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Abstract

The third-generation of sequencing technologies produces sequence reads of 1000 bp or more that may contain high
polymorphism information. However, most currently available sequence analysis tools are developed specifically for
analyzing short sequence reads. While the traditional Smith-Waterman (SW) algorithm can be used to map long sequence
reads, its naive implementation is computationally infeasible. We have developed a new Sequence mapping and Analyzing
Program (SAP) that implements a modified version of SW to speed up the alignment process. In benchmarks with simulated
and real exon sequencing data and a real E. coli genome sequence data generated by the third-generation sequencing
technologies, SAP outperforms currently available tools for mapping short and long sequence reads in both speed and
proportion of captured reads. In addition, it achieves high accuracy in detecting SNPs and InDels in the simulated data. SAP
is available at https://github.com/davidsun/SAP.
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Introduction

Next-generation sequencing (NGS) technologies, such as the

second-generation NGS including Roche 454, Illumina (Solexa)

and ABI SOLiD, and the third-generation NGS including Pacific

Bioscience’ single molecular sequencing, are transforming today’s

biology [1]. To fully take advantage of NGS to accelerate today’s

biological research, a key challenge is to develop efficient and

accurate algorithms that can handle and analyze large-scale

sequence data produced by NGS. Currently, the widely used

algorithms for mapping sequence reads onto a reference genomes

can be generally classified into two categories, those using a hash

table for indexing the reference genome, such as BLAT [2], MAQ

[3], SHRiMP [4] and ZOOM [5], and those implementing

Burrows Wheeler transform (BWT)-based techniques for indexing

[6], such as BWA [7], BOWTIE [8] and SOAP2 [9]. BWT-based

methods create an efficient index structure of the reference

genome, making them running much faster with low memory

consumption than hash table-based methods. For example,

BOWTIE reported a 30-fold increase in computational speed,

compared to MAQ [8]. However, these algorithms often allow

only a limited number of mismatches in order to speed up the

mapping process of short sequence reads, making them inappro-

priate for identifying genomic regions with high polymorphism

rates. On the other hand, they are exclusively designed for aligning

reads no longer than 100 bp, limiting their usefulness to meet the

needs of mapping long reads generated by the newest NGS

technologies.

The Smith-Waterman (SW) algorithm calculates every possible

combination of alignment, and guarantees to find the best

alignment [10]. However, SW is time-consuming with a

complexity of O(nm) where n and m are the length of sequence

read and reference sequence, respectively, making it computa-

tionally inefficient for mapping huge number of sequence reads

against the reference genome. SHRiMP, a short read mapping

algorithm, introduced a simplified Smith-Waterman algorithm by

‘‘seeding’’ a sequence read to a given genomic region and then

determining the exact placement of the sequence reads [4].

However, in our experiment SHRiMP is found to be very time-

consuming. Based on the BWT transformation, Lam et al. [11]

developed the BWT-SW algorithm that runs dynamic program-

ming to align two FM-indices [12] created from BWT-trans-

formed suffix tree, and is equivalent to SW yet thousands of times

faster. Li and Durbin [13] furthered the BWT-SW idea, and

developed BWA-SW for aligning long sequence reads. BWA-SW

introduces heuristics during the seeding process by only allowing

extension of alignment for high-scoring seeds, and was found to be

more accurate and faster than Blat for mapping long sequence

reads [2].

In this study, we have developed a new alignment tool named

SAP (Sequencing mapping and Alignment Program). SAP

contains two component algorithms: the SAP Mapper and the

SAP Predictor for mapping sequence reads and predicting

polymorphisms, respectively. In SAP Mapper, a hash table is

used to index the sequence reads. Then, when aligning the

sequence reads, different from other algorithms, a modified SW is

used by taking advantage of the hashing structure during the
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seeding process, which reduces its complexity to approximately

O(n) and greatly speeds up the mapping process. The modified

SW is similar to the alignment algorithm in FASTA [14].

