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ABSTRACT
The proper establishment and organogenesis of the placenta is crucial for intrauterine fetal growth
and development. Endometrial invasion by the extravillous trophoblast cells, as well as formation of
the syncytiotrophoblast (STB), are of vital importance for placental function. Trophoblast migration
and invasion is often compared to tumor metastasis, which uses many of the same molecular
mechanisms. However, unlike cancer cells, both initiation and the extent of trophoblast invasion are
tightly regulated by feto-maternal cross-talk, which when perturbed, results in a wide range of
abnormalities. Multiple factors control the trophoblast, including cytokines and hormones, which
are subject to transcriptional regulatory networks. The relevance of epigenetics in transcriptional
regulation of trophoblast differentiation and invasion, as well as in the onset of placenta-related
pregnancy disorders, became recognized decades ago. Although, there has been tremendous
progress in uncovering the molecular foundation of placental development, there is still much to be
learned about the epigenetic machinery, and its role in trophoblast differentiation and invasion.

This review will provide an overview of the epigenetic control of trophoblast differentiation and
invasion. It will also highlight the major epigenetic mechanisms involved in pregnancy
complications related to placental deficiencies.
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Introduction

The placenta originates from the extra-embryonic struc-
tures of the conceptus, and plays a key role in fetal develop-
ment and growth. This complex organ emerges through
the interaction of extra-embryonic mesoderm with tropho-
blast stem cells (TSCs) that differentiate from the trophec-
toderm of the blastocyst during implantation.1,2 The TSCs
further differentiate into cytotrophoblast (CTB) cells that
give rise to the 2 major cell types of the placenta: the non-
migratory villous trophoblasts (VT) and the invasive extra-
villous trophoblast (EVT) cells. One of the tasks of EVT
cells is to invade the maternal uterine tissue and migrate
toward the uterine spiral arteries where they further differ-
entiate to become endovascular trophoblast.3 Here they
degrade the tunica media and smooth muscle, and displace
the endothelium in the maternal arteries, creating high vol-
ume, low resistance vessels to ensure sufficient blood flow
to intervillous space of the placenta as the fetus grows and
pregnancy progresses. Pregnancy complications, such as
preeclampsia,4 miscarriage5 and pre-term birth,6 suffer
from shallow or insufficient EVT invasion, whereas

conditions like placenta accreta are the consequence of
excessive EVT invasion.7,8 The EVT cells emerge early in
pregnancy from the distal portion of the anchoring villi.
The VT cells form the principal maternal-fetal exchange
site by fusing into an outer layer of STB, and creating a
large surface area of branched villi floating in maternal
blood. Defects in formation of EVT or VT cell types alter
placental function, and are associated with high risk human
placental pathologies.9 The events controlling syncytium
formation and EVT differentiation are under investigation,
using primary trophoblast cells, choriocarcinoma and non-
tumorigenic trophoblast cell lines. The process is believed
to be guided by a network of differentially expressed genes
that include transcription factors,10,11 cell adhesion mole-
cules, extracellular matrix components,12 and growth fac-
tors.13 However, despite extensive research to decipher the
molecular basis of trophoblast differentiation and invasion,
the precise transcriptional mechanisms are still not fully
understood.

Epigenetics is the study of heritable alterations in gene
function that do not involve changes in the DNA sequence
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itself.14 Histone modification and DNA methylation are 2
major epigenetic mechanisms15,16 that can directly or indi-
rectly control gene expression, either by changing the chro-
matin structure and influencing the accessibility of DNA, or
by modifying the bindings sites of transcription regulatory
subunits.17 The ultimate result is altered gene expression that
produces new cellular phenotypes without changing the
genotype. Non-coding RNAs (ncRNAs) are emerging as new
epigenetic regulators of gene expression at both the transcrip-
tional and post-transcriptional levels. ncRNAs represent a
large part of non-protein coding transcripts, which are gener-
ally categorized into microRNAs (miRNAs) and long non-
coding RNAs (lncRNAs).18 Although ncRNAs do not hold
protein sequence information, they can regulate gene tran-
scription, thus, impacting cell function, associated pathologi-
cal conditions, and human diseases.19-21 In recent years,
numerous studies have established a strong link between epi-
genetic regulation and placental development by demonstrat-
ing the critical role of epigenetic regulators, and the associated
transcription factors (Table 1), in maintaining a healthy
pregnancy.22,23

This review summarizes recent expansions in our knowl-
edge of the principal epigenetic machinery, including histone
modifications, DNA methylation, and ncRNAs, that tran-
scriptionally governs trophoblast differentiation, migration,
and invasion during placental development. Furthermore,

we will focus on trophoblast phenotypes associated with dis-
rupted placental development to provide mechanistic
insights into the link between epigenetics and pathology.

