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1  | INTRODUCTION

Human breastmilk (BM) is the first complete food at birth and con-
sidered the natural food par excellence for every newborn: healthy, 
species‐specific, preventive against allergies, intolerances, and 
diseases (Georgi, Bartke, Wiens, & Stahl, 2013). The World Health 
Organization (WHO) recommends breastfeeding for at least the 
first 6 months of the child's life (Field, 2005). In addition, beside to 
base nutrients, BM furnishes a large number of biological substances 
with specific or nonspecific functions that protect the infant against 

infections and other illnesses (Georgi et al., 2013). The helpful prop-
erties of these bioactive molecules are based on their antioxidant 
and anti‐inflammatory effects, immunostimulatory properties, and 
bactericidal or bacteriostatic actions on different microorganisms 
(Goldman & Goldblum, 1995). These defense properties of human 
BM are particularly suitable for infants of reduced weight and/or 
preterm infants and in other pathological cases of the newborn. In 
some circumstances, the infant may not be able to consume milk di-
rectly from the mother's breast. In these cases, the previously col-
lected and stored BM should be used (Miranda et al., 2004). The 
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Abstract
A two‐step chemometric procedure was developed on the attenuated total reflec-
tion‐Fourier transform infrared data of human breastmilk to detect adulteration by 
water or cow milk. The samples, collected from a Milk Bank, were analyzed before 
and after adulteration with whole, skimmed, semi‐skimmed cow milk and water. A 
preliminary clustering via principal component analysis distinguished three classes: 
pure milk, milk adulterated with water, and milk adulterated with cow milk. A first 
partial least square‐discriminant analysis (PLS‐DA) classification model was built and 
then applied on new samples to identify the specific adulterants. The external valida-
tion on this model reached 100% of the correct identification of pure milk and 90% 
of the type of adulterants. In the following step, four PLS calibration models were 
built to quantify the amount of the adulterant detected in the classification analysis. 
The prediction performance of these models on new samples showed satisfactory 
parameters with root mean square error of prediction and percentage relative error 
lower than 1.38% and 3.31%, respectively.
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banks of human milk gather, treat, and store milk from healthy lac-
tating women. Human milk banks perform an important social role 
by promoting breastfeeding and encouraging the mothers to breast-
feed their babies. These banks are also an important helper for the 
care and treatment of premature, low‐weight, sick newborns (Goóes, 
Torres, Donangelo, & Trugo, 2002).

The commercial interest of BM is becoming a reality in recent 
years, although in many countries there is no legislation dedicated 
to this topic. Recent papers have reported cases of infected BM 
samples or contaminated with cow milk or drug (Keim, Kulkarni, et 
al., 2015; Keim, McNamara, Kwiek, & Geraghty, 2015). Adulterated 
BM becomes not only inferior in quality and economic value but it is 
also dangerous for the infants. The simple addition of water into milk 
could affect the variation of nutritional composition such as protein 
and solid content. Infants intolerant to cow milk for allergy could 
suffer severely if they ingest BM adulterated with this milk (Santos, 
Pereira‐Filho, & Rodriguez‐Saona, 2013; Zhang et al., 2014).

In the last 25 years, the milk has been studied from many points 
of view and one of the main topics has been focused on the devel-
opment of procedures for monitoring quality and safety of the food 
matrix, from whatever source it comes from (Poonia et al., 2017).

UV and IR spectroscopic methodologies have been widely used 
for determination of milk adulteration (Kasemsumran, Thanapase, & 
Kiatsoonthon, 2007). Recio Garcıá‐Risco López‐Fandiño Olano and 
Ramos (2000) have used the capillary electrophoresis for detection 
of rennet whey solids in milk. Polymerase chain reaction technique 
has been used to evaluate the milk adulteration due to the mixing 
of milk from different origins (López‐Calleja et al., 2004). Sandwich 
ELISA, RP‐HPLC, immune chromatography, and matrix‐assisted laser 
desorption/ionization time‐of‐flight mass spectrometry (MALDI‐
MS) have been used to assay milk adulteration due to soya bean pro-
teins or serum additions (Chávez et al., 2012; Kruså, Torre, & Marina, 
2000; De Noo et al., 2005; Oancea, 2009).