However, with the hashing structure, SAP Mapper efficiently

filter out most ‘‘seeding’’ sites before the application of the

modified SW, which greatly accelerate the mapping process while

ensuring the quality of the alignment. SAP Predictor uses a

Bayesian model and a SNP filter for SNP-calling, and computes an

alignment score for InDels-calling. Because of the typical memory

consumption issue for hashing-based mapping tools, we bench-

mark SAP for short reads mapping using simulated and real exon

sequencing data, and for long reads (,1000 bp) mapping using

simulated exon sequencing data and a real E.coli genome data

sequenced using the third-generation of NGS technology. The

benchmark results show that for short reads mapping, SAP

mapper not only outperform MAQ, SOAP2 and Blat in detecting

SNPs, but also achieve the fastest speed; for long reads mapping,

SAP mapper is superior to BWA-SW and Blat in both the

percentage of captured reads and the computational speed (a

speed nearly 1006 faster than Blat). In addition, SAP achieves

high accuracy in detecting SNPs and InDels in the simulated data,

and identifies more ‘‘valid’’ SNPs in the real exon sequencing

dataset. As such, SAP offers the flexibility to deal with sequence

reads generated by currently popular second-generation NGS

technologies for polymorphism detection, while meeting the needs

for mapping long sequence reads generated by the third-

generation NGS technologies.

Results

Mapping reads to the reference
There are two mapping modes in SAP Mapper: FastMap and

SlowMap that allow for exact hash look-up and inexact hash look-

up, respectively, and are therefore evaluated separately in this

study. Table 1 shows the time consumption of the compared

methods, and Table 2 shows the proportion of captured reads by

each method.

For short reads mapping (, = 150 bp), overall SAP FastMap is

the fastest among the five algorithms, followed by SOAP2, SAP

SlowMap, MAQ, Blat and SHRiMP. In terms of the proportion of

captured reads, in simulated data SAP SlowMap and Blat are

comparable, both capturing above 99.5% reads. SAP FastMap

captures slightly less number of reads than SAP SlowMap, while

MAQ and Blat are significantly worse. Note that MAQ fails to

capture any reads of 150 bp, while SOAP2’s performance drops

significantly when read length increases to 150 bp. In real data

(about 54 bp), SHRiMP captures the most number of reads (95%),

yet it is nearly 50006 slower than SAP. SAP SlowMap, Blat,

MAQ, and SAP FastMap all capture above 92% of reads, with

SAP SlowMap being the best of them (93.1%). SOAP2 is

noticeably worse than the other methods, capturing only 88.3%

reads.

For long reads mapping, in simulated data (1000 bp) SAP

FastMap is the fastest method, followed by SOAP2, SAP

SlowMap, MAQ, BWA-SW, and Blat. Depending on read

coverage, SAP is about 206 faster than BWA-SW, and 60–

1006 faster than Blat. Note that the time-consumption of Blat is

sensitive to read coverage. In terms of the proportion of captured

reads, SAP SlowMap, FastMap, Blat and BWA-SW all capture

more than 98.8% reads, with SAP SlowMap being the best one.

For real E. coli genome sequencing data (about 900 bp), because

they contain large number of errors, SAP FastMap is not

evaluated. Blat is faster than SAP and BWA-SW, however this is

because it does not find the exact match of most reads, and

consequently only captures 2.98% reads. With default settings,

BWA-SW captures only 17.5% reads with the time consumption

of 30 m; with parameter tuning, it capture 61% reads with the

time consumption of 250 m. In contrast, SAP SlowMap captures

more than 62% reads by spending 15 m; with parameter tuning, it

captures even 79% reads with the time consumption of 43 m.

Therefore, SAP outperforms both BWA-SW and Blat for mapping

long reads.

SNPs detection
We use SAP Predictor to predict SNPs from the mapping results

of SAP Fastmap and Slowmap, Blat, BWA-SW and SOAP2.

SOAP2 has its own SNP prediction program, however for format

problem it does not work well with its read mapping results. We

employ MAQ’s own SNP-caller to analyze its mapping result.

SHRiMP is not evaluated, because it does not have a SNP

Predictor and the format of its output does not fit SAP Predictor’s

requirement. Here, the mapping results of E. coli sequencing data

are not analyzed, because the data contain high errors.

