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Abstract: Thoracic imaging has been revolutionized through
advances in technology and research around the world, and so has
China. Thoracic imaging in China has progressed from anatomic
observation to quantitative and functional evaluation, from using
traditional approaches to using artificial intelligence. This article
will review the past, present, and future of thoracic imaging in
China, in an attempt to establish new accepted strategies moving
forward.
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O ver the past 30 years, thoracic imaging has been revo-
lutionized through advances in technology and research

from around the world, including China. The Chinese Society
of Thoracic Radiology was established in 1986, and has since
played a leading role in thoracic imaging in China. During
this time, thoracic imaging in China has progressed from
anatomic observation to quantitative and functional evalua-
tion, from using traditional approaches to using artificial
intelligence, with almost all imaging methods, including
x-ray, computed tomography (CT), magnetic resonance
imaging (MRI), and positron emission tomography (PET)/
CT and the whole spectrum of lung diseases being addressed.
This article will review the past, present, and future of
thoracic imaging in China, corresponding to anatomic and
morphologic imaging, quantitative and functional imaging,

and artificial intelligence imaging, in an attempt to establish
new accepted strategies moving forward.

ANATOMIC AND MORPHOLOGIC IMAGING
The development of multi-detector row CT has enabled

greater spatial resolution, shorter scanning duration, and
better volumetric reconstruction than before, with contrast-
enhanced CT allowing assessment of vasculature and
perfusion. This led to the anatomic and morphologic study
becoming popular from 1990s to 2000s in China. Until
recently, the morphologic evaluation was still the basis for
disease diagnosis with chest CT. Pulmonary lesion location,
imaging features, and distribution patterns are the main
clues for diagnosis and differential diagnosis.

A great deal of effort has been expended to develop a
noninvasive means of characterizing solitary pulmonary
nodules or masses, currently one of the greatest challenges in
the field of thoracic imaging. Wang et al1 collected 93
patients with solitary peripheral lung cancers and found
relationships between peripheral lung cancer and the
bronchi (Br), pulmonary arteries (PA), and pulmonary veins
(PV) that were useful for a differential diagnosis. They
identified 5 types of the tumor-Br, tumor-PA, and tumor-PV
relationship: type1 (Br1, PA1, and PV1), Br, PA, or
PV erupted at the edge of nodule; type 2 (Br2, PA2, and
PV2), erupted at the center of nodule; type 3 (Br3, PA3,
and PV3), penetrated through the nodule; type 4 (Br4, PA4,
and PV4), contacting the nodule but stretched or encased;
type 5 (Br5, PA5, and PV5), contacting the nodule but
smoothly compressed. Their study showed the bronchi and
PA changes surrounding the lung cancer had positive rela-
tions (χ2= 12.3918, r= 0.7524, P< 0.01). Li et al2 inves-
tigated the value of cavity wall morphologic features in
differentiating between peripheral lung cancer cavities and
single pulmonary tuberculous thick-walled cavities. They
divided the cavities into form discordance of cavity walls
(FDCW) and form concordance of cavity walls (FCCW).
The study showed a peripheral lung cancer cavity most
frequently appeared as FDCW-III, followed by FDCW-I,
and tuberculoma cavity was often manifested as FCCW-I
and FDCW-II, whereas a fibrous thick-walled cavity was
often shown as FCCW-II. Li et al3 analyzed incidence, CT
findings, and pathologic features of tree-in-bud patterns in
652 consecutive patients with confirmed central lung cancer.
In their study, tree-in-bud patterns were commonly detected
in central lung squamous cell carcinoma, and corresponded
with the mucoid impaction of bronchioles and bronchiolitis
pathologically.

With a widespread application for lung cancer screen-
ing, more cases of a type of lung cancer presenting as soli-
tary cystic airspaces have been detected. Thus, Tan et al4

analyzed CT features in the 106 patients with pathologically
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proven lung cancer associated with cystic airspaces, the
largest cohort in 2019. They highlighted the CT features
including nonuniform cystic walls in 96 (90.6%) patients,
cyst septations in 62 (58.5%) patients, nodular walls in 58
(54.7%) patients, ground-glass opacity around the cyst in 53
patients (50.0%), and irregular margins in 42 (39.6%)
patients, all of which indicated malignancy. They thought
the cystic changes were result of bronchiolar obstruction
by fibrous tissue or tumor cells with a “check-valve”
mechanism.

QUANTITATIVE IMAGING AND FUNCTIONAL
IMAGING

Since the 2000s, quantitative and functional thoracic
imaging has become available as a result of new advanced
imaging techniques being developed. Quantitative imaging
usually focuses on CT to evaluate solitary pulmonary
nodules, lung density, airways, and vessels. With the
emergence of dual-energy CT (DECT) and functional MR,
more functional information could be acquired to evaluate
various pulmonary diseases.

CT Lung Cancer Screening With Quantitative
Evaluation

Lung cancer is the leading cause of cancer death for
men and women in both China and worldwide.5,6 The age-
standardized rate (ASRs) incidence in China and the
United States are similar, but the age-standardized rate
mortality rate of lung cancer in China is higher than in the
United States.6 Until 2011, National Lung Screening
Trial7 had shown that lung cancer screening using low-
dose CT (LDCT) could reduce mortality by up to 20%
when compared with a chest x-ray. Similarly, from 2013 to
2014, in Yang et al’s8 study, a total of 6717 eligible par-
ticipants with high-risk factors for lung cancer were ran-
domly assigned to a screening group or a control group
with questionnaire inquiries (3550 to LDCT screening and
3167 to standard care). In the 2-year follow-up period,
lung cancer was detected in 51 participants (1.5%) in the
LDCT group versus 10 (0.3%) in the control group,
respectively. Early-stage lung cancer was found in 94.1%
versus 20%, respectively. They concluded compared with
usual care, LDCT led to a 74.1% increase in detecting
early-stage lung cancer.

