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Abstract

Signal transduction is the process of routing information inside cells when receiving stimuli from their environment that
modulate the behavior and function. In such biological processes, the receptors, after receiving the corresponding signals,
activate a number of biomolecules which eventually transduce the signal to the nucleus. The main objective of our work is
to develop a theoretical approach which will help to better understand the behavior of signal transduction networks due to
changes in kinetic parameters and network topology. By using an evolutionary algorithm, we designed a mathematical
model which performs basic signaling tasks similar to the signaling process of living cells. We use a simple dynamical model
of signaling networks of interacting proteins and their complexes. We study the evolution of signaling networks described
by mass-action kinetics. The fitness of the networks is determined by the number of signals detected out of a series of
signals with varying strength. The mutations include changes in the reaction rate and network topology. We found that
stronger interactions and addition of new nodes lead to improved evolved responses. The strength of the signal does not
play any role in determining the response type. This model will help to understand the dynamic behavior of the proteins
involved in signaling pathways. It will also help to understand the robustness of the kinetics of the output response upon
changes in the rate of reactions and the topology of the network.
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Introduction

Signal transduction is a critical step in inter- and intra-cellular

communication [1]. In signal transduction processes, an external

stimulus is transformed into a cellular response through a network

of proteins that ultimately alters the function and behavior of the

cell [2,3]. Different forms of input-output relationships shown by

biological signal transduction are known from experimental work

[4,5]. The change of input signal strength, kinetic parameters, or

the network topology can give rise to sustained, oscillatory, or

adapted responses. These different types of response underlie the

specialized functions of cells such as proliferation, differentiation,

and apoptosis [6].

An example for a pathway that shows different response types

depending on the cell type and/or stimulus is the mitogen-

activated protein kinase (MAPK) pathway. This pathway involves

Raf, MEK (MAPK/ERK kinase), and ERK (extracellular signal-

regulated kinase) and is considered to be centrally involved in

cellular decision making processes where small quantitative

differences often lead to major phenotypic changes [7,8]. It has

been shown that the upstream molecules induce quantitative and

qualitative differences in the duration and magnitude of ERK

activity that regulate the function and behavior of a cell [6]. The

MAPK pathway is a prototype for the general scheme of signal

transduction, in which after receiving a signal from ligand-bound

receptors, the involved proteins are altered (‘‘activated’’) by post-

translational modifications [9–11]. Subsequently, the active form

activates other inactive proteins by means such as recruitment to

specific locations, altering the enzymatic activity, or conforma-

tional changes exposing binding sites for further binding partners.

To predict the function of a signaling module it is necessary to

understand the design principles of signaling networks (SNs) that

underlie the behavior, function, and robustness [12]. From

experiments neither the topology of a SN nor the kinetic

parameters of its underlying elementary interactions are known

in detail such that it remains open how sensitive the function of a

network is to these parameters. Therefore, it seems appealing to

explore the evolution of signaling networks allowing mutations of

kinetic parameters, changes in the network topology such as the

addition of new proteins to mimic the subsequent acquisition of

additional regulatory layers.

In previous studies, various modeling approaches have already

been applied to investigate the behavior of SNs. Francois and

Hakim (2003) [13] evolved genetic circuits to produce a variety of

functional behaviors and demonstrated the vital role of post-

transcriptional interactions, i.e. protein-protein interactions con-

trolling gene regulation. This evolutionary approach has been

extended by others to protein-protein interaction networks with

specific functional characteristics: oscillators, bistable switches,

homeostatic systems, and frequency filters [14,15]. Yet, none of

these approaches investigated in how far the formation of transient

protein-protein complexes influences the generated networks or

whether association, dissociation, or catalytic rates are critical for

the network properties.

In this study, we used ordinary differential equations (ODEs) to

describe the dynamics of nodes which represent the proteins and
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transient complexes forming a SN. The focus of this study is

mainly on the evolution of a SN’s response due to variations in the

kinetic parameters or addition of new nodes when faced with the

basic task of detecting the presence of a signal by generating an

above-threshold response with arbitrary kinetics. We find that the

detailed parameter values are not critical for the functional

response of the network. The interaction strength influences the

sensitivity of the network, i.e. whether to respond or not to an

input of given strength, rather than whether to respond with a

transient or sustained output.

