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Increased cytotoxicity and bystander effect of
5-fluorouracil and 5′-deoxy-5-fluorouridine in human
colorectal cancer cells transfected with thymidine
phosphorylase

A Evrard 1, P Cuq1, J Ciccolini 2, L Vian 1 and J-P Cano 1

1Laboratoire de Toxicologie du Médicament, Faculté de Pharmacie, 15 av. Charles Flahault, 34060 Montpellier cedex 02, France; 2Laboratoire de
Toxicocinétique et Pharmacocinétique, 27 bd. Jean Moulin, 13385 Marseille cedex 5, France

Summary 5-Fluorouracil (5-FU) and 5′-deoxy-5-fluorouridine (5′-DFUR), a prodrug of 5-FU, are anticancer agents activated by thymidine
phosphorylase (TP). Transfecting the human TP cDNA into cancer cells in order to sensitize them to these pyrimidine antimetabolites may be
an important approach in human cancer gene therapy research. In this study, an expression vector containing the human TP cDNA (pcTP5)
was transfected into LS174T human colon carcinoma cells. Eight stable transfectants were randomly selected and analysed. The cytotoxic
effects of 5-FU and 5′-DFUR were higher in TP-transfected cells as compared to wild-type cells. The maximal decreases in the IC50 were 80-
fold for 5-FU and 40-fold for 5′-DFUR. The increase in sensitivity to these pyrimidines of TP-transfected cells significantly correlated with the
increase in both TP activity and TP expression. Transfected clone LS174T-c2 but not wild-type cells exhibited formation of [3H]FdUMP from
[3H]5-FU. In addition the LS174T-c2 clone enhanced the cytotoxic effect of 5′-DFUR, but also that of 5-FU, towards co-cultured parental cells.
For both anti-cancer agents, this bystander effect did not require cell–cell contact. These results show that both 5-FU or 5′-DFUR could be
used together with a TP-suicide vector in cancer gene therapy.

Keywords: cancer gene therapy; thymidine phosphorylase; 5-FU; 5′-DFUR; bystander effect
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A major drawback of chemotherapy is the lack of specific tox
towards cancer cells which leads to important side-effects
prevent the treatment from achieving tumour reduction. 
strategy that could overcome this problem is to introduce
malignant cells a gene encoding an enzyme that sensitizes th
chemotherapeutic agents. Since the first experiments usin
herpes simplex virus thymidine kinase (HSV-TK) (Moolten, 19
Moolten and Wells, 1990) which activates the acyclic nucleo
analogue ganciclovir (GCV) intratumourally, various drug se
tivity genes (‘suicide genes’) have been reported (Mullen e
1992; Huber et al, 1993; Wei et al, 1994; Chen et al, 1995; P
et al, 1997).

A critical point of this strategy is the limiting gene transfer e
ciency to the tumour mass. However, the ability of a toxic an
lite, metabolically converted in the transfected cells, to diffuse
neighbouring untransfected cells could alleviate the problem.
‘bystander effect’ has been observed in many cancer gene th
experiments, and reduction of tumour mass was observed
when a small percentage of cancer cells were genetically mo
(Freeman et al, 1993; Chen et al, 1995). The bystander eff
achieved by diffusion of phosphorylated nucleosides through
junctions in the HSV-TK/ganciclovir system (Fick et al, 199
However, experiments with other suicide genes, such as cy
deaminase which cleaves 5-fluorocytosine to 5-fluorouraci
FU), have shown the advantages of a diffusible, gap junc
t al,

pres-
t al,
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independent bystander effect (Huber et al, 1994; Trinh et al, 1
Denning and Pitts, 1997).

Thymidine phosphorylase (EC 2.4.2.4) (TP), also describe
the angiogenic platelet-derived endothelial cell growth factor (
ECGF) (Ishikawa et al, 1989; Moghaddam and Bicknell, 19
Sumizawa et al, 1993; Miyadera et al, 1995), is a homodim
enzyme with a monomeric molecular mass of about 55 
(Desgranges et al, 1981; Miyazono et al, 1987) and which p
phorolytically cleaves thymidine to yield thymine and deoxyrib
1-phosphate (Friedkin and Roberts, 1953; Krenitsky, 1968). T
expressed in various human cells and tissues and plays a 
plasma thymidine homeostasis (Zimmerman and Seiden
1964; Shaw et al, 1988; Fox et al, 1995). The levels of expre
in different human tissues can vary up to 15-fold (Yoshimura e
1990). Moreover, TP levels are increased in several type
malignant tumours when compared to the non-neoplastic re
of these tissues (Obrien et al, 1996), and also in the plasma
tumour-bearing animals and cancer patients (Luccioni et al, 1