On the basis of these results, lung cancer screening
programs have been implemented nationwide. For instance9

in a screening program in Shanghai enrolling 14,506 subjects
from 2014 to 2016, the positive rate of lung nodule on
LDCT and incidental detection rate of lung cancer was
29.89% and 1.23%, respectively. A total of 238 lung cancers
were found with the incidental detection rate of stage I lung
cancer being 0.97%. Meanwhile, a similar program was
carried out from 2014 to 2019 in Gejiu, Yunnan province, in
which 2006 participants were enrolled. A total of 40 lung
cancer cases were confirmed during this program.10 In 2015,
the Chinese society of radiology launched the Chinese ver-
sion of “Expert consensus of low dose CT lung cancer
screening.” A series of recommendations were proposed,
including the current status of lung cancer screening, the
implementation of the program, treatment strategy for
nodules, and the significance of lung cancer screening.11

At present, the Netherlands-China Big-3 screening12

(NELCIN-B3, including lung cancer, chronic obstructive
pulmonary disease [COPD] and cardiovascular disease,

2 rounds in total) is in the second round of annual follow
ups in Shanghai. The 1-stop CT scan could evaluate
emphysema, airways or functional small airways, and
pulmonary vessels qualitatively. CT images have excellent
correlation with pathologic studies in evaluating the severity
and extent of emphysema. CT quantification parameters for
emphysema, including emphysema index, air trapping,
mean lung density, and total lung volume have been cor-
related with pulmonary function. Gao et al13 found CT
quantification parameters for emphysema were significantly
different between patients with asthma COPD overlap
syndrome and COPD.

Dual-source CT
In 2006, the first-generation dual-source CT system was

put on the market. The basic principle of a DECT or
spectral CT is the application of two distinct energy settings
that permits the differentiation of materials that possess
different molecular compositions according to their attenu-
ation profiles. With this technology, multiple data sets such
as elemental decomposition analyses, iodinated attenuation
maps, monochromatic images, and virtual unenhanced
images can be obtained simultaneously.

These technical characteristics provide many useful
tools for oncologic imaging, including tumor detection,
lesion characterization, and evaluation of response to
therapy. Thus, Chinese scholars found that quantitative
parameters generated by DECT, including iodine concen-
tration (IC) and slope of the spectral curve, provide infor-
mation useful for differentiating the pathologic grades of
non–small cell lung cancers (NSCLCs),14 predicting the
epithelial growth factor receptor (EGFR)-positive and
EGFR-negative groups among patients with lung cancer,15

distinguishing SCLC from NSCLC,16 and correlates with
the expression level of vascular endothelial growth factor17

or microvessel densities (MVDs).18 In the study by Li
et al,18 the IC, IC difference, and normalized IC of tumors
were measured in the arterial phase, venous phase, and
delayed phase. Correlation analysis was performed for IC
and MVD. The MVD of lung cancer correlated positively
with the IC, IC difference, and normalized IC on 3-phase
contrast-enhanced scanning (r range, 0.581 to 0.800; all
P< 0.001), and the IC in the venous phase showed the
strongest correlation with MVD (r= 0.800; P< 0.001). So
IC indexes derived from spectral CT were useful indicators
for evaluating tumor angiogenesis.

Functional MRI
Imaging capabilities have progressed substantially over

the years. Many of these new imaging techniques can provide
both functional and anatomic information. Complementary
to CT of the lung, MRI of the lung, which previously was
limited by field inhomogeneity and the lack of protons in lung
tissue, has shown potential for lung assessment, including
morphology, perfusion, ventilation, and right heart assess-
ment. Pulmonary parenchyma perfusion with flow-sensitive
alternating inversion recovery has been successfully per-
formed in patients with lung cancer and pulmonary
embolism.19 Moreover, studies have been conducted to
compare MRI and other imaging modalities. Fan et al20

compared CT volume analysis with MR perfusion imaging in
differentiating smokers with normal pulmonary function
(controls) from COPD patients. They found that MRI per-
fusion parameters were more sensitive in distinguishing con-
trols from mild COPD, and in identifying abnormalities
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among smokers with normal pulmonary function. Tang
et al21 compared the diagnostic performance of a 64-
multidetector-row CT and a 3.0 T MRI in T staging of
NSCLC. According to the pathologic results, both CT and
MRI provided acceptable overall accuracies in determination
of T staging in NSCLC. CT was indicated to be more
accurate in determination of NSCLC staged T1 and T2
(100% vs. 75%, 96.4% vs. 82.1%), whereas MRI was found to
be slightly superior in the identification of NSCLC staged T3
and T4 (80% vs. 50%, 100% vs. 33.3%). Chinese scholars
have also shown interest in novel sequence optimization and
application. Chen et al22 developed a rapid free-breathing
dynamic contrast-enhanced sequence for simultaneous qual-
itative and quantitative assessment of pulmonary lesions
using Golden-angle RAdial Sparse Parallel (GRASP) imag-
ing, as dynamic contrast-enhanced sequences often suffered
from motion artifacts and insufficient imaging speed. Xu
et al23 proved the usefulness of diffusion-weighted imaging
with background signal suppression for detecting mediastinal
lymph node metastasis of NSCLC. Yan et al24 evaluated the
diagnostic performance of 5 MR sequences to detect
pulmonary infectious lesions of invasive fungal infections.
Studies of differentiating diagnosis in solitary pulmonary
lesions have been performed as well.25,26