For simulated data, we know in advance where SNPs are

located. Therefore, we can evaluate the accuracy and coverage of

SNP calling. In general, the accuracy of SNP detection based on

the mapping result of all methods except BWA-SW is above 97%

irrespective read length and coverage (Table 3). This suggests that

Table 1. Time-consumption by different algorithms in mapping reads from simulated data and real data (s).

Data type Read length Read coverage SAP FastMap SAP SlowMap MAQ SOAP2 Blat SHRiMP

Simulated data 75 bp 56 17.80 51.77 206.75 19.90 89.63 -

106 24.75 89.62 222.43 41.70 172.38 -

206 47.00 159.47 252.06 79.11 337.49 -

150 bp 56 20.93 33.97 184.47 22.08 179.50 -

106 33.73 51.80 186.24 46.61 303.91 -

206 56.39 100.43 193.43 81.39 679.51 -

1000 bp 56 22.07 28.27 127.63 31.17 1436.59 -

106 37.40 41.14 131.97 55.92 3326.57 -

206 57.95 70.61 148.68 84.05 5506.53 -

Real data ,76 bp ,406 124.13 625.5 339.6 327.88 541.38 642609.1a

a: time-consumption was averaged across only seven individuals’ exon-sequencing data.
doi:10.1371/journal.pone.0042887.t001
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SAP predictor is able to accurately identify SNPs. The coverage of

SNPs detection increases when read coverage or read length

increases (Table 3). For example, based on the mapping results of

SAP FastMap, the coverage of SNPs detection is increased from

53% to 94% when read coverage is increased from 56 to 206and

reads length is fixed at 75 bp, and is increased from 53% to 81%

when read length is increased from 75 bp to 1000 bp and read

coverage is set at 56. Comparing the coverage of SNP detection in

between the mapping results of different methods, we find that for

short reads, SAP SlowMap corresponds to the best coverage,

followed by SAP FastMap, Blat, SOAP2, and MAQ; for long

reads, SAP SlowMap is also the best one, followed by SAP

FastMap, Blat and BWA-SW. Thus, in the simulated data SAP is

able to achieve the best performance on SNP detection using

either short or long reads.

For real data, the SNPs of each individual are not known. In

order to evaluate a method’s performance, here we consider a

predicted SNP ‘‘valid’’ if it either has already been reported in

dbSNP [15] or is predicted by at least two other methods (Table 4).

Since SAP FastMap and SAP SlowMap are related, when one’s

results are evaluated, the other’s results are not taken into

consideration. On average, SAP SlowMap predicts 811 SNPs per

individual of which 690 are ‘‘valid’’ (85.0%), while SAP FastMap

predicts 773 SNPs per individual of which 679 are ‘‘valid’’ (87.9).

In contrast, the number of valid SNPs by Blat is 568 out of 581 per

individual, while this number is 590 out of 642 (91.9%) for SOAP2

and 596 out of 1050 (56.8%) for MAQ. Thus, in real data, SAP

SlowMap is able to identify the most number of ‘‘valid’’ SNPs

among the methods being compared.

InDel detection
The prediction of insertions and deletions is of great impor-

tance, for these variations may have a larger impact on gene

functions. However, because all the other methods do not report

InDels, here we only evaluate SAP’s performance on detecting

InDels in the simulated datasets (Table 5). SAP can detect InDels

with high accuracy irrespective read length: the accuracy is above

97% and 87% for insertions and deletions, respectively, for reads

with different length. The coverage of InDel detection is

dependent on read coverage and read length, and in general

increases as read length and coverage increase, highlighting the

necessities of developing new NGS technology to produce longer

sequence reads. For example, at 56 read coverage, the prediction

coverage of deletions by SAP FastMap is improved from 12.3% to

54.7% when read length is increased from 75 bp to 1000 bp; for

reads of 1000 bp, the prediction coverage of deletions is improved

Table 2. Percentage of captured reads by different algorithms.