Results

We start the evolution of SNs by assuming that the basic task of

signal transduction is to provide an above-threshold response to a

signal which is generated by a ligand binding to its receptor (see

Methods). The response is measured at a pre-selected node. When

the activation state of this node crosses a threshold the network for

an arbitrary time, the SN is considered to be successful in the

detection of the signal and the fitness is increased by Ffactor~1
otherwise the fitness for the signal in question remains 0. For the

task to detect multiple signals of different strengths the fitness

contributions are summed up. In our simulations signals are either

present throughout the simulation or given as a pulse of fixed

duration.

We investigate the evolution of SNs and their dynamic

activation pattern using two types of mutations: Variations of

kinetic parameters (Fig. 1) or addition of new nodes (Fig. 2 and

S3). The evolution with both mutation types are investigated

independently and compared using replicates with identical

parameter settings but different seeds for the pseudo-random

number generator.

3.1 Evolution of SNs with varying interaction strength
We analyze the effect of strong and weak interactions by

simulating SNs evolution for three different regimes: weak (kv10,

dimensionless parameter), moderate (kv30), and strong interac-

tions (kw30). When the interaction strength remains below a

certain value (kv10 in our model setting) the networks are unable

to reach maximum fitness (Fig. 3). At the same time the fitness of

the population fluctuates significantly. If the interaction strength

remains below a value of 30, then the networks population reaches

almost maximum fitness, but exhibits a considerable amount of

fitness fluctuations. Further increase in the interaction strength

(kw30) suppresses fluctuations in the fitness, i.e., a population has

evolved in which virtually all the networks are able to detect every

single input signal. For all parameter regimes we observe that the

evolutionary process approaches a steady state after less than 30

generations (Fig. 3).

3.2 Strong interactions promote signal strength-
independent and robust activation patterns

In order to understand how the evolved networks manage the

task of detecting signals, it is important to analyze the dynamic

behavior of the networks over the evolution period. Due to the

random generation of the initial kinetic parameters, the activation

patterns of the nodes of the networks are different in each starting

population. In analogy to our fitness function, we define a protein

Figure 1. Mutation of kinetics parameters. A�1 represents the
active form of the protein A1, A2 another inactive protein molecule,
A�1A2 is the complex formed during the reaction between A�1 and A2 .
A�2 is the active form of A2 . kf , kb, and kd are the rates (interaction
strength) of the reactions. A mutation of the reaction alters any of the
rates, e.g., kd~1:0 (top) adopts the new value kd~3:0 (bottom).
doi:10.1371/journal.pone.0050905.g001

Figure 2. Addition of a new node in the minimal model. An
inactive protein C is added, that can either become activated (C�) by A�1
(kd) or is inactivating the active protein A�1 (k’d).
doi:10.1371/journal.pone.0050905.g002

Figure 3. Evolution of SNs by mutating kinetic parameters. The
fitness (Fnorm) during the evolution of SNs for three different regimes
of maximal interaction strengths: weak (kv10), moderate (kv30), and
strong (kw30) interactions (Number of generations: 200, Number of

SNs: 200, Threshold level:
1

10
th of the initial concentration level of

protein).
doi:10.1371/journal.pone.0050905.g003
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to be strongly active when its relative fraction in the active state

passes a given threshold. Any other non-zero value defines the

node as weakly active. We observe that the output node initially

passes the signaling threshold only for the stronger signals while

during the course of evolution the networks detect more and more

signals (Fig. 4). Depending on the strength of interactions between

the proteins and their complexes, most successfully evolved

networks show a similar activation pattern with little change

during the following generations. When the networks evolve and

kinetic parameters are allowed to mutate within the range of 1 to

10 then the activation pattern is weak even with respect to strong

input signals. Also the initial variable activation pattern remains

throughout the entire evolution period (Sys I in Fig. 4). Hence,

weak interactions do not produce signaling strength-independent

activation patterns. From this observation we conclude that the

kinetics of the output nodes of the evolved networks are not robust

when proteins interact weakly. The same topology, however, can

detect signals when the interaction strength is increased. Evolution

of networks with kinetic parameter values in the range of 1 to 30
show strong activation and also display a similar activation pattern