TP is also a key enzyme in the metabolic activation of flu
pyrimidines that share the physiological pathway of pyrimidi
TP is responsible for the conversion of 5′-deoxy-5-fluorouridine
(5′-DFUR, doxifluridine) to 5-FU and, because of its revers
phosphorolytic activity, assumes also the conversion of 5-FU 
anabolite 5-fluoro-2′-deoxyuridine (5-FdUrd). Transfection expe
iments have provided evidence that TP mediates the sensitiv
HT-29 human colon carcinoma cells to 5-FU (Schwartz e
1995), and of MCF-7 human breast cancer cells to 5′-DFUR
(Patterson et al, 1995). Furthermore, the induction of TP ex
sion by interferon increases 5-FU cytotoxicity (Schwartz e
1994, 1998) and recent studies suggest that the level of TP a
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Fluoropyrimidines cytotoxicity enhancement by thymidine phosphorylase 1727
could be a prognostic marker for the 5-FU cytotoxicity in vitro 
in vivo (Fox et al, 1997; Griffiths and Stratford, 1997; Mader e
1997). In a recent paper, we have demonstrated an increase
sensitivity of a murine adenocarcinoma cell line in vitro 
in vivo after transfection of TP cDNA (Evrard et al, 199
Therefore, TP gene transfer in cancer cells in order to enh
their sensitivity to fluoropyrimidines could be a promising strat
in cancer gene therapy.

In this report, we investigated the effect of TP overexpressi
human LS174T colorectal cancer cells on [3H]5-FU metabolism
and on 5-FU and 5′-DFUR sensitivity. We next examined t
bystander effect on neighbouring untransfected cells in contac
non-contact conditions.

MATERIALS AND METHODS

Chemicals

5-FU, 5′-DFUR, enhanced chemiluminescence (ECL) reag
(luminol, hydrogen peroxide and coumaric acid) and high-pe
mance liquid chromatography (HPLC) reagents were from S
(St Quentin Fallavier, France). [H3]5-FU (12.5 Ci mmol–1) was
from Du Pont de Nemours (Les Ulis, France).

Cell lines

The human colorectal adenocarcinoma LS174T cells (A
number, CL-188) were cultured at 37°C in a fully humidified 5%
carbon dioxide atmosphere in RPMI-1640 medium suppleme
with 10% fetal calf serum (FCS) and 2 mM glutamine. COS-7 cell
were cultured in Dulbecco’s modified Eagle’s medium (DME
containing 5% FCS and 2 mM glutamine.

Human TP cDNA subcloning

The TP cDNA was kindly provided by Dr Rangana Choud
(Imperial Cancer Research Fund, University of Oxford, UK). 
full-length human TP cDNA was obtained by digesting 
parental pPL5 vector with XbaI and HindIII and the insert wa
ligated into the same sites of the mammalian expression v
pcDNA3 (Invitrogen, NV Leek, The Netherlands) to prod
pcTP5. This vector was then transformed into cells (Escherichia
coli, DH5α) and the plasmid DNA purified using a Qiag
Plasmid Kit (Qiagen, Courtaboeuf, France).

Transfection of human TP cDNA in COS-7 cells and
LS174T cells

COS-7 and LS174T cells (1 × 106 per 20 cm2 Petri dish) were
cultured for 24 h until cells were approximately 80% conflu
They were then transfected with pcTP5 or pcDNA3 (control) u
the Lipofectamine™ reagent (Life Technologies, Cergy-Pont
France) using conditions as recommended by 
manufacturer. After 48 h incubation, COS-7 cells were lysed
assayed for TP activity and expression. Stable LS174T/p
transfectants were selected for geneticin (G418 sulphate,
Technologies, Cergy-Pontoise, France) resistance (250µg ml–1

culture medium), and eight clones were randomly selected
analysed for 5-FU and 5′-DFUR sensitivity, TP activity an
protein expression.
© 1999 Cancer Research Campaign 
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Cell lysis