Data type Read length Read coverage SAP FastMap SAP SlowMap MAQ SOAP2 Blat SHRiMP

Simulated data 75 bp 56 99.33 99.95 99.21 81.03 99.89 -

106 99.33 99.96 99.22 81.07 99.88 -

206 99.33 99.96 99.23 81.09 99.89 -

150 bp 56 99.87 99.99 0.00 45.92 100.00 -

106 99.86 99.99 0.00 45.94 100.00 -

206 99.86 99.99 0.00 45.92 100.00 -

1000 bp 56 99.24 99.53 0.00 3.18 99.08 -

106 99.20 99.49 0.00 3.13 99.04 -

206 99.23 99.52 0.00 3.18 99.07 -

Real data ,76 bp ,406 92.05 93.10 92.79 88.33 92.54 95.00a

a: percentage was averaged across only seven individuals’ exon-sequencing data.
doi:10.1371/journal.pone.0042887.t002

Table 3. Performance of different algorithms on SNPs detection in simulated data.

Read
length Read coverage SAP FastMap SAP SlowMap MAQ SOAP2 Blat

Cov (%) Acc (%) Cov (%) Acc (%) Cov (%) Acc (%) Cov (%) Acc (%) Cov (%) Acc (%)

75 bp 56 53.26 98.98 55.23 99.02 15.69 100.00 19.31 97.22 49.87 99.13

106 92.17 99.40 92.44 99.48 39.67 100.00 72.25 97.31 91.15 99.69

206 94.02 98.78 94.02 98.78 81.55 100.00 93.96 95.37 93.75 99.68

150 bp 56 58.54 96.17 58.84 96.46 0.00 0.00 1.08 98.49 55.67 98.20

106 92.93 97.99 92.93 98.24 0.00 0.00 13.38 96.44 91.97 99.51

206 93.97 97.76 93.98 97.97 0.00 0.00 55.28 97.25 93.47 99.51

1000 bp 56 80.70 95.25 81.13 97.96 0.00 0.00 0.00 0.00 76.09 98.98

106 94.23 97.11 94.28 98.33 0.00 0.00 0.00 0.00 92.12 99.79

206 95.43 98.60 95.43 98.87 0.00 0.00 0.00 0.00 92.90 99.86

Cov: prediction coverage; Acc: prediction accuracy.
doi:10.1371/journal.pone.0042887.t003
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from 54.7% to 91.2% when read coverage is increased from 56 to

206. Compared to SAP FastMap, SAP SlowMap can significantly

improve the prediction coverage of InDel detection, especially

when read coverage is low, indicating the usefulness of inexact

hash-lookup for InDel detection.

Discussion

With the development of third-generation NGS, sequence reads

are expected to become longer and contain more polymorphism

information such as SNPs and InDels. For example, the average

read length of the recent E. coli genome sequence data is about

904 bp with high error rate. This effectively rules out the use of

most currently available reads mapping tools, as they often require

very few number of mismatches in order to speed up the mapping

process. Though Smith-Waterman algorithm is able to determine

the exact displacement of long reads at the reference, it is very time

consuming, making it computationally infeasible to apply SW

directly for mapping and aligning long sequence reads. Therefore,

there is a strong need for new alignment tool for efficiently

mapping long reads containing high polymorphism information.

Table 4. Performance of different algorithms on detecting SNPs in real data.