throughout the SN population after about 50 generations. If

networks are evolved permitting even higher kinetic parameter

Figure 4. Kinetics of the evolved networks. Shown are the networks with the highest fitness score from one of the simulation runs. g1, g50, and
g150 denote the generation 1, 50, and 150, respectively. The six solid lines show the kinetics of activation of the output node in response to six
different input signal strengths (strength increases with signal index). Signals are provided at time t~150. Sys I, weak interactions (kv10). Sys II,
moderate interactions (kv30). Sys III, strong interactions (kw30).
doi:10.1371/journal.pone.0050905.g004
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values (k.30) then the networks quickly adapt their dynamics to

strong and robust activation patterns. The output node of each of

the successful network becomes activated soon after detecting the

signal and shows almost equal response strength and similar

activation pattern irrespective of the input signal strength (Sys II

and III in Figure 4).

In our simulations, we observe that about 50 generations are

sufficient to achieve a stationary distribution of activation patterns

all of which show strong activation provided the interaction

strength is sufficiently high (Fig. 4). Yet, an investigation of the

mean kinetic parameter shows that we have a drift towards

stronger interactions in the following generations (Fig. 5). It takes

as long as 150 generations to achieve a stationary population for

the regime in which the strongest interactions are permitted

(Fig. 5). A detailed investigation of the parameter distribution of

the final generation shows that there is no preferred pattern of

kinetic parameters (Fig. S1 and S2). In a brief phase around the

time when the population reaches maximal fitness the population

is dominated by the networks having rather similar kinetic

parameters (Fig. S2). Subsequent generations then diversify again

resulting in a wide distribution of kinetic parameters used by the

networks (Fig. S2). This suggests that none of the interactions is

critical in the sense that it is subject to a strong selection pressure.

Moreover, the same topology can solve the task using very

different parameter setups which appear to form a connected set in

the parameter space given the chosen fitness function. However, a

further increase in the interaction strength does not provide a

selective advantage as it has only minimal influence on the

activation pattern of the network.

3.3 Dose-response relationship of the evolved SNs
The activation patterns evolving when strong interactions are

permitted appear independent of the input signal strength, a

behavior also known for the MAPK cascade in certain systems

[16]. We extended our analysis to investigate the dose-response of

the evolved networks beyond the range of signaling strength used

for selection. Before evolution, at very weak input signal, the

networks do not produce a considerable response with respect to

the threshold (Fig. 6). After a few generations, all the networks are

able to evolve and show strong activation even at very low input

signal strengths (Fig. 6). Yet, the networks require a signal to

become active confirming that the evolution did not generate self-

activating networks, which would not be excluded by our choice of

the fitness function. Thus, the strength of the input signal does not

affect the activation pattern of the SN. Therefore, it appears that

the generic behavior of a SN is switch-like when facing the task to

‘somehow’ detect a signal.

3.4 Effect of removal of input signals on the kinetics of
the evolved SNs

To further investigate the behavior of the output node, we

simulated pulse activation of the networks: After initial equilibra-

tion of the network the signal is present for a fixed amount of time

before being removed again. Before the pulse is given, all the

networks remain in their basal inactive state. Evolved networks

typically respond with a switch-like response to the signal pulse

(Fig. 7). Some of the networks will show an even enhanced

response after the signal has been removed (e.g. Fig. 7), while the

majority revert back to the initial state. Since, our fitness function

does not generate selection pressure to either of the network

responses after removing the signal, both response types are valid.

It is interesting to observe the occurrence of a pulse-detector,

which requires a memory of previous signals, e.g. by generating

Figure 5. Mean kinetic parameter values of networks during
evolution. The numeric values for all kinetic parameters in the SN are
averaged omitting the formal difference of first-order and second-order
reactions (see Methods).
doi:10.1371/journal.pone.0050905.g005

Figure 6. Dose-response relationship of the evolved SNs for
the strong interaction regime. The graph shows the input signal
versus the maximum response of the output node of the best network
in the respective generations 1, 100, and 200.
doi:10.1371/journal.pone.0050905.g006
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irreversibility in the system. With a fitness-function sensitive to the

phase following the removal of the signal, a trigger or an

irreversible switch could be easily selected from the networks

generated in our simulations.