Cells (COS-7 or LS174T) were homogeneized on ice in 100µl of
a lysis buffer containing 50 mM Tris–HCl (pH 8.0), 150 mM
sodium chloride, 100µg ml–1 phenylmethylsulphonyl fluorid
(PMSF), 1µg ml–1 aprotinin and 1% Triton X-100. The lysat
were centrifuged at 20 000 g for 30 min at 4°C and protein level o
the supernatants was determined according to Bradford (197

Immunoblotting and immunocytostaining

The mouse monoclonal IgG1 654-1 raised against human TP
kindly provided by Nippon Roche Research Center (Nishida 
1996) and was used as primary antibody for either immunoblo
or immunocytostaining experiments. For immunoblotting, su
natant proteins (20µg) of cell lysates, obtained as described ab
were separated on sodium dodecyl sulfate polyacrylamide ge
trophoresis (SDS-PAGE). The proteins were electroblotted 
nitrocellulose membrane, and incubated with 0.2µg ml–1 of
primary antibody followed by horseradish peroxidase-conjug
goat anti-mouse IgG (Sigma, St Quentin Fallavier, Fran
Immunolabelled proteins were vizualized using X-ray film a
incubation with ECL reagents. For immunocytostaining, cells w
seeded on cover-slips in 12-well plates. After fixing with meth
and permeabilization with phosphate-buffered saline (PBS)–
Triton, cells were incubated with 1µg ml–1 of primary antibody
followed by fluorescein isothiocyanate (FITC)-conjugated g
anti-mouse IgG (Sigma, St Quentin Fallavier, France).

TP activity assay

The enzyme activity in cell lysates was assayed as previ
described (Yoshimura et al, 1990), with minor modificatio
Briefly, 50µl of supernatants were added to 150µl of a reaction
mixture consisting of 10 mM thymidine, 10 mM KH2PO4 (pH 8.4)
and then incubated at 37°C for 4 h. The reaction was stopped 
the addition of 800µl of 0.2N sodium hydroxide. The absorban
at 300 nm was determined and the amount of thymine in
reaction mixture was calculated using a calibration curve.
TP activity was expressed as pmol thymine–1 µg protein–1 h–1.

[3H]5-FU metabolism analysis

Cells (2 × 106) were seeded in a 25 cm2 flask and were treated fo
4 h with 100µCi of [3H]5-FU (corresponding to a final concent
tion of 1.6µM). Cells were then harvested and vortexed in 6
methanol. After methanol evaporation, the mobile phase (10µl)
was added to the residue for HPLC injection. Chromatogra
conditions were as follows: reverse phase column, Licrospher
5 µm; mobile phase, buffer pH 7 10% (1.7 mM K2HPO4, 5 mM

tetrabutylammonium nitrate): methanol 90%; flow rate 1 ml m–1;
isocratic conditions. Detection was performed using a radiom
detector (Flo-One Beta Radiomatic, Packard Instrument SA
peaks identified by comparing retention times with standards.

In vitro cytotoxicity assay

The effect of anticancer agents (5-FU, 5′-DFUR) on cell viability
was assessed using the neutral red assay as previously de
(Evrard et al, 1996). Briefly, aliquots of cell suspension (5 × 103 cells
per well) were seeded in 96-well microtitre plates which were i
British Journal of Cancer (1999) 80(11), 1726–1733
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Figure 1 Human thymidine phosphorylase expression and activity in COS-
7 and LS174T cells. Upper panel: lysates from parental (wt) or pcTP5-
transfected (TP) COS-7 cells, and from parental (wt) or pcTP5-transfected
LS174T cell clones (c1 to c8) were incubated at 37°C for 4 h in the presence
of 10 mM thymidine. The 300 nm absorbance and the amount of thymine
were calculated as described above; the TP activity was expressed as pmol
thymine µg protein–1 h–1. Data are means ± s.e.m. of three separate
experiments. Lower panel: proteins from COS-7 and LS174T cell lysates
were separated by SDS-PAGE and electroblotted onto nitrocellulose sheets.
The human TP immunoreactivity was assessed using anti-human TP IgG
bated for 24 h at 37°C in a fully humidified atmosphere of 5%
carbon dioxide in air. The cells were then incubated for 72 h in
absence (control) or the presence of different drug concentra
(150µl in fresh medium per well, eight wells per agent concen
tion). Thereafter, cells were washed with PBS and 150µl of a
neutral red solution (40µg ml–1) was added. After 3 h at 37°C, 5%
carbon dioxide, the cells were washed with PBS and destained
150µl of glacial acetic acid (1%)–ethanol (50%) (v/v). Absorban
at 540 nm (A540) were measured using a microplate rea
(Labsystems Multiscan MS). The effect of the drugs on cell surv
was expressed as a growth ratio calculated using the equatio540

drug-treated/A540 control.