Histone modifications

Essential epigenetic regulation of gene expression in
eukaryotes occurs through remodeling of higher order
chromatin structure by covalent post-translational
amino acid modifications.24 Modifications of N-terminal
tails of histones are carried out by acetylation, methyla-
tion, phosphorylation, ubiquitination, and ADP-ribosy-
lation to modulate gene activity by controlling
chromatin architecture and nucleosome positioning.25

The important role of histone modifications at lineage-
control gene loci in embryonic stem cells (ESCs) during
early development stages has been reviewed before.26

However, limited evidence is available on the crucial role
of histone modifications in trophoblast differentiation,
invasion, and function at advanced developmental
stages.

Histone acetylation/deacetylation

Histone acetylation and deacetylation can control gene
expression.27,28 The exposure of DNA to transcription

Table 1. Summary of epigenetic modifications related to pregnancy complications.

Model(s) Functional effect

Epigenetic marker Target (s) Species Type Differentiation Migration/invasion Associated pathological condition Ref.

Histone modification
Acetylation H2A/H2B Ms TS 33

H3K9 (Maspin) Hu PT, CL – 34,35

H3K9/14 Hu CL – 36

Methylation H3K27me3 Hu Plc – 40

H4K20me3 Hu Plc – 40

H3K9me3 Ms ES – 42

Ribosylation Global Ms ES 48-50

DNA Methylation
SNAI1 Hu Plc – PE, HELLP 69

ERVWE1(Syncytin-1) Hu PT, Plc – PE, IUGR, HELLP 72, 73

H19 Hu Plc, CL – PE, IUGR, SGA 76-78

STOX1 Hu PT – PE 112

Leptin Hu Plc – GD MC 81

Non-coding RNAs (ncRNAs) y

miR-378a-5p Nodal Hu Plc, CL PE 94,96

miR-195 ActRIIA Hu Plc, CL – PE 98

miR-376c ALK7, ALK5 Hu Plc, CL – PE, SGA 97

miR-210 KCMF1 Hu Plc – PE 103

miR-125b-1–3p S1PR1 Hu Plc, CL – PE 105

miR-29b MMP2, MCL1, VEGFA, ITGB1 Hu Plc, CL – PE 104

miR-204 MMP9 Hu CL – 99

miR-135b CXCL12 Hu CL – 100

miR-155 Cyclin D1, eNOS Hu Plc, CL – PE 106,110

miR-20a FOXA1 Hu Plc, CL – PE 102

miR-519d CXCL6, NR4A2, FOXL2 Hu Plc, CL – IUGR 101,113

miR-424 FGFR1 Hu PT, CL – 93

Ms, Mouse; Hu, Human; TS, Trophoblast Stem cells; ES, Embryonic Stem cells; PT, Primary Trophoblasts; CL, Cell line; Plc, Placenta explant/tissue; PE, Preeclampsia;
SGA, Small-for-gestational-age; IUGR, Intrauterine Growth Restriction; GD MC, Growth-Discordant MonoChorionic twins.
yOnly the individually studied ncRNAs with known targets are listed.

