the AW group, but for the
RW group the optimum value of Ti changes from 17 h in the baseline to
15.5 h during workdays. This is very consistent with what we found
using the simple Process S model: rest-workers had a significant change
in Ti from baseline to workdays (13.6 to 9.6 to about 9) while the ac-
tive-workers did not (see Tables 1 and 2 and Fig. 2). The time constant
of the falling of Process S (Td) did not decrease during the work period
as compared to the baseline for the RW group, but it did decrease for
the AW group.

Note that the Markov Chain simulations for the active-workers and
the rest-workers use the same equations and parameter values except
for Ti and Td during the work period. Otherwise the only difference
between the two simulations is the schedule of when wakefulness is
enforced. By using such a simple model and only changing two vari-
ables between AW simulations and RW simulations we hope to de-
monstrate that some of the experimental differences seen between the
two groups can be explained by interactions of a homeostat and a cir-
cadian rhythm in the context of enforced wakefulness, rather than by a
more complicated model with many numerical parameters.

4.3. Developing a mathematical model of rodent sleep

One of our goals in developing a mathematical model for rodent
sleep was to be consistent with the two-process model formulation,
since the two-process model is a ubiquitous framework for modeling the
timing of sleep, although in its most basic form it has been used pri-
marily to model human sleep. One of the original two-process model
papers (Daan et al., 1984) demonstrated that the basic model can si-
mulate polyphasic rodent sleep by setting the two C curves close to each
other so the curve for Process S changes direction more frequently.
However, while this approach does yield shorter episodes as compared
to human sleep, in the present study this formulation did not yield
episode durations or circadian dependence concordant with empirical
rodent data (data not shown). Since one of our requirements was to
closely match episode duration in empirical data, we pursued another
approach.

Some groups (Franken et al., 2001, 1991; Vyazovskiy and Tobler,
2012; Vyazovskiy et al., 2007) have used parts of the two-process model
for rodent sleep, although with a different approach. In those papers,
Process S is used to quantify the time course of the rising and falling of
SWA as measured during SWS. However, Process C is not used directly
in these models. In the present study our approach is opposite: instead
of starting with the sleep/wake information about the rodent and using
that to optimize Process S relative to empirical SWA data, we are trying
to use Process S (along with Process C) to predict the time course over
which the rodent will transition from sleep to wake or vice versa. In this
sense, both the purpose and outcome of the current mathematical
model of rodent sleep are unique.

Although the current models do not model the effect of light, a
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further elaboration of these models may account mathematically for
effects of light/dark cycles on Process C, similar to what was used in
previous models (Postnova et al., 2012; St Hilaire et al., 2007) or al-
terations of Process C due to shift work since several studies have
shown that shift work alters many circadian rhythms (Marti et al.,
2016; Salgado-Delgado et al., 2008). Sleep deprivation reduces SCN
neuronal activity response to light, indicating that circadian rhythms
may be affected by sleep homeostatic pressure (van Diepen et al.,
2014). By working and hence being awake with eyes open at a time
when they are usually inactive, the RW group was also receiving more
light than they would normally during that period. This change in light
input (along with the enforced wakefulness) may have a significant
effect and future models that account for light will be able to take this
into account. Here we have endeavored to use models that are as simple
as possible to explain the phenomena at hand and by using models that
do not include the effects of light directly, we have fewer parameters.
Since we were able to reproduce nearly all of the significant experi-
mental results in the sleep structure shown in the experimental data
with our current Markov Chain model that does not include the effect of
light on the circadian rhythm, we propose that this additional compo-
nent may only make a modest improvement in the agreement of the
model with the experimental data. Our results suggest that although the
change of light input due to shift work may play a significant role in the
sleep architecture of each group, it is likely to make a smaller influence
than working at the wrong circadian phase. We expect that including
the phase-shifting effects of light may further extend our results and
further improve the fit of the models to the data.

5. Conclusions

We constructed and analyzed a simple mathematical model of ro-
dent sleep to understand mechanisms underlying experimental results
of a rodent shift work protocol. To our knowledge this model of rodent
sleep is unique in that it is consistent with the two-process model, and it
predicts precise sleep architecture based on Process C, Process S, and
external manipulations like enforced wakefulness. Additionally, our
model makes use of a Markov Chain to determine episode durations and
transitions between sleep states. Since the model reproduces some key
features of the experimental data, it can be used to examine possible
mechanisms underlying sleep differences between active-workers and
rest-workers. Specifically, our model predicts that shorter SWS episodes
in rest-workers between shifts is primarily a circadian effect. Since
these subjects show a stronger circadian drive for wakefulness between
shifts, they tend to have shorter SWS episodes. The model used is simple
and requires few assumptions. It was not necessary to change Process C,
the rate of change of Process S, or any of the scaling factors between the
two groups. It is our hope that this modeling framework will open up
further avenues of investigation across different experimental manip-
ulations of sleep/wake cycles.
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