The coupling of instrumental analysis with multivariate data 
analysis techniques, able of handling very large data matrices, is the 
latest evolution of the methodologies proposed for food analysis 
(Bassbasi, Luca, Ioele, Oussama, & Ragno, 2014). The chemometric 
tools applied to the instrumental signals allow to extract the infor-
mation stored in the data, identifying with remarkable reliability 

the data patterns and the clustering of the samples (objects), based 
on the similarities among them. This analytical information can be 
elaborated for building mathematical models, used to estimate new 
unknown samples (Bassbasi et al., 2014; Dinç, Ragno, Baleanu, Luca, 
& Ioele, 2012).

In this perspective, IR spectroscopy shows high sensitivity and 
specificity and can be used in fingerprint mode analysis, thus be-
coming a good source of information for multivariate techniques 
(Rodriguez‐Saona & Allendorf, 2011). Near‐infrared (NIR) spectros-
copy and mid‐infrared (MIR) spectroscopy have been widely used 
for the determination of protein, lactose, and other milk properties 
(Kawasaki et al., 2008). Since the IR fingerprints show variations in 
both positions and shapes of the signals in the presence of adulter-
ated milk, some authors have investigated the correlation between 
NIR and MIR data in the presence of water, whey (Kasemsumran et 
al., 2007), urea, and caustic soda (Khan, Krishna, Majumder, & Gupta, 
2015) by using chemometric analysis (Limm, Karunathilaka, Yakes, & 
Mossoba, 2018).

Moreover, IR spectroscopy and chemometric procedure are fully 
adapted to the dictates of the green analytical chemistry (GAC). The 
role of the analytical chemists should be increasingly focused on de-
veloping more environmentally friendly laboratory procedures, by 
minimizing the use of chemicals, energy consumption, and waste 
(Gałuszka, Migaszewski, & Namieśnik, 2013; De Luca, Ioele, Spatari, 
& Ragno, 2017). IR spectroscopy seems appropriate for this purpose 
as it involves the possibility to analyze complex samples (such as 
food and environmental matrices) with minimal or no sample prepa-
ration, coupled with a simple and fast data collection.

The aim of this work was the development of a multistep analyt-
ical procedure for the quality control of BM conferred to milk banks 
and the assessment of possible adulteration. To our knowledge, to 
date there are no research works focused on the monitoring of BM 
adulteration by chemometric techniques. The algorithms principal 
component analysis (PCA) and partial least square regression (PLS), 
also as discriminant analysis (PLS‐DA), were used to process the 
ATR‐FTIR data and design a two‐step procedure. A first discriminant 
analysis to assess the presence of water or cow milk in the BM sam-
ples was followed in the case of a positive response by a quantitative 
estimate of the amount of adulterant.

F I G U R E  1   Sample‐making scheme
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2  | MATERIALS AND METHODS

2.1 | Calibration and prediction milk samples

Breastmilk samples were collected from the Milk Bank in Cosenza 
Hospital. The milk is donated by voluntary mothers who respect all 
the characteristics included in the Bank protocol: health status certi-
fication and traceability of donated milk. The cow milk samples were 
purchased from local dairy product company in Cosenza.

A set of 220 samples for analysis, consisting of pure BM and 
adulterated BM, was prepared (Figure 1). For this aim, 60 BM sam-
ples (BM set) were made available by the Milk Bank, coming from 
different mothers donating at different times. These samples were 
divided into five different groups. A first set of 20 pure BMs was 
analyzed without any adulteration (set BM), of which 10 samples 
for modeling and 10 samples for validation procedures, chosen 
randomly. Fifty samples were prepared from each of the other 
four groups, adding water (set W), whole cow milk (set CM), semi‐
skimmed cow milk (set SSCM), and skimmed cow milk (set SCM), 
respectively. The amount of adulterant ranged from 5% to 50% 
with multiple addition of 5%, replicated five times. Applying the 
Kennard‐Stone sampling method (Galvão et al., 2005), from each 
set were selected 40 samples for the modeling procedures and 10 
samples to validate the models.