Individual
numbera SAP FastMap SAP SlowMap MAQ SOAP2 Blat

Statb Per (%)c Statb Per (%)c Statb Per (%)c Statb Per (%)c Statb Per (%)c

NA12878 577/659 87.56 700/815 85.89 510/897 56.86 515/554 92.96 502/515 97.48

NA18870 649/750 86.53 680/798 85.21 562/1217 46.18 563/624 90.22 542/559 96.96

NA18501 657/751 87.48 589/696 84.63 581/1107 52.48 581/633 91.79 534/551 96.92

NA15510 630/722 87.26 639/761 83.97 558/951 58.68 563/622 90.51 529/542 97.60

NA19240 754/840 89.76 670/791 84.70 665/1060 62.74 676/723 93.50 637/648 98.30

NA18507 760/871 87.27 773/924 83.66 671/1133 59.22 633/691 91.61 622/637 97.65

NA19137 654/727 89.96 796/922 86.33 571/1078 52.97 567/616 92.05 548/561 97.68

NA18861 711/815 87.24 693/803 86.30 645/1083 59.56 629/684 91.96 605/615 98.37

NA18956 666/747 89.16 686/790 86.84 574/982 58.45 555/601 92.35 552/566 97.53

NA12156 670/763 87.81 710/852 83.33 584/932 62.66 583/628 92.83 548/559 98.03

NA19129 710/812 87.44 662/793 83.48 617/1096 56.30 613/665 92.18 596/606 98.35

NA18856 676/757 89.3 667/771 86.51 606/1045 57.99 620/672 92.26 575/584 98.46

NA19143 611/741 82.46 721/845 85.33 511/1143 44.71 504/560 90.00 510/528 96.59

NA18517 779/868 89.75 661/758 87.20 682/1191 57.26 653/709 92.10 626/637 98.27

NA18555 687/777 88.42 629/789 79.72 608/981 61.98 586/627 93.46 595/604 98.51

NA10851 680/772 88.08 756/874 86.50 601/914 65.76 608/666 91.29 574/590 97.29

Average 679.4/773.3 87.87 689.5/811.4 84.98 596.6/1050.6 56.79 590.6/642.2 91.96 568.4/581.4 97.78

a: individual number was adapted from [16].
b: statistics, the left one is the number of ‘‘valid’’ SNPs, and the right one is the total number of predicted SNPs.
c: Percentage of ‘‘valid’’ SNPs in the predicted SNPs.
doi:10.1371/journal.pone.0042887.t004

Table 5. Performance of SAP on detecting InDels in simulated data.

Read length Read coverage Deletions Insertions

SAP FastMap SAP SlowMap SAP FastMap SAP SlowMap

Cov (%) Acc (%) Cov (%) Acc (%) Cov (%) Acc (%) Cov (%) Acc (%)

75 bp 56 12.38 98.04 21.02 98.77 5.41 100.00 13.19 95.15

106 50.41 99.09 69.06 98.91 44.57 87.09 60.75 87.12

206 83.34 99.83 86.49 99.66 83.41 89.63 86.11 89.11

150 bp 56 29.62 97.09 37.94 96.01 21.84 94.82 28.74 95.16

106 81.20 99.40 85.24 98.50 67.06 93.13 72.67 90.90

206 86.14 99.14 87.19 98.81 82.04 91.36 82.73 91.29

1000 bp 56 54.76 97.76 70.35 97.31 39.85 97.72 49.99 97.04

106 88.86 97.94 92.82 97.50 73.04 89.98 75.12 90.08

206 91.24 99.42 92.27 99.43 76.20 93.96 76.17 93.75

Cov: prediction coverage; Acc: prediction accuracy.
doi:10.1371/journal.pone.0042887.t005
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BWA-SW is a recently developed algorithm for long reads

mapping, which uses the standard SW for alignment extension

only if the ‘‘seed’’ sequence reads has a score above a certain

threshold in the initial comparison. However, since a read is often

mapped to different positions with positive scores, BWA-SW is still

time consuming. In this study, we tackle this problem by

introducing a modified version of SW that takes advantage of

the hashing result to reduce its complexity to approximately O(n).

This has significantly speeds up the mapping process, making SAP

the fastest method for reads mapping in the benchmarks. On the

other hand, since SW is still used, the alignment is of high quality,

which results in the high accuracy and coverage of SNP detection

by SAP in simulated datasets. This makes SAP a useful tool to

meet the needs of third generation NGS technologies for efficiently

mapping long reads containing high polymorphisms information

or with high error rate.

Although SAP is developed for long reads mapping, it is still well

adapted for short reads mapping given that third generation

sequencing technologies have not yet been widely applied. What

makes SAP different from other ‘‘hash-lookup’’-based algorithms

are that: (1) SAP uses the ‘‘seeding’’ result to optimize the SW

algorithm when aligning the read sequence to the reference

genome, which greatly reduces the running time while guarantees

that each read is mapped to the most possible location on the

reference genome; (2) Unlike most other algorithms which require

additional processing after alignment when determining SNPS

and InDels, in SAP the information of SNPs and InDels are

already contained in the alignment with the implementation of the

SW algorithm. The above features of SAP make it an accurate and

convenient algorithm for short reads mapping.

