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Various environmental and genetic factors affect the development and progression of skin cancers including melanoma. Melanoma
development is initially triggered by environmental factors including ultraviolet (UV) light, and then genetic/epigenetic alterations
occur in skin melanocytes. These first triggers alter the conditions of numerous genes and proteins, and they induce and/or reduce
gene expression and activate and/or repress protein stability and activity, resulting in melanoma progression. Microphthalmia-
associated transcription factor (MITF) is a master regulator gene of melanocyte development and differentiation and is also
associated with melanoma development and progression. To find better approaches to molecular-based therapies for patients,
understanding MITF function in skin melanoma development and progression is important. Here, we review the molecular
networks associated with MITF in skin melanoma development and progression.

1. Introduction

Much evidence that environmental factors are correlated
with various diseases has been accumulating. The envi-
ronmental factors can be classified into physical [1–4],
chemical [5–8], and biological [9, 10] factors. In addition
to the environmental factors, genetic factors also have a
great influence on the development and pathogenesis of
various diseases [2, 11, 12]. Skin is a representative organ
that directly suffers from environmental factors. There is
much evidence showing that sunlight and ultraviolet light
induce various skin cancers with modulation of the signaling
of cell proliferation and DNA damage [13–16]. Therefore,
roles of skin cancer-related molecules should be discussed
with consideration of the effects of environmental factors.

Moreover, the incidence of skin melanoma has recently been
increasing at a greater rate than that of any other cancer [17].
In the USA, 68,130 cases of invasive melanoma and at least
48,000 cases of melanoma in-situ were diagnosed in a year
[18]. Since melanoma is the most aggressive skin cancers
[17, 18], we focus on skin melanoma in this paper.

Not only studies on humans including epidemiological
research but also animal models can be useful for analyzing
melanomagenesis [19–23]. For example, exposure of skin to
oxygen might regulate development of benign melanocytic
tumors with modulation of tumor immunity in animal
models [19]. Ultraviolet (UV) light is correlated with
malignant transformation from benign melanocytic tumors
and melanoma [15, 24]. In addition to these environmental
factors, various kinds of genetic factors have been reported as

mailto:katomasa@isc.chubu.ac.jp


2 Journal of Skin Cancer

crucial factors of melanoma. For example, tyrosine kinases
are important for the development and pathogenesis of
melanoma in mice and humans [19, 21–23, 25–27]. Various
membrane trafficking-associated molecules have also been
reported to be involved in melanoma pathogenesis [28–
30]. Moreover, some acidic glycosphingolipids have been
reported to be expressed at high levels in melanomas and
promote their malignant properties by activating cell growth
and adhesion signals in melanoma cells [31–33].

Microphthalmia-associated transcription factor (MITF)
is believed to be one of the master molecules to regulate
melanomagenesis among the many previously reported
melanoma-associated molecules. Therefore, we selected
MITF as a cancer-associated molecule in melanoma and
introduce recent findings regarding MITF in this paper.

2. Results

Melanocytes, melanin-producing cells that are widely dis-
tributed in several tissues from fungi to primates on the long
evolutionary process, have multifunctionality for survival
strategy [34–41]. Melanocytes are also present in skin
surfaces and protect them from UV that damages DNA,
thereby causing genotoxic mutations or skin cancers [42, 43],
but once they transform, they can result in the development
of one of the most serious cancers, melanoma.

2.1. Microphthalmia-Associated Transcription Factor. The
MITF gene, encoding a basic-helix-loop-helix-leucine zipper
transcription factor, is expressed in melanocytes, retinal
pigmented epithelium, mast cells, osteoclasts, and melanoma
[36, 37, 40–42, 44–49]. MITF protein forms dimers and
binds to specific consensus DNA sequences in the promoter
regions of various target genes to regulate several events
including differentiation, proliferation, migration, invasion,
and tumorigenesis (Figure 1) [50].