Over the past decade, hyperpolarized gas MRI has
emerged as a new diagnostic method. This method can
visualize and quantify pulmonary function without radia-
tion and in real time. The technique utilizes dynamic
nuclear polarization to achieve signal improvement of
> 10,000-fold in magnetic resonance.27 For pulmonary
diseases and during clinical routine, pulmonary function
tests can detect global pulmonary function changes, but
cannot comprehensively quantify physiological changes,
such as air-blood exchange in the lung. CT can only detect
the morphologic changes. Hyperpolarized gas MRI pro-
vides an avenue for realtime measurement of morphology,
diffusion and gas exchange function without radiation,
which outperforms pulmonary function test and CT.
Therefore, hyperpolarized MRI has attracted much atten-
tion in both pneumology and radiology. 129Xe is commonly
used in hyperpolarized MRI due to its nuclear spin quan-
tum number27,28 and longer longitudinal relaxation times
(T1). It also has good solubility in blood and tissue, and
possesses excellent chemical shift sensitivity. In 2016, Zhou
and his colleagues conducted a series of studies with
hyperpolarized 129 Xe MRI focusing on pulmonary func-
tion and disease, as well as the potential clinical advan-
tages. Their works included: pulmonary physiological
evaluation by a modified chemical shift saturation recovery
pulse sequence in radiation-induced lung injury,29 detection
of mild emphysema by quantification of lung respiratory
airways with hyperpolarized xenon diffusion MRI,30 dif-
fusion-weighted chemical shift saturation recovery
sequence permitting the simultaneous assessment of lung
morphometry at the alveolar level and the gas exchange
function of the lungs,31,32 the feasibility of compressed
sensing (a method for reconstructing the signal from sparse,
undersampled data using special reconstruction techniques)
to accelerate the acquisition of multi-b diffusion MRI
(which means diffusion MRI with multiple different b
values),33 the feasibility of hyperpolarized 129 Xe MRI in
quantitative evaluation of lung injury caused by PM 2.5
(which refers to particulate matter in the atmosphere with a
diameter of 2.5 µm or less).34 Their results proved that
hyperpolarized 129 Xe MRI is a powerful tool to image the

air space and evaluate pulmonary gas exchange function
and physiological changes.

PET/CT in Functional Imaging
PET/CT combines the functional imaging of PET with

the anatomic imaging of CT, and is mostly used in the
differential diagnosis of lung nodules, TNM staging, and
therapeutic evaluation. Domestic research35 showed that
SUVmax of NSCLC was positively correlated with vascular
endothelial growth factor expression levels. Wang et al36

found that 18F-FDG PET/CT showed higher accuracy in
TNM staging than spiral CT (91.94% vs. 80.65%). The
prediction of distant metastasis37 and genetic mutfation38 of
NSCLC has been reported in China. Chen et al39 found that
SUVmax could effectively predict the EGFR mutation
status of NSCLC.

ARTIFICIAL INTELLIGENCE (AI) IMAGING
(AI) is defined as the theory and development of

computer systems able to perform tasks normally requiring
human intelligence, such as visual perception, speech rec-
ognition, decision-making, and translation. AI has started
to be applied in medicine over the last few years. This is
driven by the advent of deep-learning algorithms, com-
puting hardware advances, and the exponential growth of
medical data that is being generated and used for clinical
decision making. Radiomics, one approach to intelligent
imaging analysis, was first proposed by Lambin et al40 in
2012. The most common AI terminologies include machine
learning, deep learning, convolutional neural network, and
so on. Thoracic imaging has been one of the pioneers in
applying AI to medicine. At present, AI in thoracic imaging
has been applied to scanning techniques, imaging diag-
noses, and other related radiologic management activities.
The application of AI for thoracic imaging is primarily in
computer visual tasks, including classification, detection,
and segmentation. Different AI algorithms, correspond to
separate tasks such as lung lesion detection, diagnosis and
differential diagnosis, prediction of progress, and ther-
apeutic evaluation.

AI-based Thoracic CT Technique and Imaging
Workflow Optimization in China

The accurate positioning of the patient during a CT
scan is very important for image quality and diagnosis.
Typically, the CT technician would stand by the scanning
bed to ensure the patient maintained the correct position.
During the COVID-19 pandemic, this close contact would
increase the risk of infection. Chinese scientists have
developed a no-touch scanning technique based on AI to
eliminate this close contact between technicians and
patients, which has been granted a scientific award by the
government. In the study of Tan et al,41 a CT scanner
(United Imaging uCT780) equipped with the Tianyan AI
platform was used for COVID-19 chest CT screening. They
adopted intelligent assisted positioning, communicated with
patients by microphone, and controlled the CT scanner
remotely in the control room; then the positioning frame
adaptively delineated the scanning frame. Deep-learning
based CT reconstruction algorithms to be used to improve
the image quality of low dose CT scans and simulate the
routine dose CT images are in development by the United
Imaging Company in China.41 Imaging workflow can
benefit from AI through reduction of labor and time
required. Intelligent chest imaging quantitative analysis,
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automatic reconstruction of lung nodules, key images
selection and automatic layout on the film, and structure
report generation have been developed and validated in
the Netherlands-China Big-3 screening (NELCIN-B3) in
Shanghai, China, proving the excellent performance and
potential in large scale screening.

AI in Thoracic Radiography
Thoracic radiography is the most common approach

for the detection and diagnosis of lung lesions due to its
convenience and economy. China has a large population
and a shortage of medical resources on average, especially in
the northwest and rural areas. This results in a heavy
workload for radiologists to interpret chest radiographies,
even when imaging equipment is available. Therefore, AI
has excellent prospects for chest radiographs, which could
reduce the workloads and improve diagnoses.

Lung nodule detection is the main application of AI in
chest radiography, and can be used for both solid nodules
and ground glass nodules. Liu et al42 was the first to detect
ground glass nodule (GGN) on chest radiography using
deep learning and found the deep learning model took a
total of 17 seconds with a sensitivity of 69.64%, faster than
the experienced radiologist with a sensitivity of 55.36%
(50 minutes and 24 seconds). With the aid of deep learning-
based computer aided diagnostic system, the sensitivity of
junior radiologists and senior radiologists for the diagnosis
of pulmonary nodules was 65.45% and 76.02% respectively,
which was 13.82% and 8.95% higher than that of inde-
pendent reading radiologists.43 For the diagnosis of
pulmonary disease, Chinese scholars have attempted to
apply various AI methods to tuberculosis, viral pneumonia,
community-acquired pneumonia and other pneumonia
CXRs.44,45 Viral pneumonia, especially COVID-19, has
received the dedicated efforts of Chinese scholars to apply
AI in the diagnosis, severity assessment, and prediction of
outcomes for COVID-19 patients based on chest
radiography.45,46 Wang et al46 developed and tested an
efficient and accurate deep learning scheme that assists
radiologists in automatically recognizing and localizing
COVID-19. One fully automated deep-learning system47

could predict the COVID-19 pneumonia severity well, with
an area under curve (AUC) of 0.868, a specificity of
80.65%, and a sensitivity of 82.05%. Furthermore, the
system performed comparably to senior radiologists, and
improved the performance of junior radiologists.