However, since hashing is used in SAP, it is expected that for

large reference, such as the whole human genome sequence,

memory consumption will be an issue for SAP, because it usually

consumes a memory of about 306 larger than the size of the

reference. This may be solved in the future by implementing the

BWT techniques to index the genome sequence and apply the

modified SW to align two FM-indices. Nevertheless, at current

stage, SAP is well suited for mapping sequence reads to relatively

small reference sequence, such as the human exome sequence or

bacteria genome sequence.

Materials and Methods

SAP Mapper
Indexing and hash look-up. SAP uses a hash table to index

sequence reads before the mapping process. By default, SAP cuts a

read into seven pieces each with a length of 15 bp, which can be

adjusted by user. For example, a read R (r1r2
:::rn, where n is the

length of the read) is cut into seven pieces. The starting position of

each piece is L1~1, L2~mz1, L3~2mz1, :::, L6~5mz1,

L7~n{14, where m~
n{15

6

� �
, and the piece, Pi, is

Pi~rLi
rLiz1::: rLiz14. SAP Mapper searches with each piece, Pi,

against the reference sequence for a possible starting position of R,

and define it as li, where li~MPi{Li, and MPi is the mapped

position of Pi on the reference. There are two mode parameters to

control the hash look-up: the FastMap and the SlowMap mode that

allow zero or only one mismatch in a given piece according to the

reference, respectively. Finally, SAP will keep a read if at least two of

the seven pieces are successfully mapped to the reference.

A modified version of the Smith-Waterman

algorithm. After hash look-up, li is sorted. Without the loss of

generosity, we can suppose l1ƒl2ƒ::: l7. Then, SAP Mapper

compares l1 with l7. If l1~l7, then the read does not contain any

insertions or deletions, and a direct comparison between read and

reference sequence is performed, with the score calculated as

Sread~20:Lmap, where Lmap refers to the number of identical

nucleotides between the read and the reference. If l1vl7, then it

indicates the presence of InDels, and a modified version of the SW

algorithm will be initiated to align the sequence read to the

reference. A typical SW is to optimize function Fi,,j, which is

defined recursively as

Fi,j~

0, i~0 & j~0

Fi{1,j{1z20, Ri~Ej

max(Fi{1,j ,Fi,j{1){13, Ri=Ej

8><
>: ,

where Ej is the (jzl1{(l7{l1))-th position on reference

sequences. After optimization of Fi,j, the read is aligned to the

reference by backtracking. However, the typical SW is very time-

consuming, with a complexity of O(nm), where n is the length of

read, and m is the portion of reference that a read can be mapped

onto. Here, we introduce a modified version of SW that takes

advantage of the hash structure. After analyzing Fi,,j during the

calculation process, we find that in most cases, when Dj{iD is very

large, the value of Fi,,j is not useful. Therefore, we require SAP

Mapper calculate Fi,,j only if Dj{iDƒl7{l1. Since in most cases

l7{l1 is quite small, the complexity of the modified SW is

approximately O(n), making it much more computationally

efficient than the typical SW.

Finally, Fi,,j is transformed into a score: InitialScoreR~
Fi,j

20:n
.

Only when the InitialScoreR is greater than 0.9 would SAP Mapper

keep the alignment and compute the final score: ScoreR~

k:ln(1:01{InitialScoreRzb), where k~
0:99

ln(0:01){ln(0:11)
and

b~1{k:ln(0:01). The final score ScoreR is used in predicting SNP

and InDels.

SAP Predictor
After reads mapping, SAP Predictor is used to compute the

probability of a given site to be either SNP or InDels.