2.2. Regulation of MITF Expression and Activity. Several tran-
scription factors directly control MITF gene transcription
to regulate melanocyte and melanoma development. Paired
box 3 (PAX3) and Sry-related HMG box 10 (SOX10), highly
correlated with melanocyte development and melanomagen-
esis [51–53], positively regulate MITF expression by directly
binding to MITF promoter regions [54–57]. Activation of
melanocortin 1 receptor (MC1R) by binding of alpha-
melanocyte stimulating hormone (α-MSH) induces cAMP
production via activation of adenylyl cyclase and phospho-
rylates cAMP response element-binding protein (CREB).
Phosphorylated CREB directly binds to the MITF promoter
region and stimulates MITF transcription [58, 59]. Wingless-
type (WNT) signaling is often activated in human melanoma
[60–63]. Activation of Frizzled receptors by binding of
WNT molecules enhances interaction of β-catenin with
TCF/LEF transcription factors, resulting in stimulation of
MITF promoter activity [64–66].

Furthermore, MITF protein is modified by several factors
after translation. Phosphorylation at Ser 301 of MITF is
induced by UV through p38 stress-activated kinase [67], and
Ser 298 of the protein is phosphorylated by GSK3β [65],

resulting in stimulation of MITF transcriptional activity. The
c-KIT receptor activated by stem cell factor (SCF, c-KIT
ligand) phosphorylates Ser 73 and thereby increases MITF
transcriptional activity followed by immediate degradation
of MITF [59, 68], whereas sumoylation at Lys 182 and Lys
316 increases MITF transcriptional activity [69, 70].

2.3. Transcriptional Targets of MITF. MITF is associated
with cellular senescence, apoptosis, proliferation, migra-
tion/invasion, and differentiation through regulating tran-
scription of target genes.

Overcoming cellular senescence, acquisition of anti-
apoptotic activity, and promotion of proliferation are critical
cellular events for the initiation of tumorigenesis [50, 71–75].
CDKN2A and WAF1 genes encode senescence mediator pro-
teins, p16INK4A and p14ARF, and p21Cip1, respectively, and are
the well-known familial melanoma locus [71, 73, 76]. Copy
number of CyclinD1 (CCND1) gene, a cell cycle mediator, is
amplified in 25% of human melanomas [77]. MITF directly
binds to the promoter regions of p16Ink4a, p21Cip1, and
CyclinD1 and positively regulates their transcription [78–80].
T-Box transcription factor 2 (TBX2) is highly expressed in
melanoma cell lines and represses p19ARF and p21Cip1, both
of which are implicated as effectors of senescence, promotes
proliferation, and suppresses senescence in melanoma [81,
82]. TBX2 has also been described as one of the MITF
target genes [81]. These reports indicate that MITF is linked
to melanoma development as a transcriptional activator of
senescence-/proliferation-associated genes.

Antiapoptotic effect is a key process for melanoma
development. B-cell leukemia/lymphoma 2 (BCL2) is an anti-
apoptotic gene and is widely expressed in human melanomas
[83–85]. BCL2 is an MITF target gene and is activated
at the transcription level [86]. Baculoviral IAP repeat
containing 7/melanoma inhibitor of apoptosis (BIRC7/ML-
IAP), which is an antiapoptotic regulator, is highly expressed
in human melanomas [87] and provides resistance to
apoptosis-based chemotherapeutic treatments [88]. BIRC7
transcription is also directly activated by MITF, and over-
expression of BIRC7 rescued melanoma from apoptosis in
MITF-depleted melanoma cells [87]. Antioxidative stress
activity is important for melanocyte survival and melanoma
development. Oxidative stress from environmental factors
such as solar UV causes DNA damage and apoptosis.
Recently, apurinic/apyrimidinic endonuclease1/redox factor-1
(APEX1/Ref1) has been identified as a MITF target gene and
has been shown to be partially rescued from oxidative stress-
induced apoptosis in MITF-depleted cells [89]. Hypoxia-
inducible factor 1 α (HIF1α) has also been demonstrated to
be activated at the transcription level by direct MITF binding
to the HIF1α promoter region and acts as an antiapoptotic
factor in melanoma cells [90]. Antiapoptotic activity and
resistance to chemotherapy of melanoma are under the
control of MITF activity.