2.2 | Instruments

The IR fingerprints were recorded by using a Spectrum Two Fourier 
transform infrared (FTIR) spectrometer (Perkin Elmer), equipped 

with an attenuated total reflection (ATR) accessory consisting of a 
flat top‐plate fitted with a 25 reflection, 45°, 50 mm ZnSe crystal. 
The ATR system was cleaned before each analysis by using dry paper 
and scrubbing it with hexane and ethanol, and spectra acquisition 
was performed without using cover apparatus. The room air FTIR‐
ATR spectrum was used as background to verify the cleanliness and 
to evaluate the instrumental conditions and room interferences due 
to H2O and CO2. FTIR spectra of the milk samples, placed on the ATR 
surface, were recorded between 4,000 and 450 cm−1. Scan number 
and resolution were optimized at 16 scans and 4 cm−1, respectively. 
The Unscrambler X software version 10.3 from CAMO (Computer 
Aided Modelling) was used for the chemometric treatment of the 
spectral data.

2.3 | Chemometric methods

A PCA study of the data patterns was performed to highlight the 
differences between samples of pure BM and adulterated BM. The 
unsupervised data analysis on the milk fingerprints aimed to extract 
the useful information from the data matrix by projecting samples 
and variables on a set of new orthogonal variables, called principal 
components (PCs) (De Luca, Restuccia, Clodoveo, Puoci, & Ragno, 
2016; Mabood, Jabeen, Hussain, et al., 2017).

Classification and assessment of adulteration involved the use 
of various PLS models: a first PLS2 discriminant analysis (PLS‐DA) 
model designed to detect the possible addition of water or different 
types of cow milk and subsequent four PLS1 calibration models able 
of determining the amount of added adulterant. Figure 2 shows the 
scheme of the analytical procedure.

PLS regression is a factor analysis method, very useful in the pro-
cessing of spectroscopic data for the calibration analysis of complex 
samples (Geladi & Kowalski, 1986; De Luca, Ioele, Risoli, & Ragno, 
2006; Mabood, Jabeen, Ahmed, et al., 2017; Ragno, Risoli, Ioele, & 
De Luca, 2006).

In applying PLS procedure, the spectroscopic data (descriptor 
variables) are arranged in a matrix X (n,m) while a second matrix Y 
contains the concentration data (response variables). The algorithm 
PLS1 is adopted in the presence of one vector y, while PLS2 regres-
sion is applied for a matrix Y (n,k) in which the components or classes 
are more than one (k > 1). X and Y are mean‐centered and then de-
composed in factors. Consecutive orthogonal factors are selected 
with the aim to maximize the covariance between descriptors and 
responses. PLS modeling is achieved when the factors that explain 
most of the covariation between both data sets are found (Forina, 
Oliveri, Lanteri, & Casale, 2008).

In PLS‐DA, Y variable takes on value 1 for the samples belong-
ing to the class and 0 for those not belonging to the class. In cal-
ibration, the Y values correspond to the sample composition, and 
specifically to the amount of milk adulterant in this study (De Luca, 
Ioele, Spatari, & Ragno, 2016; Palabiyik, Göker, Çaǧlayan, & Onur, 
2013). A PLS model can be validated by internal and/or external val-
idation procedure. Full cross‐validation (FCV), a well‐known internal 
procedure, provided a direct estimate of the error rate incurred by 

F I G U R E  2   Multistep chemometric procedure
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the model. The number of factors was chosen by evaluating the pa-
rameters root mean square error of cross‐validation (RMSECV) and 
correlation coefficient R2. The prediction performance of the PLS 
models was evaluated by an external validation by using new sam-
ples (not enclosed in the calibration step). The obtained results were 
discussed by comparing the figures of merit root mean square error 
of prediction (RMSEP) and percentage error in predicted concentra-
tions (RE%), calculated as follows:

where ci and ĉi are, respectively, the known and calculated percentage 
of milk adulteration in sample i, and n is the total number of samples in 
the validation step.