Assessment of in vitro bystander effect

TP-transfected LS174T-c2 cells and parental cells were mixe
various ratios [c2 cells/(c2 cells + parental cells)] and see
5 × 103 cells ml–1 in 96-well plates. After 24 h at 37°C, the cells
were incubated for 3 days in the absence (control) or the pre
of different drug concentrations (0.01–100µM) and the neutral re
uptake assay was performed as described above. The resu
expressed as a growth ratio relative to drug-free controls. To s
the requirement of direct cell–cell contact for the bystander ef
parental LS174T cells were seeded in the bottom chamber o
well microtitre plates (5 × 103 cells per well) and parental o
LS174T-c2 cells (5 × 103 cells per insert) were placed in the t
chamber of membrane culture inserts (Anopore membrane,
size 0.02µM, Nunc, France). After a 24 h incubation at 37°C, cells
British Journal of Cancer (1999) 80(11), 1726–1733 © 1999 Cancer Research Campaign 
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C D

Figure 2 Immunocytostaining of human TP in LS174T cells. Immunocytostaining was performed using mouse monoclonal IgG raised against human TP as
described in Materials and Methods. Phase contrast microscopy: (A) parental LS174T cells, (B) LS174T-c2 cells; fluorescence microscopy: (C) parental LS174T
cells, (D) LS174T-c2 cells. Magnification × 200
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were treated for 72 h with different concentrations of 5-FU or 5′-
DFUR (0.1–100µM) which were added into the membrane culture
inserts. Thereafter, the membrane culture inserts were remov
and the survival of parental cells seeded in the microtitre plate
was measured as described above.
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Table 1 Sensitivity to 5-FU and 5′-DFUR of LS174T cells wild-type and TP-
transfected clones

5-FU 5′-DFUR

LS174T IC50 (µM) -Fold IC 50(µM) -Fold

Wild-type 25.33 ± 0.87 1.0 10.92 ± 0.84 1.0
pcDNA3 25.67 ± 0.23a 1.0 10.52 ± 0.76a 1.0
Clone 1 0.68 ± 0.11 37.2 0.84 ± 0.08 13.0
Clone 2 0.32 ± 0.01 79.2 0.27 ± 0.03 40.4
Clone 3 4.69 ± 0.87 5.4 3.54 ± 0.71 3.1
Clone 4 2.12 ± 0.19 11.9 2.36 ± 0.23 4.6
Clone 5 0.29 ± 0.03 87.3 0.30 ± 0.03 36.4
Clone 6 25.94 ± 4.43a 1.0 9.84 ± 0.73a 1.1
Clone 7 9.36 ± 1.26 2.7 8.45 ± 1.18a 1.3
Clone 8 0.59 ± 0.07 42.9 0.65 ± 0.07 16.8

aNot significantly different when compared to wild-type cells, other values are
significant with P < 0.01 (Student’s t-test). IC50s were determined using the
neutral red assay. Each value represents the mean ± s.e.m. of three separate
experiments.
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Figure 3 Metabolism of [3H]5-FU in LS174T cells. Parental (A) or clone 2
(B) LS174T cells were incubated for 4 h in the presence of 100 µCi [3H]5-FU
(final concentration: 1.6 µM) and the resulting metabolites were identified by
HPLC coupled to a radiometric detection. Data are from one representative
experiment
RESULTS

Subcloning of the human TP cDNA

In order to transfect the human TP cDNA in mammalian tum
cells, we subcloned the full-length cDNA in the mamma
expression vector pcDNA3 in a sense orientation with respe
the CMV promoter. The functionality of pcTP5 was assesse
studying the protein expression and the enzyme activity in ly
from COS-7 cells transfected with the plasmid. As show
Figure 1, a strong and specific production of immunodetec
human TP and a high TP activity were evident in pcTP5-tr
fected cell lysates. An endogeneous TP activity was found in 
type COS-7 cells but the protein was not detected becaus
anti-TP antibody is specific for human and not simian TP.