CELL ADHESION & MIGRATION 127



factors depends on the chromatin compaction status.24

The attachment of an acetyl group to lysine residues by a
histone acetyltransferase (HAT) complex neutralizes the
histone positive charge, resulting in the disruption of
interactions between adjacent nucleosomes, chromatin
relaxation, and initiation of transcription. In contrast,
removal of acetyl groups, mediated by histone deacety-
lase complexes (HDAC), reverses the process, resulting
the chromatin condensation and gene repression.29 A
decade ago, it was established that the interaction
between hypoxia-inducible factor 1 (HIF1) and HDAC is
essential for proper murine trophoblast differentiation.30

Mutations in ARNT, a component of the HIF1 complex,
suppresses HDAC activity, which increases global his-
tone acetylation; thus, an insufficient spongiotrophoblast
population with increased numbers of giant cells leads to
placental failure and fetal death.31,32 The role of histone
acetylation in retaining multipotency of trophoblast
stem (TS) cells is illustrated by acetylation of histones
H2A and H2B by CREB-binding protein (CBP) acetyl-
transfereases, which decreases the epithelial-mesenchy-
mal transition (EMT) and reduces invasiveness of
murine TS cells, while maintaining the epithelial stem-
ness phenotype.33 Interestingly, the negative effect of
acetylation on trophoblast invasion seems to extend to
later stages of placental development. Maspin, a tumor
suppressor gene that has been negatively correlated to
human trophoblast motility and invasion34 was over-
expressed in second trimester human placentas after
treatment with trichostatin A, a HDAC inhibitor. This
alteration was associated with increased acetylation at
H3K9, accompanied by H3K4 methylation.35 Pharmaco-
logical inhibition of HDACs up-regulates human preg-
nancy-specific glycoproteins (PSGs), which are early
markers of cytotrophoblast differentiation expressed
only by the STB.36 More research is needed to better
understand the role of acetylation/deacetylation in tro-
phoblast differentiation.

Histone methylation

The process of histone methylation was first described in
1964 by Murray, who identified lysine and arginine resi-
dues as the only targets for methylation of histone core
proteins.37 Histone H3 lysines at positions 4, 9, 27 and
36, as well as lysine 20 in H4, are highly susceptible to
mono-, di- or tri- methylation,38 whereas arginine resi-
dues can only be mono- or dimethylated.39 Histone
methylation has a different function than histone acety-
lation in the regulation of gene expression. Depending
on position and form of methylation, this post-transla-
tional modification can be associated with active or
repressive states of chromatin.39 The function of histone

methylation in trophoblast differentiation is controver-
sial. In a recent study, the heterochromatin methylation
marker H3K27me3 was found to be highly active in
CTB. That was explained by rapid and transient repres-
sion of genes at the time of STB formation. Also STB
nuclei were enriched for H4K20me3, a repressive chro-
matin modification.40 However, this report was in con-
trast to another study reporting that the CTBs were
enriched with the trimethylated H3K4, a modification
associated with active promoters, and that the STBs were
transcriptionally activated by the chromatin marker
H3K4Me2, which was co-localized with active RNAP II
in the majority of STB nuclei.41 The role of H3K9 meth-
yltransferase G9a in transcriptional repression, and its
contribution in trophoblast differentiation, has been
studied in the murine model. Deletion of the G9a gene
induced embryonic lethality at a very early developmen-
tal stage due to defects in chorioallantoic attachment.42

The differentiation of invasive murine trophoblast giant
cells was also influenced by histone methylation, as dem-
onstrated by a mutation in the Polycomb group family
members43 that form the Polycomb repressive complex
(PRC) 2 and 3 to mediate H3K27 methylation.22 On the
other hand, arginine methylation of histone mediated by
protein arginine-N-methyltransferases (PRMTs) appears
to have a different function in placental development.
Prmt1 deficient mouse embryos failed to develop
proamniotic cavities, ectoplacental cavities, or amniotic
folds.44 Thus, distinct methylation patterns could deter-
mine the destiny of trophoblast derivatives.