3.5 The role of partially active nodes
After studying the kinetics of the pre-defined output node (a

fully active node) we also studied the kinetics of the partially active

proteins. We observed that single phosphorylated proteins show

predominantly a transient response and some of the networks

shows partially adapted response (Fig. 8). There is a clear trend

that weaker interaction permit stronger transient activation of the

monophosphorylated forms (Sys I , II , & III in Fig. 8).

3.6 Evolution of SNs by adding new proteins
We next evolve our randomly generated SNs by adding new

proteins instead of altering kinetic parameters. The new proteins

are randomly interacting with potentially all proteins in all states

(but not complexes) with also randomly generated kinetic

parameters (Fig. 2 and S3). Hence, all kinetic parameters are

Figure 7. Effect of the removal of the input signal on the kinetics of evolved networks. Shown are the networks with the highest fitness
score from one representative simulation run. g1, g50, and g150 denote the generation 1, 50, and 150, respectively. The six solid lines show the
kinetics of activation of the output node in response to six different input signal strengths (strength increases with signal index). Sys I, weak
interactions (kv10). Sys II, moderate interactions (kv30). Sys III, strong interactions (kw30).
doi:10.1371/journal.pone.0050905.g007
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fixed as soon as the proteins are added. All other parts of the

evolutionary algorithm remain the same.

The addition of new nodes displays virtually the same effects on

the evolution of the networks as well as the dynamics of the

response which we observed due to the mutation of kinetic

parameters. After a few generations, all evolving networks show

similar and strong activation patterns provided the new interac-

tions arising with the newly added proteins are of sufficient

strength (data not shown). Also the distribution of the kinetic

parameters of the new nodes shows no trends towards a particular

pattern.

Discussion

We investigated the evolution of SNs under the premise that the

primary task of signal transduction is to detect a signal without

pre-determining a desired kinetics. As shown in Figure 9, any form

of the protein can - depending on its interaction partner - play the

role of a kinase or phosphatase. Typically, proteins do not fulfill

both functions, however, due to their phosphorylation state may

recruit proteins that perform this function but are not explicitly

modeled in our approach. We simulated the evolutionary process

by allowing mutations either in the kinetic parameters or the

Figure 8. Role of the partially active nodes. Shown is the kinetics of the node (A2p) from the networks with the highest fitness score from one of
the simulation runs. g1, g50, and g150 denote the generation 1, 50, and 150, respectively. The six solid lines show the kinetics of activation of the
output node in response to six different input signal strengths (strength increases with signal index). Sys I, weak interactions (kv10). Sys II, moderate
interactions (kv30). Sys III, strong interactions (kw30).
doi:10.1371/journal.pone.0050905.g008
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topology of the network. The SN population achieves maximum

fitness only when protein-protein interactions are sufficiently

strong. The generic solution is a sustained activity of the output

node as long as the signal is present. Weak interaction strength

results in networks that respond differently and only to some of the

signals. In a cellular system weak interactions could therefore

probably not provide reliable cellular decisions. For the input

sensor - response relationship, we conclude that neither the

starting topology nor the set of kinetic parameter values is

constraining the evolution of the networks (provided sufficiently

strong interactions). Therefore, short circuits coupling the receptor

directly to the output node by two reactions are possible but

certainly not the only solutions. In particular, the final generation

has a high variability in the kinetic parameters suggesting that no

dominant subnetwork of interactions exists.

According to previous published work, we can say that there are

four different possible input-output relations for signal transduc-

tion [17]. The first one is the classical case which is single input

and single output, the second possible relation is signal concate-

nation (multiple inputs and single output), the third relation is

signal pleiotropy (single input and multiple outputs), and last one is

the complex signaling event which has multiple inputs and

multiple outputs. Out of all these four possible signaling events our

model is designed to represent the classical case which is frequent

in biological signaling processes. Although not the scope of our

present study our model can also be modified to understand the

remaining three types of signaling input-output relations in the

future.

The activation pattern of the evolved networks in a stationary

population are robust against strong interactions and in most cases

sustained response, suggesting that this type of response is the

generic cellular behavior when the presence of a signal is sufficient

information for a cell [18]. We observe that the response kinetics

does not alter after about 30–50 generations but the kinetic

parameters still change. We interpret this in the following way:

When the first networks with enhanced fitness appear they give

rise to multiple clones that have largely similar kinetic parameters.