While in clinical practice, multiple abnormalities are
common, proving to be more of a challenge for AI than one
abnormality. Multiple task AI has been developed and
validated in China. Liu et al presented a novel method
termed segmentation-based deep fusion network (SDFN) to
automatically recognize 14 thoracic abnormalities, includ-
ing atelectasis, consolidation, infiltration, pneumothorax,
edema, emphysema, fibrosis, effusion, pneumonia, pleural
thickening, cardiomegaly, nodule, mass, and hernia, with a
mean AUC score of 0.815.48 They used the Chest x-ray 14
Dataset (a publicly available dataset) to develop and vali-
date the classification performance of the proposed SDFN.
The Chest x-ray 14 Dataset labeled up to 14 thoracic
abnormalities, and the labels of each image were mined
from the associated radiological text reports using natural
language processing. A triple-attention learning (A3 Net)
model proposed by Wang et al49 and other 6 recent deep
learning models all used the Chest x-ray14 dataset to build
models for classifying the same 14 thoracic abnormalities,

but with different methods. The triple-attention learning
model integrated three attention modules in a unified
framework for channel-wise, element-wise, and scale-wise
attention learning. The proposed A3 Net model achieved
the highest AUC in diagnosing 13 thoracic abnormalities
(with the exception of atelectasis) compared with other 6
models and the highest average AUC of 0.826, which was
the best average performance among 7 models.

AI in Thoracic CT
CT is the primary tool for pulmonary disease detection

and diagnosis due to its high resolution. With the popular-
ization of thin-slice chest CT and the increasing number of
Chinese patients requiring disease diagnosis, many Chinese
radiologists have to read tens of thousands of images every
day, increasing the risk of missed diagnosis and inaccurate
diagnosis due to radiologists suffering from visual fatigue.
In this situation, AI-based analysis of chest CTs could help
alleviate the shortage of radiologists and improve the diag-
nostic efficiency. In China, the detection of lung nodules is
the first step in determining radiomics and AI performance.
The effective segmentation of a lung nodule is an important
step in furthering radiomics and AI research, especially for
ground glass nodules due to the low contrast. Song et al50

proposed a novel toboggan based growing automatic seg-
mentation approach (TBGA) with a 3-step framework,
which were automatic initial seed point selection, multi-
constraints 3D lesion extraction and the final lesion refine-
ment. The TBGA provided a high lesion detection rate
(96.35%), accelerating the development of a lung nodule
detection product. Lung nodule detection by AI was eval-
uated with phantom and clinical cases. At present, this lung
nodule detection system has been approved by China Food
and Drug Administration (CFDA). Lung nodule location,
diameter, volume, density classification, mean CT value,
histogram, malignant stratification and management could
be output automatically. Deep learning shows good per-
formance in classification and recognition due to its large
amount of data and comprehensive feature extraction. Su
et al51 proposed a Faster R-CNN algorithm for the detec-
tion of lung nodules, derived from a classic target detection
algorithm based on CNN. The improved and optimized
Faster R-CNN network detection accuracy reached 91.2%
and outweighed the other traditional algorithms.

Depending on the classification task assigned to the
computer, AI is used to explore the differential diagnosis,
histologic classification of lung cancer, subtype of adeno-
carcinoma (ADC), prediction of gene mutation, lymph
node metastasis, and prognosis. Various deep learning
algorithms are used to predict the properties of lung
nodules.52–54 Xu et al52 proposed a novel deep learning
method called MSCS-DeepLN, which meant multi-scale
cost-sensitive neural networks for lung nodule. MSCS-
DeepLN evaluated lung nodule malignancy while simulta-
neously solving the problem of small datasets and category
imbalance. When compared to other state-of-the-art
methods, the proposed method obtained the best results for
3 metrics (accuracy= 92.64%± 0.12, precision= 90.39%±
0.48, F1-score= 87.91%± 0.11). CT-based radiomics pre-
dicts the histological subtypes of lung cancer.55,56 Zhu
et al55 attempted to distinguish squamous cell carcinoma
(SCC) from lung ADC based on radiomic signature, finding
there to be a powerful prediction performance with AUC of
0.905 and 0.893 in the training cohort and independent
validation cohort, respectively. A Multi-resolution 3D
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Multi-classification deep learning model (Mr-Mc) and a
Multi-Layer Perceptron machine learning model were
constructed for diagnosing multiple pathologic types of
pulmonary nodules based the LIDC-IDRI (the lung image
database consortium and image database resource ini-
tiative) dataset containing 3D CT images and serum
biomarkers.57 Accurate preoperative identification of the
degree of invasiveness is crucial for predicting the prognosis
of GGNs and guiding proper surgical treatment. Radiomics
could extract a large number of invisible features from
medical images for clinical decision-making. It has also
been used widely to predict the invasiveness of ground glass
nodules.58,59 Fan et al58 retrospectively collected 4 multi-
center datasets to construct and verify radiomics signatures
to allow preoperative discrimination of lung invasive ADCs
from noninvasive lesions manifesting as GGN, with AUC
of 0.917, accuracy of 86.3%, sensitivity of 83.1%, and spe-
cificity of 89.6% in the primary cohort. Radiomics still has
some limitations, including the need for manual feature
extraction from images, poor repeatability, as well as time-
consuming and cumbersome workflows. Some studies have
used machine learning or deep learning methods to assess
the invasiveness of lung ADC; both the lesion and the peri-
lesion were included in the region of interest to study.60–62

Radiomics, machine learning, and deep learning have been
used to predict a variety of gene mutations in lung cancer,
such as EGFR mutations, ALK mutations and Kras
mutations. The mutation status of the target gene deter-
mines the effectiveness of the targeted drug. Several pub-
lications
have reported on AI assisted prediction of ALK gene
mutations.63,64 Song et al63 analyzed 1218 quantitative
radiomic features, 12 conventional CT features and 7 clin-
ical features. They found that the addition of clinical fea-
tures and conventional CT features significantly enhanced
the validation performance of the radiomic model in the
primary cohort (AUC= 0.83 to 0.88, P= 0.01).