Expression of human TP in LS174T cells

Human adenocarcinoma LS174T cells were transfected wit
pcTP5 and stable transfectants were selected for geneticin resi
© 1999 Cancer Research Campaign 
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The growth rate of the transfected LS174T cells did not significa
vary from that of the wild-type cells or that of pcDNA3-transfec
cells (data not shown). Eight clones of pcTP5-transfected cells 
c8) were randomly selected and analysed for TP activity and ex
sion. The levels of enzyme activity, ranging from 0 to 730 pm–1

µg–1 h–1, were closely related to protein expression as show
Western blot experiments (Figure 1). The parental cells expr
neither immunodetectable TP nor significant TP activity. Clon
(LS174T-c2), which exhibited the highest TP protein expression
activity (Figures 1 and 2), was used for analysis of the bysta
effect and [3H]5-FU metabolism.

[3H]5-FU metabolism

The increase expression of functional TP in LS174T-c2 
would lead to a greater metabolic activation of 5-FU to de
ribonucleotides. To address this, parental and LS174T-c2 
were incubated in the presence of [3H]5-FU and the resulting
metabolites were identified by HPLC coupled to a radiome
detection. As shown in Figure 3, a significant amount of [3H]5-
fluorodeoxyuridine-monophosphate (5-dFUMP) accumulate
LS174T-c2 cells but not in parental cells, whereas similar leve
[3H]ribonucleotides (FUrd, FUMP, FUDP, FUTP) were detecte
both cell lines. Thus, TP-transfected cells displayed [3H]5-FU acti-
vation through both desoxyribonucleotides and ribonucleo
pathways, whereas [3H]5-FU was exclusively activated throug
the ribonucleotides pathway in parental cells.

In vitro cytotoxicity

The effect of human TP expression on the sensitivity of LS1
cells to 5-FU and 5′-DFUR was studied by using the neutral 
uptake assay. 5-FU and 5′-DFUR decreased the cell viability in
concentration-dependent fashion. The results expressed as I50 are
shown in Table 1. The sensitivity to the fluoropyrimidines
LS174T cells transfected with pcDNA3 was not significan
different from that of parental cells. On the other hand, 
expressing LS174T cells were more sensitive to the cyto
actions of 5-FU and 5′-DFUR than the parental cells. Clones 2 a
British Journal of Cancer (1999) 80(11), 1726–1733
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Figure 4 Correlation between TP activity and 5-FU (A) or 5′-DFUR (B)
cytotoxicity in TP-transfected LS174T cell clones. TP activity and 1/IC50 were
significantly correlated for both 5-FU (r 2 = 0.9) and 5′-DFUR (r 2 = 0.85). Data
are means of three separate experiments
5 were found to be approximately 80-fold and 40-fold more s
tive to 5-FU and 5′-DFUR respectively. Moreover, there was
significant correlation between the TP activity of the cell clo
and their in vitro sensitivity to 5-FU and 5′-DFUR (r 2 = 0.9 and
0.85 respectively) (Figure 4A,B).
British Journal of Cancer (1999) 80(11), 1726–1733
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Figure 5 Bystander effect of 5-FU and 5′-DFUR. The cell viability was studied by
2) were mixed and co-cultured with parental cells at various ratio (●● = 0, ■■ = 0.1, ▲▲
DFUR (B). Lower panels: Effect of 5 µM 5-FU (C) or 5′-DFUR (D) on co-cultured pa
ratio; solid bars, observed growth ratio. Data are means ± s.e.m. of eight wells from
i-

Bystander effect

Mixed cultures of parental and TP-transfected cells were gene
to study the involvement of a bystander effect in the in vitro c
toxicity of 5-FU and 5′-DFUR. When parental LS174T cells we
co-cultured with LS174T-c2 cells at a ratio of 0.1, the IC50 values
of 5-FU and 5′-DFUR were lowered approximately tenfold, in
cating a clear bystander effect (Figure 5 A, B). There were sig
cant bystander effects (50% cell death) for both anticancer a
(5 µM final concentration) even when only 5% of cells were tra
fected (Figure 5 C, D).

We next investigated whether this bystander effect w
require direct cell–cell contact. The sensitivity to 5-FU of pare
cells was significantly higher when they were co-cultured
described above, with LS174T-c2 cells rather than with par
cells in the culture inserts (Figure 6A). Similar results w
obtained with 5′-DFUR (Figure 6B).