This is similar to the bottleneck effect, i.e. many networks do not

generate offsprings due to their low fitness and only similar

networks pass on to the next generation. Following this phase the

networks start to diversify again and a large range of the allowed

kinetic parameter regime is explored. The diversification also

indicates that there is a large number of solutions in the parameter

space to ‘solve’ the fitness function. These solutions appear to be

connected in a large set as the different kinetic parameters can be

explored by the SNs without losing their fitness. Alternatively, one

can view this situation as overfitting as the quite large number of

parameters allows the networks to ‘solve’ the fitness function in

many different ways.

As the sustained response appears to be the generic cellular

response, we speculate that more complex responses such as

analog dose-responses, adaptation, multi-stationarity, and oscilla-

tions require additional selective pressure. In particular, for analog

responses that appears surprising, as one may expect that stronger

signals lead also to stronger responses as often observed in

experimental systems. Previous studies [13] demonstrated that the

variation of kinetic parameters and addition of nodes is sufficient

to evolve the networks that have a defined output response.

However, this required corresponding fitness functions that

encode the mathematical property of the desired system, e.g.,

bistability. These models can only be applied to those systems

which are known to have such behavior, but often the exact

behavior of the SNs is unknown. Therefore, the creation of a

fitness function that encodes the task that a cell solves under

certain experimental conditions, may be more beneficial in

determining possible and likely behavior of the underlying SNs.

The higher average fitness of networks with strong interactions

is due to the ability to detect weak signals. This corresponds to

situations such as bacterial chemotaxis and T-cell receptor

signaling where cells are sensitive to detect very few ligands. In

Figure 9. List of possible reactions in the minimal model with three proteins. S represents the input signal, A1 , A2 , and A3 denote inactive
signaling proteins, their partially active (single phophorylated) forms are A1p, A2p, and A3p, respectively. The fully active forms are A1pp, A2pp, and
A3pp.
doi:10.1371/journal.pone.0050905.g009
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the simulated systems, we have three different simulating

conditions. weak (k,10), moderate (k,30), and strong (k.30).

Signaling networks are still functional with or moderate interac-

tions. However, at weak interaction strengths the SNs will work

but in case the input signal is also weak then SNs often fail to

detect. When the interaction strength is moderate then the SNs

function and can also respond to weak input signals. Another

difference between the SNs working at moderate and strong

interaction strength is that at strong interaction strength the SNs

show a strong and quick output response in contrast to weak

interactions where the kinetics is typically slow and weak.

The rapid increase in fitness for the SNs suggests that any

weakly interacting network that is capable of evoking at least some

response to a signal, quickly evolves into a strongly interacting SN

provided the selective pressure is present. This results in a high

flexibility of cells to gain new signal transduction pathways when

required and the critical invention is the proper receptor rather

than a correct connection to the appropriate cellular response.

Thus, a cell may retain a number of weak interactions among

signaling proteins that do not interfere with primary signaling

pathways, which can be converted should such a demand arise

during evolution. As a consequence, a high number of weak

unspecific interactions among proteins enables the cell to flexibly

and quickly adapt to changing environments. Based on our results,

we hypothesize that this is not a property that must be developed

by a cell during evolution, but is inherent to weakly interacting

protein-protein interaction networks. The diversification of kinetic

parameters following the evolution of successful SNs in the regime

of strong interactions also indicates that a large number of weak

interactions do not harm the performance of the evolved signal-

response relation. Thus, the SNs can reliably respond to the signal

while at the same time retain a plethora of connections which may

be used to ‘solve’ evolutionary demands that may occur in

addition. This effect is in agreement with the notion that

robustness combined with a high evolvability is a favorable and

likely outcome of evolution [19–21].

At present, the model evolves the interaction strength and

topology of the SNs. The kinetic parameters are in general hard to

access while the topology is comparatively easy to analyze

experimentally. In our simulations, we see that the exact values

of the kinetic parameters play a minor role. Unfortunately, the

number of possible parameter sets to generate a certain behavior is

large such that the topology alone is not likely to predict the

function of the network reliably. However, it is not only the

interaction strengths and input signals which vary but also protein

concentration levels affect the behavior of a SN [7,22] and in

addition bear the advantage of being experimentally quite easily

accessible variables. Furthermore, stimulation of receptors virtu-

ally never occurs in isolation and therefore the interaction of signal

transduction pathways can become relevant [17,23,24]. The

questions of how does cross-talk affect the network’s behavior

and how does it affect the evolution of the SN is worth pursuing

using our approach by embedding a SN into the wider context of

co-evolving signaling networks.