3  | RESULTS AND DISCUSSION

3.1 | Exploratory analysis of ATR‐FTIR fingerprints 
of milk samples

Human and cow milk contain a similar amount of water, but the rel-
ative amounts of carbohydrate, protein, fat, vitamins, and minerals 
vary widely. The protein content in whole cow milk is more than 
twice that of human milk. The amount of protein in milk is linked 
to the growth rate of each animal species. Human infant needs 
less protein and more fat because a large amount of energy is con-
sumed for the development of the brain, spinal cord, and nerves. 
The proteins in milk consist of two principal categories: caseins 
and whey. Cow milk contains more casein than human milk, in a 
ratio of 80:20, whereas in human milk this ratio is 40:60. Whole 
cow milk and human milk contain a similar amount of fat, but the 
types of fats are different. Cow milk contains more saturated fat 
while human milk contains more unsaturated fat. The higher level 
of unsaturated fatty acids in human milk reflects the important 
role of these fats in brain growth. In humans, the brain develops 
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F I G U R E  3   Spectral data: (a) FTIR 
spectra for pure human breastmilk (BM), 
whole cow milk (CM), semi‐skimmed cow 
milk (SSCM), and skimmed cow milk (SCM) 
samples; (b) Loadings plot for PCs from 1 
to 4 resulted from PCA
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rapidly, growing faster than the body and tripling its size in the 
first year of life. The brain is largely composed of fat and in its de-
velopment needs a sufficient supply of polyunsaturated essential 
fatty acids (Chilliard et al., 2014).

The FTIR spectra of pure BM and the various types of cow 
milk are shown in Figure 3a. The absorption bands in the ranges 
1,630–1,680 cm−1 and 1,510–1,570 cm−1 may be associated with 
C=O stretching or N‐H and C‐H bending vibration of the milk 
proteins (Carbonaro & Nucara, 2010). The bands 2,920, 2,850, 
and 1,743 cm−1 may be due to the antisymmetric and symmetric 
stretching of CH2 and C=O groups, respectively, from the fatty 
milk components. The absorption bands in the ranges 3,200–
3,700, 1,030–1,200, and 900–450  cm−1 have been associated 
with carbohydrate structures. Absorption bands of water were 
prominent in regions 3,500–3,000  cm−1 and 1,730–1,600  cm−1 
due to H2O stretching and H‐O‐H bending vibration, respectively 
(Carbonaro & Nucara, 2010).

A very strong overlap between the spectral signals of human 
milk and pasteurized cow milk is evident throughout the full re-
corded spectral region, suggesting a high similarity in the compo-
sition of the matrices. Therefore, it seemed necessary to perform 
a multivariate data study to interpret the data matrices, taking 
into account the full information from the FTIR fingerprints of the 
samples.

Raw FTIR spectra were pretreated to select the information 
more useful for the chemometric modeling. First of all, only the 
wavelength range between 3,000 and 1,000 cm−1 was considered, 
discarding the terminal regions because considered rich in instru-
mental noise and useless information carriers (Kasemsumran et al., 
2007). After that, a mathematical pretreatment of the data seemed 
necessary to minimize instrumental problems as baseline fluctuation 

or noise. Derivatization by Savitzky–Golay algorithm, standard nor-
mal variate (SNV) and multiple scatter correction (MSC), described 
in several papers, were applied on the FTIR recorded data (Iñón, 
Garrigues, Garrigues, Molina‐Díaz, & De La Guardia, 2003; De Luca, 
Ioele, & Ragno, 2014). A significant enrichment in the data variance 
was reached when the raw data were transformed in derivative sig-
nals. Different mathematical parameters were tested in applying the 
derivative elaboration reaching the best results when the following 
parameters were set: 1st order, number of smoothing points 7, poly-
nomial order 2.