Histone ribosylation

Ribosylation is a post-transcriptional modification cata-
lyzed by poly(ADP-ribose) polymerases (PARPs) that
transfer ADP-ribose from nicotinamide adenine dinucle-
otide to protein substrates.45 In humans, histone
H2AK13, H2BK30, H3K27, H3K37 and H4K16 are
known ADP-ribose acceptor sites.46 The process reverses
the positive charge of amino acid side chains to induce
chromatin relaxation, resulting in recruitment of DNA
repair enzymes, cell cycle progression, replication
enhancement, and regulation of gene expression.47 The
positive influence of Parp1 on trophoblast differentiation
is frequently accompanied by negative regulation of inva-
sion. An increase in the invasive trophoblast giant cell
population, suppression of differentiation, and a decrease
in spongiotrophoblast number are general characteristics
of Parp-1¡/¡ mouse placentas and ESCs.48-50 Nude mice
injected subcutaneously with Parp-1¡/¡ teratocarcino-
mas containing giant cell-like cells developed lighter, but
highly metastatic, tumors when compared to wild-type
(Parp-1C/C) controls, revealing the strong effect of Parp-
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1 loss on induction of invasiveness and inhibition of cell
proliferation.50 The Parp1¡/¡ tumors, however, con-
tained a significantly lower spongiotrophoblast popula-
tion, as verified by specific marker genes.48 Although the
reduction of Parp-1 correlates with early trophoecto-
derm lineage formation, the causal role of histone ADP-
ribosylation on placental development still remains
unclear.

DNA methylation

DNA methylation was the first epigenetic mark to be dis-
covered.51 It converts cytosine to methyl cytosine by
addition of a methyl (-CH3) group at the 50 carbon of
cytosine. Methylated cytosine residues often occur adja-
cent to a guanine nucleotide (CpG dinucleotide), result-
ing in 2 altered cytosine residues sitting diagonally to
each other on opposing DNA strands. Methylation of
CpG sequences in a promoter generally silences a gene,
but instances of transcriptional activation are also
known.52,53 However, in certain genes, a secondary site
adjacent to the promoter region is targeted by methyla-
tion, leading to differential expression. For example, in
STOX1, methylation of a CpG island located in intron1,
but not in the promoter, reduces expression.54 The meth-
ylation marks generally cluster, and lock genes in either
an “on” or “off” mode. While gene silencing can occur
by inhibiting the binding of transcription factors,55 alter-
ing chromatin packing,56 or recruitment of methyl-bind-
ing domain proteins,57 no mechanism has been
proposed for transcriptional activation by methylation.

There are 2 classes of enzymes that regulate DNA
methylation. DNA methyl transferases (DNMTs) add
methyl groups on CpG sites, while 10 11 transferases
(TETs) actively de-methylate the DNA through a series
of intermediates.58 Among the DNMTs, DNMT 3A and
3B are de novo methylation enzymes that work in a site-
specific manner, whereas DNMT1 is a maintenance
enzyme.59-61

DNA methylation plays an important role in embryo
development. This is evident from the observation that
the ESC and TSC lineages have distinct DNA methyla-
tion profiles.62 Cells of TSC lineage are globally hypome-
thylated compared to those of the ESC lineage.63

Disruption of the methylation profile in mouse ESC by
knocking down the methylation enzymes (DNMT1, 3A,
3B) or depletion of demethylation enzymes (TET1, 2)
resulted in either cell death or transformation to the TSC
lineage.64,65 On the other hand, knocking out DNMT’s
in extra-embryonic tissue did not alter their survival or
proliferation.66 These observations emphasize the impor-
tance of DNA methylation and its regulation in tropho-
blast cell fate restriction. EVT invasion of the uterus

requires transformation of epithelial CTB cells into EVT
cells through the EMT process.67 Both EMT and inva-
sion are tightly regulated by methylation. The zinc finger
transcription factor, Snail, encoded by the SNAI1 gene,
initiates EMT.68 Altered levels of both Snail and E-cad-
herin have been observed in PE and HELLP placentas.69

Studies with villous trophoblast and EVT cell lines,
BeWo and HTR-8/SVneo, showed that hypomethylation
of the Snail promoter increased expression and activity,
suggesting a contribution to the disease mechanism by
down-regulation of E-cadherin to induce EMT.70 Forma-
tion of STB is regulated by endogenous retrovirus group
Wmember 1 (ERVWE1) or syncytin-1.71 During normal
placental development, downregulation of DNMT1, 3A
and 3B in CTB leads to hypomethylation of the syncy-
tin-1 promoter, resulting in expression of syncytin-1,
and differentiation of the CTBs into multi-nucleated
STB.71 CTB cells from placentas of pathologic pregnan-
cies suffer from reduced levels of syncytin-1, with
increased methylation of its promoter.72,73 Further, over-
expression of DNMT3A in cultured CTB cells down reg-
ulates syncytin-1, demonstrating that defects in the
methylation machinery could contribute to defective tro-
phoblast differentiation.72