Pneumonia is another hot topic in thoracic AI research.
A series of COVID-19 studies have been performed for
segmentation, diagnosis, quantitation, severity assessment,
and prediction of progress. Wang et al65 developed a fully
automatic deep learning system for COVID-19 diagnosis
with an AUC of 0.87, and succeeded in stratifying patients
into high- and low-risk groups. COPD is a heterogeneous
disease that begins with the remodeling of small airways and
small vessels, eventually leading to the destruction of
pulmonary parenchyma and formation of emphysema. The
AI research currently conducted for COPD is focused on:
imaging biomarkers in high risk COPD populations,
screening COPD, severity assessment, and predicting the
progress of the disease.66,67 The parameter response map-
ping derived from chest CT images uses machine learning to
predict pulmonary function test results, and has shown good
performance in Shanghai, China. Moreover, a one-stop
thoracic CT to evaluate lung cancer and COPD has been
developed and validated with a deep-learning based auto-
matic algorithm used to generate a quantitative analysis and
structure report for NELCIN-B3 in Shanghai, China.12 AI
research in asthma, chest trauma and mediastinal diseases
has also been reported in China.68–70

AI in Thoracic MRI
Pulmonary MR is not common due to the low spin

density of the pulmonary parenchyma. However, MR could
provide additional functional information. Pulmonary

functional MR mainly focuses on perfusion, ventilation, and
pulmonary microstructure using hyperpolarized 129Xe for
pulmonary embolisms, lung cancers, COPD, and healthy
volunteers. Many animal experiments have also been per-
formed to evaluate the pulmonary ventilation in a COPD
rat model71 as well as other animal model pulmonary inju-
ries. Zhou et al72,73 explored a series of human lung gas
MRIs using deep learning, and proposed one optimized
algorithm that outperformed classical undersampling
methods, paving the way for future use of deep learning in
real-time and accurate reconstruction of gas MRIs. Thora-
cic AI studies addressing the differential diagnosis of lung
nodules, the classification of SCLC and NSCLC, and
mediastinal lesions with MR have been reported in
China.74–76

AI in Thoracic PET/CT
PET/CT could simultaneously acquire both functional

metabolic information and anatomic information. PET/CT
based AI has been utilized for lung cancer differential
diagnosis, subtype classification, gene mutation, lymph node
metastasis, tumor segmentation, and prognosis assessment.
Yang et al77 have developed and validated a radiomics
nomogram by combining the radiomic features extracted
from 18F-fluorodeoxyglucose PET/CT images and clin-
icopathologic factors to evaluate the overall survival (OS) of
patients with NSCLC. They found that the rad-score com-
bined with the clinical model had the best C-index (0.776
and 0.789 for the training and validation cohorts, respec-
tively) for the survival outcome, offering feasible and prac-
tical guidance for individualized management of patients
with NSCLC. How to rationally fuse the complementary
information in PET/CT for accurate tumor segmentation is
challenging. Li et al78 has proposed a novel deep learning
based variational method to automatically fuse multi-
modality information for tumor segmentation in PET/CT,
which has shown good performance for tumor segmenta-
tion, even for tumors with Fluorodeoxyglucose (FDG)
uptake inhomogeneity, blurred tumor edges, and complex
surrounding soft tissues, achieving an average dice similarity
index of 0.86 ± 0.05, sensitivity of 0.86 ± 0.07, positive pre-
dictive value of 0.87± 0.10, volume error of 0.16± 0.12, and
classification error of 0.30 ± 0.12.

Chinese Expert Consensus and AI Product
Development

The Chinese experts have begun to focus on lung
nodule annotation criteria, database construction, and
corresponding quality control. Two Chinese expert
consensus79,80 have been issued in Chinese, including
“Expert consensus on the rule and quality control of
pulmonary nodule annotation based on thoracic CT,” and
“Expert consensus on the construction and quality control of
thoracic CT datasets for pulmonary nodules.” Pulmonary
nodule annotation consists of 4 steps: (1) pulmonary nodules
are detected on the lung window by the labeling radiologists;
(2) pulmonary nodules are classified by the labeling radiol-
ogists into intrapulmonary solid nodules, intrapulmonary
partial solid nodules, intrapulmonary pure ground glass
nodules, intrapulmonary calcified nodules, pleural nodules,
pleural plaques, and pleural calcified nodules; (3) the labeling
team leaders and arbitration experts review and revise the
detection results and classification results; (4) the boundaries
of pulmonary nodules are segmented, and the diameters of
the nodules are automatically generated by the labeling
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software. For example, intrapulmonary solid nodules are
defined as circular or quasi-circular, focal increased density
shadows within the lung parenchyma, with clear borders,
and the edges of bronchi and blood vessels in the lesions
cannot be identified, with a maximum diameter of ≤ 3 cm.
Firstly, the location of nodules is judged subjectively in the
lung window, and the nodules are divided into intra-
pulmonary nodules or pleural nodules. Then, intra-
pulmonary nodules are classified as solid or subsolid nodules
according to whether the nodules contain ground-glass
density components in the lung window.79 Presently, the CT
lung nodule detection system and pneumonia triage system
have been approved by CFDA in the last months and
applied in clinical routine work.

Going forward, thoracic imaging in China should
embrace new advanced techniques and build more interna-
tional and multidisciplinary cooperation to make further
progress, following the trend of applying AI to thoracic
diseases and developing more products to assist radiologists.

ACKNOWLEDGMENTS

The authors would like to acknowledge Prof. U. Joseph
Schoepf, MD, Akos Varga Szemes, MD, PhD, and Callum E.
Gill, MS from the Division of Cardiovascular Imaging,
Medical University of South Carolina, Charleston, SC to
revise this paper.