A PCA explorative analysis of the milk samples was performed 
on all the FTIR fingerprint spectra previously transformed in deriv-
ative data. PCA modeling gave 97.74% of explained variance (EV%), 
considering the first four PCs. The evaluation of the information 
available in the PC score plot showed that PC1 (88.35 EV%), PC2 
(4.30 EV%), and PC4 (2.09 EV%) were the richest principal compo-
nents in useful information for our purposes.

F I G U R E  4   3D score plot (PC1, PC2, and PC4) by PCA (a) and PLS‐DA regression (b)

TA B L E  1   Statistical parameters of PLS‐DA from FCV procedure

PLS‐DA Full cross‐validation

Class Yn Factors R2 RMSECV

BM 6 0.9446 0.1221

W 6 0.9274 0.1379

CM 6 0.8574 0.1432

SSCM 6 0.8718 0.1449

SCM 6 0.9263 0.1231

Abbreviations: BM, breastmilk; CM, cow milk; FCV, full cross‐validation; 
PLS‐DA, partial least square‐discriminant analysis; RMSECV, root mean 
square error of cross‐validation; SCM, skimmed cow milk; SSCM, semi‐
skimmed cow milk; W, water.
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Figure 3b shows the loadings values from PCA. The high-
est values for the first three PCs coincided with the wave ranges 
3,000–2,800 cm−1, 1,800–1,700 cm−1, and 1,200–1,000 cm−1, that 
characterize the different composition of milk samples in terms of 
proteins, lipids, carbohydrates, and water. Loadings values for PC4 
showed a further range rich in information between 1,700 and 
1,500 cm−1, specific for the protein composition.

Figure 4a shows the 3D score plot using PC1, PC2, and PC4. The 
grouping of the samples was clear making it possible to distinguish 
the pure BM samples and the BM samples adulterated with water or 
cow milk. However, this PCA modeling identified only one cluster of 
BM samples adulterated with cow milk but was unable to distinguish 
the type of cow milk added.

3.2 | Classification of milk samples by PLS‐
DA modeling

A PLS‐DA modeling was developed with the aim to classify the milk 
samples as pure BM or adulterated with water (W), whole cow milk 
(CM), semi‐skimmed (SSCM), and skimmed (SCM). PLS2 algorithm 
required the setting of more than one Y variable. In this study, five 
Y variables/classes (YBM, YW, YCM, YSSCM, and YSCM) were set in mod-
eling, assigning the value 1 to the samples belonging to each class 
and 0 to those belonging to other classes.

The PLS‐DA classification model was validated by full cross‐
validation, and its performance evaluated in terms of correlation 

coefficient R2 and RMSECV. The figures of merit, shown in Table 1, 
were statistically acceptable by considering 6 factors, with RMSECV 
values between 0.122 and 0.145 and R2 in the range 0.857–0.944. 
Figure 4b shows the score plot factor 2 versus factor 4 by PLS‐DA 
modeling, in which the discrimination across all classes is greatly 
improved.

This model was applied to an external prediction set consisting 
of 60 samples: 10 samples of pure BM and 10 samples from each 
subset of adulterated samples. According to the PLS‐DA procedure, 
a sample was considered belonging to a class n when the predicted 
value of Yn was higher than 0.5. The classification results obtained 
are listed in Table 2 through a confusion matrix. One hundred per-
cent of BM and W samples were well classified while some difficul-
ties were found in classifying the samples adulterated with cow milk. 
The PLS‐DA model was able to identify the samples adulterated with 
cow milk, but the exact type of cow milk added was only identified 
for 90% of the samples. The poor classification of three samples 
(one SCM and two SSCM) was likely due to the extreme similarity 
of the BM adulterants. The difference between skimmed and semi‐
skimmed milks was due to the lipid composition alone. No samples 
were detected as suspect origin.