In the future, it will also be interesting to investigate the role of

random fluctuations, at the receptor level during ligand receptor

binding (external noise) and stochastic fluctuations in the signaling

network (internal noise). with three different types of noise: (i)

random fluctuations at the receptor level in the absence of a signal

(external noise) (ii) variations of the signal (i.e. signal+noise), and

(iii) stochastic fluctuations in the signaling network (internal noise).

For case (i) we already show in this study that a certain amount of

signal is required to create a response in the network, i.e. any noise

below the threshold will not induce a response as defined by

passing a threshold activation level of the output node. The fact

that the output kinetics is virtually independent of the input signal

indicates that noise added to a sufficiently large input signal (case

(ii)) will not be detected by the cell corresponding to a situation

previously analyzed [25]. In line with this, any change of the

output response that happens above the threshold cannot account

for biological effects as the fitness functions does only resolve

above- and below-threshold responses. If cells need to do so, one

would need a refined fitness function reflecting the additional

features. Therefore, an investigation of the evolution of the

networks using a stochastic approach will be required in order to

analyze the impact of internal noise (case iii) on the evolution of

SNs.

Conclusion

From our results, we conclude that sustained responses are the

generic solution of a SN when the mere detection of the presence

of a signal is relevant. This response occurs as soon as the protein-

protein interactions are of sufficient strength, either by mutation of

the kinetic parameter underlying existing interactions with the

network or by recruiting new proteins to the network that generate

a sort of bypass by supplying the network with strong interactions.

Remarkably, the exact values of the kinetic parameters are

irrelevant as soon as a pathway of sufficiently strong interacting

proteins is provided. Given the quick evolution of the SNs, we

conclude that weak protein-protein interactions serve as a pool to

rapidly evolve new pathways, but play only a minor role in

modulating the actual responses of a signal transduction network.

Materials and Methods

6.1 Model
We set up a simplified model to represent a signal transduction

pathway allowing two post-translational modifications of similar to

the MAPK cascade [26]. In order to transduce the signal, we have

included protein-protein interactions, protein phosphorylation and

dephosphorylation [27]. Double phosphorylated proteins act as

fully activated and single phosphorylated molecules as partially

activated molecules. Note, that the term phosphorylation is used

for convenience as any other post-translation modification adding

a small chemical group, lipid, protein or carbohydrate modifying a

protein’s spectrum of interaction partners or enzymatic activity are

covered by the model.

The interaction between the signaling proteins are set up

randomly to create the initial population as well as when adding

proteins during evolution. In our current model, we have not

classified the proteins of the SN. The kinase or phosphatase

function of a protein is determined for each reaction by the matrix

Aij (see below). Initially, all the proteins are inactive. One of the

initially present inactive signaling molecules is designated as

receptor and receives the signal to become activated. The total

number of input signals are six and each network is tested for their

response to these six different input signal strengths. Once the

receptor receives the signal then it can activate other signaling

molecules. All the signaling molecules are allowed to phosphor-

ylate or dephosphorylate each other (Fig. 9) and the final products

will be formed depending on the complex. All the reactions in this

model are bimolecular, autophosphorylation and homodimer

formation are not allowed. Every molecule that becomes partially

(single phosphorylated) or full active (double phosphorylated) can

interact with any other molecule in any state. These interactions

lead to complex formation. The complexes can dissociate without

changes to its constituents or upon modifying on of it by means of

Simulated Evolution of Signaling Networks
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phosphorylation or dephosphorylation. The interaction of two

partially active molecules produces either one of them being fully

activated (dual phosphorylated) or inactivated (dephosphorylated)

without changing the other reacting partner’s state (attributing it

an enzymatic role) as shown in Figure 9. Which of the possible

reactions are realized is determined randomly once at the

beginning (with constraints, see next paragraph), thus setting up

the network topology. In addition, one randomly selected double

phosphorylated protein, different from the receptor node, is

designated the output node. It represents the molecule which will

eventually induce the cellular response.