Studies by Hu et al, focusing on global methylation
levels in normal and pathologic placentas identified calu-
din4 and fucosyltransferase IV in the regulation of tro-
phoblast invasion.74 The altered methylation of other
candidates, including the imprinted gene H19, that regu-
late the differentiation of placental cytotrophoblasts75

has also been correlated with intrauterine growth restric-
tion (IUGR), PE and small for gestational age cases.76-78

Similarly, parental-specific hypermethylation of another
imprinted gene, STOX1, which negatively modulates tro-
phoblast invasion,79 was reported in placentas carrying
the Y153H preeclampsia susceptibility allele.54 The pro-
moter of leptin, a gene involved in regulation of EVT
invasion,80 is hypermethylated in the under-developed
portion of placentas from growth-discordant monochor-
ionic twin pregnancies.81 In addition to methylation, a
role for hydroxymethyaltion of cytosine residues in tro-
phoblast was also described recently.40 Oxidation of the
50 methylcytosine by TET enzymes gives rise to the
50hydroxymethylcytosine.82 Unlike methylation, 50-
hyrdoxymethylation was found to be associated with
euchromatin in embryonic stem cells and was associated
with promoters having high transcriptional activity.83

While the exact role of hydroxymethylation in tropho-
blast is not known, higher levels were detected in syncy-
tiotrophoblast where it is stated that cytotrophoblast and
syncytiotrophoblast may have distinct epigenetic pro-
files.40 These studies combined with the several in-vivo
and in-vitro studies in cell lines and mouse models
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respectively, indicate a sensitive balance between the dif-
ferent methylation states and trophoblast function.70,84

Non-coding RNAs (ncRNAs)

Evidence suggests that ncRNAs, and specifically miR-
NAs, are a key components of epigenetic regulation.
miRNAs are small ncRNAs of about 20-24 nucleotides
in length that target the 30 untranslated region (UTR), or
the 50UTR, of mRNA to regulate translation.85 miRNAs
are transcribed as pri-miRNA by RNA polymerase II,
and subsequently processed by nuclear proteins Drosha
and DGCR8 into shorter pre-miRNAs, which are
exported to the cytoplasm and further processed into
mature miRNAs.86 miRNAs either inhibit translation by
imperfect base pairing, or induce degradation of the
mRNA.87 Studies have shown that a multitude of diverse
miRNAs are produced in the human placenta, and that
they can directly target effectors of the epigenetic
machinery, such as HDAC and PRC genes, to indirectly
affect gene expression.88

miRNAs are expressed during placental development,
regulating trophoblast differentiation, migration and
invasion. Using a miRNA microarray, numerous miR-
NAs were identified in placental tissues collected at dif-
ferent gestational ages.89 miRNAs in the C14MC, miR-
371–3 and C19MC clusters were significantly upregu-
lated in the first trimester.89 In contrast, miRNAs of the
let-7, miR-34, miR-29a, miR-195, and miR-181c clusters
were upregulated in third trimester placentas.89 This
expression pattern indicates a key role for miRNAs in
placental development. Clusters C14MC and C19MC are
located on chromosome 14 and chromosome 19, respec-
tively, and are exclusively expressed in the placenta.90,91

Both C14MC and C19MC miRNAs are thought to regu-
late cellular differentiation during pregnancy.89 Lan
et al.92 showed that upon stable transfection of the entire
C19MC cluster in HTR-8/SVneo trophoblast cells,
migration is attenuated without affecting cell prolifera-
tion or apoptosis, suggesting that miRNAs within the
C19MC cluster specifically regulate trophoblast
migration.