3.3 | Estimate of adulteration by PLS1 approach

In order to quantify the amount of adulterant added to BM, four 
PLS1 calibration models were built by using the sets W, CM, SSCM, 
and SCM, respectively. Full cross‐validation permitted to select the 
optimal number of factors for all the models by evaluating the pa-
rameters R2 and RMSECV. The obtained values of the parameters for 
all the data sets are listed in Table 3.

The calibration report of PLSW described a robust model, since 
only two factors were enough to explain 98.84% of Y variance. Full 
cross‐validation showed high prediction ability in determining the 
amount of water added, providing RMSECV and R2 values of 0.988 
and 0.9841, respectively.

The three models dedicated to the assay of the different types 
of added cow milk required three factors for the models PLSCM 
and PLSSCM and four factors for the PLSSSCM model. The statistical 
parameters were however satisfactory with R2 above 0.947 and 
RMSECV below 1.54.

The prediction power of the PLS models was tested by perform-
ing validation on the external sample set prepared for this aim (see 

TA B L E  2   Confusion matrix from PLS2‐DA external validation

Real

Yn BM W CM SSCM SCM

Predicted          

BM 10        

W   10      

CM     10    

SSCM       8 1

SCM       2 9

% CC 100 100 100 80 90

Abbreviations: % CC, % of correct classification; BM, breastmilk; CM, 
cow milk; PLS‐DA, partial least square‐discriminant analysis; SCM, 
skimmed cow milk; SSCM, semi‐skimmed cow milk; W, water.

PLS

Factors

Full cross‐validation External validation

Model R2 RMSECV R2 RMSEP RE%

PLSW 2 0.9884 0.9841 0.9723 1.1718 2.8054

PLSCM 3 0.9465 1.3539 0.9267 1.3812 3.3124

PLSSCM 4 0.9628 1.3217 0.9616 1.3351 3.1124

PLSSSCM 3 0.9822 1.5375 0.9778 1.2155 2.9134

Abbreviations: CM, cow milk; FCV, full cross‐validation; PLS, partial least square; RE%, percentage 
relative error; RMSECV, root mean square error of cross‐validation; RMSEP, root mean square error 
of prediction; SCM, skimmed cow milk; SSCM, semi‐skimmed cow milk; W, water.

TA B L E  3   Statistical parameters of PLS 
models from FCV and external validation 
procedures
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section 2.12.1). Table 3 summarizes the statistical results carried out 
from the external validation, in terms of R2, RMSEP, and percentage 
relative error (RE%). The prediction procedure showed satisfactory 
results for all the types of milk adulteration. The model PLSw high-
lighted the best results with RE% and RMSEP values of 2.81% and 
1.172%, respectively. The values of RMSEP were in the range 1.21 
and 1.38 in applying the relative PLS models to the samples adulter-
ated with cow milk.

4  | CONCLUSIONS

The combined use of chemometric methods and IR spectral analy-
sis in a multistep procedure proved to be very effective in detect-
ing even minimal variations in the composition and characteristics 
of human milk. The handling of ATR‐FTIR spectral fingerprints by 
PLS regression procedures was able to detect fraudulent additions 
of water or cow milk into human breastmilk.

In particular, the PLS‐DA technique proved to be particularly ro-
bust in discriminating, with a high percentage of correct classifica-
tion, pure human milk from those adulterated. A further definition 
of four PLS1 models, specific for the type of adulterant, allowed to 
determine the amount of adulterant, obtaining excellent results in 
terms of accuracy and precision when the models were validated on 
samples external to calibration.

This work demonstrates that ATR‐FTIR spectroscopy has great 
potential in the control of food matrices whose quality and integ-
rity must be ensured as being of fundamental importance for human 
health. Moreover, compared to other more complex analytical tech-
niques proposed in the literature, the proposed procedure is inex-
pensive, requires reduced execution times, and does not require any 
pretreatment of the samples.
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