SNP prediction. At a given site in the reference genome,

there are at most two different nucleotides. Therefore, to infer the

genotype, we only need to consider the two most frequent

nucleotides among the reads across that site. Suppose in an

observation D, the two most frequent nucleotides are b and b9, with

a frequency of k and n-k reads, respectively, where n is the total

number of reads with either b or b9, then there are three possible

genotypes (Q): ,b,b., ,b,b9., or ,b9,b9.. For genotype ,b,b9.,

its probability follows a binomial distribution, i.e.,

P(DDvb,b0w)~
n

k

� �
=2n: This can be rewritten as

P(DDvb,bw)~Ps P(gs~b), where gs[fA,T ,C,Gg is the nucle-

otide observed in reference sequence. Here,

P(gs~b)~
1{Ps, cs~b

Ps, cs=b

�
, where cs[fA,T ,G,Cg is the nucle-

otide on the read, and Ps is the probability of sequencing error with

Ps~10

{q

10 , with q being the PHRED scores at the corresponding

position of the read. The probability of genotype ,b9,b9. is

defined similarly. Similar to MAQ, we set a prior probability for

the three genotypes as P(vb,bw)~P(vb0,b0w)~
1{r

2
and

P(vb,b0w)~r, with r = 0.001. Finally, P(Q|D) is calculated using

the Bayes Rule, with P(QDD)~
P(DDQ)P(Q)

P(D)
, where
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P(D)~
P

g P(DDQ)P(Q), g[(vb,bw,vb,b0w, orvb0,b0w). If

the genotype with the highest probability is different from that

on the reference, then it is tentatively called a SNP.
SNP filter. To filter out false positive of SNP calls, we develop

two SNP filters: a read depth filter, and a score filter. The read

depth filter checks the depth of reads at a given site, and by default

is set at Cover/5, where Cover is the average coverage of the

sequencing data, and is computed as

Cover~
Total Length Of Reads

Total Length Of Sequenced DNA
. The score filter

checks the quality of a predicted SNP, with a lower score

indicating a better reliability in our model. The score is calculated

as Si~

0, 1 genotype reported

1000 ln(Pmax)2

ln(P1) ln(P2)
, w1 genotypes reported

8<
: , where Pmax

is P(Q|D) with the highest probability, and P1 and P2 are the other

two probabilities.
InDel prediction. SW can automatically detect InDels when

aligning the reads. Suppose an insertion is detected on a read, the

quality score of the insertion is calculated as qins~
1

n

Xn

i~1
qi,

where qi is the quality of i-th site on the read. Then, SAP Predictor

sums all qins in that position and compares it with the quality data

of the nearby sites. If qins is greater, an insertion would be reported.

The prediction of deletions is done in a similar way. SAP is

publically available at https://github.com/davidsun/SAP.

Benchmark SAP
SAP Mapper and SAP Predictor are evaluated separately. The

following benchmark datasets are prepared: the simulated human

exon sequencing data with both short and long reads, the real

human exon sequencing data with short reads, and the real E. coli

genome sequence data with long reads.
Simulated exon sequencing dataset. In simulation, we first

randomly introduce SNPs and InDels into the human genomic

sequence (hg18 assembly), with a probability of 0.02% and

0.009%, respectively. Then, we simulate the exon-capture

sequencing process by cutting each exon randomly into small

DNA fragments with length of 300–1500 bps. The number of

DNA fragments generated from each exon follows a Poisson

distribution. Finally, with a given read length, e.g., 75 bp, we

generate the single-end reads from either the 39- or 59-end of the

fragments with an error rate of 2%. By controlling the number of

fragment-cutting and read-generating, we obtain sequencing data

with different read coverage. The advantages of using the

simulated data are that (1) we know in advance where the SNP

and InDels are located in the reference, and (2) we can control the

sequencing error, read length, and read coverage, making it

possible to evaluate the performance of the program and make

appropriate improvements in a dynamic way. Here, for each

combination of read coverage (56, 106, and 206) and read length

(75 bp, 150 bp, and 1000 bp), we generate three datasets

following the above procedures.

Real exon sequencing dataset. We download the exon-

capture sequencing data of 16 individuals from a recently

published article [16]. There are approximately 8.4 million

quality-filtered reads with a length of 76 bp (including a 22 bp

primer) for each individual’s exome. The read coverage is over

406.