6.2 Generalized mass action kinetics equation
A network consists of the above mentioned signal transduction

pathway where both inactive and active proteins and complexes

are represented as nodes. The interaction matrix (Aij ) between all

these molecules including complexes are represented as z1
(production/generation), {1 (degradation/dissociation), and 0 (no

interaction). The entries of Aij are chosen once for a network

under the constraints that the total amount of each protein is

conserved and the SN generated does have a stable inactive state.

The entries Aij generate the index/indices for the reactant(s)

xp(r) for the reaction r. Each arc encoded by the interaction matrix

is associated with a weight that represents the kinetic parameters

with which production or degradation takes place. The dynamics

xi of the node i is governed by the equation:

dxi

dt
~
Xr

r~1

Airkr P ½xp(r)� ð1Þ

kr denotes the kinetic parameter of the reaction number r. Note,

that we chose k to be dimensionless in the sense that the time is

scaled appropriately and the concentrations are normalized such

that the numeric values of first- (k2, k3 in Fig. 1) and second-order

(k1 in Fig. 1) reactions approach a similar range.

The fitness of a SN was tested by calculating its response to

ns~6 different signals. For every signal n, the dynamics of the pre-

selected output node is tested whether it exceeds a threshold f .

This threshold (f ~
1

10
th of the initial concentration level) is

defined to be the relative fraction of the double phosphorylated

protein to the total amount of the protein. If the output node

crosses the threshold f at any point during the dynamics the

network gains a fitness contribution Ffactor(n)~1. The normalized

fitness Fnorm is calculated as the average fitness contribution for all

signals which are weighted equally:

Fnorm~
1

ns

Xns

n~1

Ffactor(n) ð2Þ

Hence, the maximum fitness of a network will be 1 when it detects

all signals or 0 when there is no above-threshold response to any of

the signals.

6.3 Algorithm
We have applied an evolutionary algorithm [28] to evolve the

networks (Fig. 10). Before starting evolution, we create a set of

diverse networks with the same randomly generated interaction

matrix for three proteins with three states (un-, mono-, and dual-

phosphorylated) and different randomly selected kinetic parame-

ters (Eq. 1). The evolution of the networks is either controlled by

mutation of the kinetic parameters or the addition of new nodes.

In the latter case kinetic parameters are randomly selected once at

the generation of the initial population and once for every single

newly added protein.

The kinetic parameters are generated randomly initially in the

range 0:001 to 1. The total number of the networks is N~200.

For each network, Fnorm is computed. We perform elite selection

of
1

4
th of the population. The successful networks are mutated by

changing the kinetic parameters (kr) or adding new proteins as

explained above. The subsequent generation is then populated by

four copies of the successful networks keeping the number N of

networks identical in each generation. We evolve the population of

networks for 200 generations. Systems of ordinary differential

equations were formulated and solved with MATLAB 7.9.0.

Supporting Information

Figure S1 Kinetic parameter distribution of SNs before

evolution. Randomly generated kinetic parameters between

0:001 and 1 for all the simulations.

(TIF)

Figure S2 Kinetic parameter distribution of SNs shortly after

the fitness reaches maximum until the end of the simulation.

Parameters are shown for the strong interaction regime (Sys III).

(TIF)

Figure S3 List of possible reactions after the addition of a new

node designated as A4 in the minimal model. A1, A2, A3, and A4

denote the inactive signaling proteins, their partially active (single

phophorylated) forms are A1p, A2p, A3p, and A4p, respectively

and their fully active forms are A1pp, A2pp, A3pp, and A4pp,

respectively.

(TIF)
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Figure 10. Scheme of the evolutionary algorithm. In order to
generate genetic diversity, a set of 200 networks is created with diverse
sets of kinetic parameters. In each iteration the dynamics of all networks
is calculated for the complete set of input signals. Based on dynamics,
the fitness is calculated. Based on the fitness scores, the successful
network are selected (elite selection). For each selected network
mutations are either applied to the kinetic parameters or the topology
of the network by adding new proteins. Each selected network gives
rise to an equal number of clones such that the population contains
again 200 networks.
doi:10.1371/journal.pone.0050905.g010
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