Angiogenesis and invasion are critical steps for tumor
progression, and these activities are enhanced in melanoma.
MITF depletion in melanoma cells represses not only
transcription of HIF1α but also that of vascular endothe-
lial growth factor (VEGF), which is a target of HIF1α
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Figure 1: MITF-centered schematic scheme of cellular signaling on melanoma development and progression. Open arrows indicate direct
transcriptional targets of MITF. The amount of transcripts of these targets is regulated by direct MITF binding to cis-elements in their
promoter sequence. Black arrows or lines indicate signal cascades associated with melanoma development and progression. Arrows or lines
toward MITF mean direct association by binding to the MITF promoter region or MITF protein. αMSH: melanocyte-stimulating hormone;
BCL2: B-cell leukemia/lymphoma 2; BRN2: brain-2; CDK2/CDK4: cyclin-dependent kinase 2/4; CREB: cAMP-responsive element-binding
protein; DCT: dopachrome tautomerase; DIA1: diaphanous homolog 1; FZD: frizzled; GSK3β: glycogen synthase kinase 3 beta; HGF:
hepatocyte growth factor; HIF1α: hypoxia inducible factor 1, alpha subunit; MC1R: melanocortin 1 receptor; MDM2: transformed mouse
3T3 cell double minute 2; PMEL17: premelanosome protein; RB1: retinoblastoma 1; SCF: stem cell factor; SNAI2: snail homolog 2; SOX10:
Sry-related HMG box 10; TYR: tyrosinase, WNT: wingless-related MMTV integration site.

and has been demonstrated to be a major contributor
to angiogenesis [90]. The c-MET protooncogene, which
encodes hepatocyte growth factor receptor (HGFR), is highly
expressed in human melanomas and linked to metastatic
potential in melanomas. c-MET transcription is directly
regulated by MITF [91]. SNAI2 has been reported to be
a key player for epithelial-mesenchymal transition (EMT),
which is a crucial phenomenon during invasion, metas-
tasis of melanoma, by repressing E-cadherin transcription
and stimulating fibronectin expression, and MITF directly
activates the transcription level of SNAI2 [92–94]. On the
other hand, MITF directly binds to the promoter region of
diaphanous homolog 1 (DIAPH1, DIA1) gene and activates
its transcription, resulting in inhibiting the invasiveness of
melanoma by activation of actin polymerization [95].

MITF is also well known as a master regulator of melanin
production. Melanin pigment is synthesized from tyrosine
via an enzymatic process. This process is catalyzed by tyrosi-
nase family proteins, tyrosinase (TYR), tyrosinase-related
protein 1 (TYRP1), and DCT (dopachrome tautomerase).

After melanin production, melanin pigment is stored in
melanosomes, which are organelles containing melanin,
and is transported to the skin for UV protection. MART1
and PMEL17 are localized in melanosomes and contribute
to melanosome maturation [96–99]. Direct regulation of
melanin synthesis-associated genes at transcription levels by
MITF stimulates melanin production. [100–103].

2.4. “Two-Faced” Function of Mitf in Melanoma Develop-
ment and Progression. MITF is expressed in most human
melanomas, and stability of its expression is essential for
melanoma cell proliferation and survival [104]. In addition,
amplification of the MITF locus was observed in human
metastatic melanomas [105]. However, the expression level
of MITF in melanomas is significantly lower than that in
normal melanocytes, and higher expression level of MITF in
melanoma represses cell proliferation even in the presence
of oncogenic BRAF [106]. Most likely, MITF plays both
cancer-promoting and cancer-inhibiting roles alternated by
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the expression level and/or activity. A low level of MITF
expression promotes proliferation in melanoma, whereas
a high level of MITF expression promotes differentiation
through induction of cellular senescence and melanin pro-
duction [107–109]. MITF has the ability to upregulate
transcription of melanoma-promoting genes (e.g., CyclinD1,
BCL2, c-MET) and also that of melanoma-repressing genes
(e.g., p16Ink4a, p21Cip1, DIAHP1). Taken together, MITF
has two-faced functions in melanoma development and
progression, and strict regulation of MITF in its expression
and/or activity is likely to switch melanocytes to melanoma
cells.

3. Concluding Remarks

Skin melanoma is an aggressive tumor of the skin, and
patients have a poor prognosis. Analysis of the expression
profile and function of MITF and identification of its target
genes are important to better understand the complex system
of melanoma development and progression. Expression pat-
terns, functions, and many target genes of MITF have been
reported by a number of groups, though the complicated
functions of MITF in skin melanoma development and
progression are still not well understood. Extensive analyses
of MITF will lead to a better understanding of melanoma
development and progression and to the establishment of
more effective therapeutics.
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