Real E. coli genome sequence data. We download a

recently sequenced E. coli O104:H4 genome data using the third

generation NGS technologies. The average read length is about

902 bp. The read coverage is about 75.

Other alignment tools. We compare SAP with five align-

ment tools: BLAT, MAQ, SOAP2, SHRiMP, BWA-SW. BLAT

was downloaded from http://users.soe.ucsc.edu/,kent/src/.

MAQ was downloaded from http://maq.sourceforge.net. SOAP2

was downloaded from http://soap.genomics.org.cn. SHRiMP was

downloaded from http://compbio.cs.toronto.edu/shrimp. BWA-

SW was downloaded from http://sourceforge.net/projects/bio-

bwa/. All alignment tools are tested with their default settings. For

the real E. coli data, the BWA-SW setting of (-b5 -q2 -r1 -z10) is

also tested following the recommendation in its documentation.

Evaluation measures. All methods described above are

evaluated on an IBM computer server with Intel(R) Xeon(R)

E5405 CPU of 2.00 GHz with 16GB memory installed. One CPU

thread is used. For the simulated dataset, the prediction accuracy

of SNP or InDel detection is defined as TP/P, where TP is the

number of true SNPs or InDels predicted by a program, and P is

the total number of predicted SNPs or InDels. The prediction

coverage is defined as TP/T, where T is the total number of true

SNPs or InDels. For each combination of read coverage and read

length, the prediction accuracy and coverage are averaged across

the three datasets.

Acknowledgments

We thank Jiyuan Hu and Chongyu Chen for their help with material

preparations.

Author Contributions

Conceived and designed the experiments: WT. Performed the experi-

ments: ZS. Analyzed the data: ZS. Wrote the paper: ZS WT.

References

1. Schuster SC (2008) Next-generation sequencing transforms today’s biology. Nat

Methods 5: 16–18.

2. Kent WJ (2002) BLAT - The BLAST-like alignment tool. Genome Research 12:

656–664.

3. Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and

calling variants using mapping quality scores. Genome Research 18: 1851–1858.

4. Rumble SM, Lacroute P, Dalca AV, Fiume M, Sidow A, et al. (2009) SHRiMP:

accurate mapping of short color-space reads. PLoS Comput Biol 5: e1000386.

5. Lin H, Zhang Z, Zhang MQ, Ma B, Li M (2008) ZOOM! Zillions of oligos

mapped. Bioinformatics 24: 2431–2437.

6. Burrows M, Wheeler DJ (1994) A block-sorting lossless data compression

algorithm. Technical report 124.

7. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-

Wheeler transform. Bioinformatics 25: 1754–1760.

8. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-

efficient alignment of short DNA sequences to the human genome. Genome Biol

10: R25.

9. Li R, Yu C, Li Y, Lam TW, Yiu SM, et al. (2009) SOAP2: an improved ultrafast
tool for short read alignment. Bioinformatics 25: 1966–1967.

10. Idury RM, Waterman MS (1995) A new algorithm for DNA sequence assembly.
J Comput Biol 2: 291–306.

11. Lam TW, Sung WK, Tam SL, Wong CK, Yiu SM (2008) Compressed indexing

and local alignment of DNA. Bioinformatics 24: 791–797.
12. Ferragina P, Manzini G (2000) Opportunistic data structures with applications.

Proceedings of the 41st Symposium on Foundations of Computer Science
(FOCS 2000). Redondo Beach, CA, USA. pp. pp. 390–398.

13. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-
Wheeler transform. Bioinformatics 26: 589–595.

14. Pearson WR, Lipman DJ (1988) Improved tools for biological sequence

comparison. Proceedings of the National Academy of Sciences 85: 2444.
15. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, et al. (2001) dbSNP: the

NCBI database of genetic variation. Nucleic Acids Research 29: 308–311.
16. Turner EH, Lee CL, Ng SB, Nickerson DA, Shendure J (2009) Massively

parallel exon capture and library-free resequencing across 16 genomes. Nature

Methods 6: 315–316.

SAP—A New Sequence Mapping and Alignment Tool

PLOS ONE | www.plosone.org 6 August 2012 | Volume 7 | Issue 8 | e42887