DISCUSSION

Despite the extended use of fluoropyrimidines, in particular 5
in advanced colorectal cancer, response rates are only 10
© 1999 Cancer Research Campaign 

1.2

1.0

0.8

0.6

0.4

0.2

0
0.01 0.1 1 10 100

5´-DFUR (µM)

0

0.
05 0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

1.0

0.8

0.6

0.4

0.2

0

G
ro

w
th

 r
at

io

TP-transfected cells ratio

D

B

G
ro

w
th

 r
at

io

 using the neutral red assay. Upper panel: TP-transfected LS174T cells (clone
= 0.2, × = 0.5, • = 1) and then incubated in the presence of 5-FU (A) or 5′-

rental and LS174T-c2 cells at various ratios. Open bars, theoretical growth
 a microtiter plate column
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Figure 6 Diffusibility of the bystander effect. Parental and TP-transfected
(clone 2) LS174T cells were co-cultured in non-contact conditions as
described above. The viability of parental cells, seeded on the lower chamber
and co-cultured with parental cells (●●) or TP-transfected cells (•) in the
culture inserts, was assessed using the neutral red assay after exposure to
5-FU (A) or 5′-DFUR (B). Data are means ± s.e.m. of eight wells from a
microtiter plate column
(Cohen et al, 1993). Different strategies, including combinatio
5-FU with other cytotoxic agents or with cytokines, are invoke
increase the sensitivity of cancer cells to fluoropyrimidines (E
and Crismann, 1988; Schwartz et al, 1994). A new gene tra
approach is based on the fact that 5-FU and 5′-DFUR, a prodrug o
5-FU, are activated by TP. Thus, transferring the gene enco
human TP into cancer cells could render them more suscepti
5-FU and/or 5′-DFUR. In this report, we examined the effects
TP gene transfer in human colon cancer cells LS174T and
subsequent sensitivity to fluoropyrimidines.

The human colon adenocarcinoma cell line LS174T was ch
for establishing stable transfectants. Neither TP activity no
expression were detectable in parental LS174T cells. There
LS174T cell line was an ideal model for studying the effects o
overexpression on colonic cancer cells sensitivity to fluoropy
idines. From the selected TP-transfected cell clones, we obs
a good correlation between protein expression and TP ac
levels. Clone LS174T-c2, which exhibited the highest TP acti
was chosen for [3H]5-FU metabolic profile analysis and bystand
effect experiments.

5-FU has been reported to be activated through two distinct 
ways (Rustum et al, 1997; Sobrero et al, 1997). The first, init
by 5-FU conversion to 5-fluorouridine (FUrd) by uridine ph
phorylase (UP), leads to fluororibonucleotides incorporation 
RNA. The second, initiated by 5-FU conversion to 5-fluoro′-
deoxyuridine (FdUrd) by thymidine phosphorylase, leads
thymidylate synthase inhibition by 5-fluoro-2′-deoxyuridine mono-
phosphate (FdUMP) and to fluorodeoxyribonucleotides incorp
tion into DNA. HPLC analysis of [3H]5-FU metabolism was
carried out to evaluate the relative importance of the two path
in parental LS174T and LS174T-c2 cells. Parental LS174T 
displayed an accumulation of [3H]fluororibonucleotides (FUrd
FUMP, FUDP, FUTP) reflecting the exclusive activation of [3H]5-
FU by the ribonucleotides pathway. In agreement with the m
bolic profile, parental LS174T cells did not express thymid
phosphorylase activity whereas a significant endogeneous u
phosphorylase activity was detected (data not shown). In con
beside the synthesis of [3H]fluororibonucleotides, a strong form
tion of [3H]FdUMP was detected in TP-transfected LS174T
cells. Similarly, Shwartz et al (1995) reported a correlation o
activity with FdUMP levels in human colon carcinoma HT-29 ce
© 1999 Cancer Research Campaign 
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The first anabolite after 5-FU activation by TP, i.e. [3H]FdUrd, was
not detected in transfected cells, suggesting that the convers
FdUrd to FdUMP by thymidine kinase is not a limiting step 
occurs rapidly. This result, as previously suggested (Mader 
1997), argues against a decisive role of thymidine kinase i
activation of 5-FU. In conclusion, these data clearly indicate
TP is able to activate 5-FU when overexpressed in LS174T c
cells.