REFERENCES
1. Wang Y, Liang KR, Liu XG, et al. Relationship between

peripheral lung cancer and the surrounding bronchi, pulmonary
arteries, pulmonary veins: a multidetector CT observation. Clin
Imaging. 2011;35:184–192.

2. Li BG, Ma DQ, Xian ZY, et al. The value of multislice spiral
CT features of cavitary walls in differentiating between
peripheral lung cancer cavities and single pulmonary tuber-
culous thick-walled cavities. Br J Radiol. 2012;85:147–152.

3. Li Q, Fan X, Huang XT, et al. Tree-in-bud pattern in central
lung cancer: CT findings and pathologic correlation. Lung
Cancer. 2015;88:260–266.

4. Tan Y, Gao J, Wu C, et al. CT characteristics and pathologic
basis of solitary cystic lung cancer. Radiology. 2019;291
:495–501.

5. Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk
factors in China and its provinces, 1990-2017: a systematic
analysis for the Global Burden of Disease Study 2017. Lancet.
2019;394:1145–1158.

6. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer
statistics 2018: GLOBOCAN estimates of incidence and
mortality worldwide for 36 cancers in 185 countries. CA Cancer
J Clin. 2018;68:394–424.

7. National Lung Screening Trial Research Team, Aberle DR,
Adams AM, Christine DB, et al. Reduced lung-cancer mortal-
ity with low-dose computed tomographic screening. N Engl J
Med. 2011;365:395–409.

8. Yang W, Qian F, Teng J, et al. Community-based lung cancer
screening with low-dose CT in China: results of the baseline
screening. Lung Cancer. 2018;117:20–26.

9. Fan L, Wang Y, Zhou Y, et al. Lung cancer screening with low-
dose CT: baseline screening results in Shanghai. Acad Radiol.
2019;26:1283–1291.

10. Wei MN, Su Z, Wang JN, et al. Performance of lung cancer
screening with low-dose CT in Gejiu, Yunnan: a population-
based, screening cohort study. Thorac Cancer. 2020;11:
1224–1232.

11. Cardiothoracic Group of Chinese Medical Association Radi-
ology Branch. Expert consensus of low dose CT lung cancer
screening [in Chinese]. Chin J Radiol. 2015;49:328–335.

12. Du YH, Li Q, Sidorenkov G, et al. Computed tomography
screening for early lung cancer, COPD and cardiovascular
disease in Shanghai: rationale and design of a population-based
comparative study. Acad Radiol. 2021;28:36–45.

13. Gao Y, Zhai X, Li K, et al. Asthma COPD overlap syndrome
on CT densitometry: a distinct phenotype from COPD. COPD.
2016;13:471–476.

14. Lin LY, ZhangY, Suo ST, et al. Correlation between dual-energy
spectral CT imaging parameters and pathological grades of non-
small cell lung cancer. Clin Radiol. 2018;73:412.e1–412.e7.

15. Wu F, Zhou H, Li F, et al. Spectral CT imaging of lung cancer:
quantitative analysis of spectral parameters and their
correlation with tumor characteristics. Acad Radiol. 2018;
25:1398–1404.

16. Xu X, Sui X, Zhong W, et al. Clinical utility of quantitative
dual-energy CT iodine maps and CT morphological features in
distinguishing small-cell from non-small-cell lung cancer. Clin
Radiol. 2019;74:268–277.

17. Li GJ, Gao J, Wang GL, et al. Correlation between vascular
endothelial growth factor and quantitative dual-energy spectral
CT in non-small-cell lung cancer. Clin Radiol. 2016;71:
363–368.

18. Li Q, Li X, Li XY, et al. Spectral CT in lung cancer:
usefulness of iodine concentration for evaluation of tumor
angiogenesis and prognosis. AJR Am J Roentgenol. 2020;215:
595–602.

19. Fan L, Liu SY, Sun F, et al. Assessment of pulmonary
parenchyma perfusion with FAIR in comparison with DCE-
MRI—Initial results. Eur J Radiol. 2009;70:41–48.

20. Fan L, Xia Y, Guan Y, et al. Capability of differentiating
smokers with normal pulmonary function from COPD patients:
a comparison of CT pulmonary volume analysis and MR
perfusion imaging. Eur Radiol. 2013;23:1234–1241.

21. Tang W, Wu N, OuYang H, et al. The presurgical T staging of
non-small cell lung cancer: efficacy comparison of 64-MDCT
and 3.0 T MRI. Cancer Imaging. 2015;15:14.

22. Chen L, Liu D, Zhang J, et al. Free-breathing dynamic
contrast-enhanced MRI for assessment of pulmonary lesions
using golden-angle radial sparse parallel imaging. J Magn
Reson Imaging. 2018;48:459–468.

23. Xu L, Tian J, Liu Y, et al. Accuracy of diffusion-weighted
(DW) MRI with background signal suppression (MR-DWIBS)
in diagnosis of mediastinal lymph node metastasis of nonsmall-
cell lung cancer (NSCLC). J Magn Reson Imaging. 2014;
40:200–205.

24. Yan C, Tan X, Wei Q, et al. Lung MRI of invasive fungal
infection at 3 Tesla: evaluation of five different pulse sequences
and comparison with multidetector computed tomography
(MDCT). Eur Radiol. 2015;25:550–557.

25. Zou Y, Zhang M, Wang Q, et al. Quantitative investigation of
solitary pulmonary nodules: dynamic contrast-enhanced MRI
and histopathologic analysis. AJR Am J Roentgenol. 2008;
191:252–259.

26. Yuan M, Zhang YD, Zhu C, et al. Comparison of intravoxel
incoherent motion diffusion-weighted MR imaging with
dynamic contrast-enhanced MRI for differentiating lung cancer
from benign solitary pulmonary lesions. J Magn Reson
Imaging. 2016;43:669–679.

27. Hurd RE, Yen Y-F, Chen A, et al. Hyperpolarized 13C
metabolic imaging using dissolution dynamic nuclear polar-
ization. J Magn Reson Imaging. 2012;36:1314–1328.