In addition to the C19MC cluster, recent studies iden-
tify other miRNAs that regulate trophoblast differentia-
tion, migration and invasion. miR-424, which is down-
regulated in human trophoblasts under hypoxic condi-
tions, promotes cell differentiation through direct regula-
tion of fibroblast growth factor receptor 1 (FGFR1).93

Luo et al.94 demonstrated that miR-378a-5p promotes
trophoblast cell migration and invasion in first trimester
placental explants by suppressing Nodal.94 Nodal is a
member of the transforming growth factor factor-b
superfamily95 that inhibits trophoblast cell migration

and invasion through the actvin receptor like kinase 7
(ALK7) pathway. However, miR-378a-5p suppresses
Nodal expression potentially through its binding site on
Nodal 30UTR, thus, promoting trophoblast cell migra-
tion and invasion. Most recently, the inhibitory role of
miR-378a-5p on STB differentiation by down-regulation
of CCNG2 expression was reported in BeWo cells.96

miR-376c is another microRNA that targets ALK7 and
ALK5 to induce trophoblast migration and invasion.97

Similarly, miR-195 promotes trophoblast invasion by
repressing ActRIIA, which is the type II receptor for
ActivinA and Nodal.98 Notably, miR-195 is downregu-
lated in preeclamptic pregnancies.98

Several studies report that miRNAs, such as miR-
204,99 miR-135b,100 miR-519d,101 miR-20a,102 miR-
210,103 miR-29b,104 miR-125–1–3p,105 and miR-155,106

inhibit trophoblast cellular activities. There is compelling
evidence linking each of these inhibitory miRNAs to
pregnancy complications, including PE and IUGR, in
which EVT invasion of the uterine arteries is reduced107

and trophoblast apoptosis is elevated108 (Table 1).
miRNA-210 is upregulated in PE placentas, compared to
healthy placentas,103 and its expression is inversely corre-
lated to expression levels of potassium channel modula-
tory factor 1 (KCMF1), suggesting KCMF1 as a direct
target.103 Transfection of the HTR-8/SVneo cell line with
miRNA-210 mimics repressed trophoblast invasion,
which can be rescued by overexpression of KCMF1,103

supporting the putative contribution of miRNA-210 to
PE. miRNA microarray data indicates miRNA-210 as
the most upregulated miRNA in preeclamptic pla-
centas.109 miRNA-125b-1–3p inhibits trophoblast cell
invasion by targeting sphingosine-1-phosphate receptor
1 (S1PR1) in preeclampsia.105 It was also documented
that miRNA-29b induces apoptosis and inhibits invasion
by directly targeting the 30UTRs of myeloid cell leukemia
sequence 1, matrix metalloproteinase 2, vascular endo-
thelial growth factor A and integrin b1.104 An inverse
correlation between the expression of miRNA-29b and
its target genes was identified in preeclamptic pla-
centas.104 Dai et al. demonstrated a negative regulatory
role of miRNA-155 in trophoblast cell migration by tar-
geting the eNOS and cyclin D1/p27 pathway.106,110

The role of miRNAs in epigenetic modifications that
regulate placental development is still in the early phase
of investigation, yet there is compelling evidence of a
clear epigenetic miRNA interaction that regulates tro-
phoblast cell differentiation, migration and invasion.
Several studies have shown a close correlation between
miRNA expression and trophoblast cell activity, and its
implications for placental disease (Table 1). Epigenetics
is an emerging field that has revealed a complex regula-
tory network involved in gene regulation that is
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responsible for placental development. A recent study
has shown that another group of non-coding RNAs,
lncRNAs, play a putative role in epigenetic modulation
of trophoblast proliferation and migration through
miRNA sequestration.111 Continued research on epige-
netic regulation by miRNAs shows great promise for
rapidly elucidating novel mechanisms that control
human placental development.

Conclusion

Although knowledge of epigenetic regulatory mecha-
nisms of gene expression essential for placental develop-
ment has improved substantially in recent years, much
remains to be learned about its contribution to the path-
ogenesis of abnormal placentation associated with inade-
quate trophoblast differentiation and invasion. The
ability to analyze the entire epigenome, using innovative
technologies such as next-generation sequencing, will
provide a more detailed and precise perspective of the
transcriptional regulatory networks. With further
research focusing on gestational changes in the various
placental cell types in relationship to disease, epigenetics
will help to understand human development, and con-
tribute significantly toward efforts to devise preventive
and therapeutic interventions for pregnancy
complications.
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