We next assessed the in vitro sensitivity to 5-FU and 5′-DFUR
of parental and TP-transfected LS174T cells. The cytotoxicit
both 5-FU and 5′-DFUR was enhanced by TP expression; 
sensitivity and TP activity were correlated highly. The maxi
decreases in the IC50 values observed with LS174T-c2 cells we
80-fold for 5-FU and 40-fold for 5′-DFUR. Such a significan
increase of both fluoropyrimidines cytotoxic effects by TP g
transfer into human cancer cells has never been reported s
Schwartz et al (1995) reported a lower enhancement (19-fol
human colon cancer cells (HT-29) sensitivity to 5-FU by TP tr
fection. Other works have shown that TP transfection in MC
(Patterson et al, 1995) or PC-9 (Kato et al, 1997) cells incre
the sensitivity to 5′-DFUR but not to 5-FU. This discrepancy cou
be explained by a higher sensitivity of the parental cells to 5
correlated to an endogenous TP activity. Therefore, par
LS174T cells which exhibit no TP activity were relatively resis
to 5-FU despite activation of 5-FU by UP. Activation of 
desoxyribonucleotides pathway by TP overexpression in LS1
cells greatly enhanced 5-FU cytotoxicity. Our data are consi
with previous reports proposing TP as a biochemical determ
of response to 5-FU and suggest that the loss of TP activity 
be responsible for 5-FU resistance (Chu et al, 1990; Schwartz
1995; Fox et al, 1997; Mader et al, 1997).

By contrast, parental LS174T displayed high sensitivity to′-
DFUR when compared to PC-9 (Kato et al, 1997) or 
(Haraguchi et al, 1993) cancer cell lines. Since LS174T 
express significant UP activity but no TP activity, 5′-DFUR may
be efficiently activated by the endogeneous UP. After TP tran
tion, LS174T-c2 clones were found to be 40-fold more sensiti
5′-DFUR than parental cells. This result strongly suggests
metabolic activation of 5′-DFUR is achieved by both TP and UP
cancer cells. Therefore, a cancer gene therapy approach us′-
DFUR as prodrug and TP as a suicide gene should accou
basal TP activity and also basal UP activity of tumour cells.

The increased sensitivity to 5-FU and 5′-DFUR of TP trans-
fected LS174T cells has led us to examine the neighbouring 
toxicity on adjacent, untransfected cells. In agreement 
previous reports (Patterson et al, 1995; Kato et al, 1997)
describe here a bystander effect with 5′-DFUR and, moreover, w
demonstrate for the first time a bystander effect with 5-FU. In
experiments, a TP-transfected cell ratio of 0.05 is sufficien
obtain 50% cell death and a ratio of 0.2–0.3 is sufficent f
maximal effect on the whole cell population in the presence of µM

5-FU or 5′-DFUR.
Depending on the suicide gene, the bystander effect ca

achieved by diffusion of activated anabolites from transfecte
untransfected cells in a cell–cell contact-dependent (Fick et al, 
or -independent (Huber et al, 1994; Chen and Waxman, 1995;
et al, 1997) fashion. [3H]5-FU metabolic profile analysis demo
strated high level of FdUMP in TP-transfected but not in pare
LS174T cells. However, this phosphorylated compound is
diffusible and a bystander effect could occur through gap junctio
is the case for phosphorylated derivatives of ganciclovir. As 5-F
British Journal of Cancer (1999) 80(11), 1726–1733
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is able to cross the cell membrane through an in-and-out nucle
transport (Grem and Fisher, 1986; Lonn et al, 1989) we sugge
5-FdUrd, although not detected in HPLC experiments, coul
responsible for the diffusible bystander effect observed in cyto
city assays in non-contact conditions.

We are aware of the angiogenic effect of TP and of the pote
resulting tumour growth enhancement. However, we think th
does not compromise its use as a suicide gene because TP
fected cells would not be able to promote angiogenesis in s
as they would be selectively killed by the fluoropyrimid
chemotherapy. On the other hand, a transient expression of 
target cells could overcome this problem.

In conclusion, our data suggest that level of TP activit
strongly implicated in the 5′-DFUR but also 5-FU sensitivity o
human colon carcinoma cells. Therefore TP should be consi
as a potential suicide gene for cancer gene therapy with 5-FU′-
DFUR. High gene transfer efficiency and specific targeting o
gene in tumour cells could be achieved by using recombinant
vectors and promoter elements of genes usually transcribe
tumours such as carcinoembryonic antigen in colon carcin
Furthermore, our results have a direct clinical relevance, espe
since a number of 5-FU prodrugs such as capecitabine, act
by TP, are in clinical trials. Thus, these data should provide a 
for measuring TP in clinical material and correlate with outco
of fluoropyrimidine-based therapy.
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