28. 2.Walker TG, Happer W. Spin-exchange optical pumping of
noble-gas nuclei. Rev Mod Phys. 1997;69:629–642.

29. Li H, Zhang Z, Zhao X, et al. Quantitative evaluation of
radiation-induced lung injury with hyperpolarized xenon
magnetic resonance. Magn Reson Med. 2016;76:408–416.

30. Ruan W, Zhong J, Wang K, et al. Detection of the mild
emphysema by quantification of lung respiratory airways with
hyperpolarized xenon diffusion MRI. J Magn Reson Imaging.
2017;45:879–888.

31. Zhong J, Zhang H, Ruan W, et al. Simultaneous assessment of
both lung morphometry and gas exchange function within a

J Thorac Imaging � Volume 37, Number 6, November 2022 Thoracic Imaging in China

Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. www.thoracicimaging.com | 371
This paper can be cited using the date of access and the unique DOI number which can be found in the footnotes.



single breath-hold by hyperpolarized 129 Xe MRI. NMR
Biomed. 2017;30:e3730.

32. Xie J, Li H, Zhang H, et al. Single breath-hold measurement of
pulmonary gas exchange and diffusion in humans with hyper-
polarized 129 Xe MR. NMR Biomed. 2019;32:e4068.

33. Zhang H, Xie J, Xiao S, et al. Lung morphometry using
hyperpolarized 129 Xe multi-b diffusion MRI with compressed
sensing in healthy subjects and patients with COPD. Med Phys.
2018;45:3097–3108.

34. Zhang M, Li H, Li H, et al. Quantitative evaluation of lung
injury caused by PM2.5 using hyperpolarized gas magnetic
resonance. Magn Reson Med. 2020;84:569–578.

35. Zhou XL, Deng HY, Wu WL, et al. Prognostic value of 18F-
FDG PET/CT imaging and VEGF expression in non-small cell
lung cancer. J Chin Clin Med Imaging. 2019;30:174–178.

36. Wang ZF, Li P, Yang YY, et al. Application of 18F-FDG
PET-CT combined with chest breath-hold spiral CT in
preoperative TNM staging of NSCLC [in Chinese]. Chin J
CT MRI. 2018;16:75–77; 118.

37. Guo CM, Wang D, Huang SS, et al. The value of 18F-FDG
PET/CT in Predicting distant metastasis of non-small cell lung
cancer [in Chinese]. J Clin Radiol. 2021;40:1920–1924.

38. Chang C, Sun X, Wang G, et al. A machine learning model
based on PET/CT radiomics and clinical characteristics predicts
ALK rearrangement status in lung adenocarcinoma. Front
Oncol. 2021;11:603882.

39. Chen L, Zhou Y, Tang X, et al. EGFR mutation decreases
FDG uptake in non-small cell lung cancer via the NOX4/ROS/
GLUT1 axis. Int J Oncol. 2019;54:370–380.

40. Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics:
extracting more information from medical images using
advanced feature analysis. Eur J Cancer. 2012;48:441–446.

41. Tan J, Li ZL, Yuan Y, et al. Study on dual protection value of
the AI based uVision technology combined with low mAs in
patients with chest CT screening for COVID-19. Chin Med
Devices. 2020;35:44–48+58; [In chinese].

42. Liu K, Zhang RG, Tu WT, et al. A preliminary investigation
on pulmonary subsolid nodule detection using deep learning
methods from chest X-rays [in Chinese]. Chin J Radiol. 2017;
51:918–921.

43. Wei YJ, Pan N, Chen Y, et al. A study using deep learning-
based computer aided diagnostic system with chest radio-
graphs-pneumothorax and pulmonary nodules detection. J Clin
Radiol. 2021;40:252–257; in chinese.

44. Nijiati M, Zhang Z, Abulizi A, et al. Deep learning assistance
for tuberculosis diagnosis with chest radiography in low-
resource settings. J Xray Sci Technol. 2021;29:785–796.

45. Jin C, Chen W, Cao Y, et al. Development and evaluation of an
artificial intelligence system for COVID-19 diagnosis. Nat
Commun. 2020;11:5088.

46. Wang Z, Xiao Y, Li Y, et al. Automatically discriminating and
localizing COVID-19 from community-acquired pneumonia on
chest X-rays. Pattern Recognit. 2021;110:107613.

47. Wang G, Liu X, Shen J, et al. A deep-learning pipeline for the
diagnosis and discrimination of viral, non-viral and COVID-19
pneumonia from chest X-ray images. Nat Biomed Eng. 2021;
5:509–521.

48. Liu H, Wang L, Nan Y, et al. SDFN: segmentation-based deep
fusion network for thoracic disease classification in chest X-ray
images. Comput Med Imaging Graph. 2019;75:66–73.

49. Wang H, Wang S, Qin Z, et al. Triple attention learning for
classification of 14 thoracic diseases using chest radiography.
Med Image Anal. 2021;67:101846.

50. Song J, Yang C, Fan L, et al. Lung lesion extraction using a
toboggan based growing automatic segmentation approach.
IEEE Trans Med Imaging. 2016;35:337–353.

51. Su Y, Li D, Chen X. Lung nodule detection based on faster
R-CNN framework. Comput Methods Programs Biomed.
2021;200:105866.

52. Xu X, Wang C, Guo J, et al. MSCS-DeepLN: evaluating lung
nodule malignancy using multi-scale cost-sensitive neural net-
works. Med Image Anal. 2020;65:101772.

53. Lv W, Wang Y, Zhou C, et al. Development and validation of a
clinically applicable deep learning strategy (HONORS) for
pulmonary nodule classification at CT: a retrospective multi-
centre study. Lung Cancer. 2021;155:78–86.

54. Xie Y, Zhang J, Xia Y. Semi-supervised adversarial model for
benign-malignant lung nodule classification on chest CT. Med
Image Anal. 2019;57:237–248.

55. Zhu X, Dong D, Chen Z, et al. Radiomic signature as a
diagnostic factor for histologic subtype classification of non-
small cell lung cancer. Eur Radiol. 2018;28:2772–2778.

56. Li H, Gao L, Ma H, et al. Radiomics-based features for
prediction of histological subtypes in central lung cancer. Front
Oncol. 2021;11:658887.

57. Fu Y, Xue P, Li N, et al. Fusion of 3D lung CT and serum
biomarkers for diagnosis of multiple pathological types on
pulmonary nodules. Comput Methods Programs Biomed. 2021;210:
106381.

58. Fan L, Fang MJ, Li ZB, et al. Radiomics signature: a
biomarker for the preoperative discrimination of lung invasive
adenocarcinoma manifesting as a ground-glass nodule. Eur
Radiol. 2018;29:1–9.

59. Xu F, Zhu W, Shen Y, et al. Radiomic-based quantitative
CT analysis of pure ground-glass nodules to predict the
invasiveness of lung adenocarcinoma. Front Oncol. 2020;
10:872.

60. Wang X, Chen K, Wang W, et al. Can peritumoral regions
increase the efficiency of machine-learning prediction of
pathological invasiveness in lung adenocarcinoma manifesting
as ground-glass nodules? Journal of Thoracic Disease. 2021;13:
1327–1337.

61. Wang X, Li Q, Cai J, et al. Predicting the invasiveness of lung
adenocarcinomas appearing as ground-glass nodule on CT scan
using multi-task learning and deep radiomics. Transl Lung
Cancer Res. 2020;9:1397–1406.

62. Shen T, Hou R, Ye X, et al. Predicting malignancy and
invasiveness of pulmonary subsolid nodules on CT images using
deep learning. Front Oncol. 2021;11:700158.

63. Song L, Zhu Z, Mao L, et al. Clinical, conventional ct and
radiomic feature-based machine learning models for predicting
ALK rearrangement status in lung adenocarcinoma patients.
Front Oncol. 2020;10:369.

64. Song Z, Liu T, Shi L, et al. The deep learning model combining
CT image and clinicopathological information for predicting
ALK fusion status and response to ALK-TKI therapy in non-
small cell lung cancer patients. Eur J Nucl Med Mol Imaging.
2021;48:361–371.

65. Wang S, Zha Y, Li W, et al. A fully automatic deep learning
system for COVID-19 diagnostic and prognostic analysis. Eur
Respir J. 2020;56:2000775.

66. Sun J, Liao X, Yan Y, et al. Detection and staging of chronic
obstructive pulmonary disease using a computed tomography-
based weakly supervised deep learning approach. Eur Radiol.
2022;32:5319–5329.

67. Zhang L, Jiang B, Wisselink HJ, et al. COPD identification
and grading based on deep learning of lung parenchyma and
bronchial wall in chest CT images. Br J Radiol. 2022;95:
20210637.

68. Qin Y, Wang J, Han Y, et al. Deep learning algorithms-based
CT images in glucocorticoid therapy in asthma children
with small airway obstruction. J Healthc Eng. 2021;2021:
5317403.

69. Zhang B, Jia C, Wu R, et al. Improving rib fracture detection
accuracy and reading efficiency with deep learning-based
detection software: a clinical evaluation. Br J Radiol. 2021;
94:20200870.

70. Liu J, Yin P, Wang S, et al. CT-based radiomics signatures for
predicting the risk categorization of thymic epithelial tumors.
Front Oncol. 2021;11:628534.

71. Li P, Han J, Zhang D, et al. Effects of dexmedetomidine on
oxidative stress and inflammatory response in lungs during
mechanical ventilation in COPD rats. Exp Ther Med. 2020;
19:1219–1224.

Fan et al J Thorac Imaging � Volume 37, Number 6, November 2022

372 | www.thoracicimaging.com Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc.

This paper can be cited using the date of access and the unique DOI number which can be found in the footnotes.



72. Duan C, Deng H, Xiao S, et al. Fast and accurate
reconstruction of human lung gas MRI with deep learning.
Magn Reson Med. 2019;82:2273–2285.

73. Duan C, Deng H, Xiao S, et al. Accelerate gas diffusion-
weighted MRI for lung morphometry with deep learning. Eur
Radiol. 2021;32:702–713.

74. Wang X,WanQ, ChenH, et al. Classification of pulmonary lesion
based on multiparametric MRI: utility of radiomics and compar-
ison of machine learning methods. Eur Radiol. 2020;30:4595–4605.

75. Guo YB, Dang S, Duan HF, et al. The value of MR-based
radiomics signature for differentiating small cell lung cancer
from non-small cell lung cancer [in Chinese]. J Clin Radiol.
2020;39:1776–1779.

76. Xiao G, Hu YC, Ren JL, et al. MR imaging of thymomas: a
combined radiomics nomogram to predict histologic subtypes.
Eur Radiol. 2021;31:447–457.

77. Yang B, Zhong J, Zhong J, et al. Development and validation
of a radiomics nomogram based on (18)F-fluorodeoxyglucose

positron emission tomography/computed tomography and
clinicopathological factors to predict the survival outcomes of
patients with non-small cell lung cancer. Front Oncol. 2020;
10:1042.

78. Li L, Zhao X, Lu W, et al. Deep learning for variational
multimodality tumor segmentation in PET/CT. Neurocomput-
ing. 2020;392:277–295.

79. National Institutes for Food and Drug Control, Cardiothoracic
Group of Chinese Medical Association Radiology Branch.
Expert consensus on the rule and quality control of pulmonary
nodule annotation based on thoracic CT [in Chinese]. J Clin
Radiol. 2019;53:9–15.

80. Radiology Society of Chinese Medical Association, National
Institutes for Food and Drug Control, National Health
Commission Capacity Building and Continuing Education
Center. Expert consensus on the construction and quality
control of thoracic CT datasets for pulmonary nodules [in
Chinese]. J Clin Radiol. 2021;55:104–110.

J Thorac Imaging � Volume 37, Number 6, November 2022 Thoracic Imaging in China

Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. www.thoracicimaging.com | 373
This paper can be cited using the date of access and the unique DOI number which can be found in the footnotes.


