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Abstract: Tetrachlorinated phthalimide analogues bearing a boron-pinacolate ester group were syn-
thesised via two synthetic routes and evaluated in their glycosidase modulating and anticancer
properties, with a view to use them in boron neutron capture therapy (BNCT), a promising radiation
type for cancer, as this therapy does little damage to biological tissue. An unexpected decarbonyla-
tion/decarboxylation to five 2,3,4,5-tetrachlorobenzamides was observed and confirmed by X-ray
crystallography studies, thus, giving access to a family of borylated 2,3,4,5-tetrachlorobenzamides.
Biological evaluation showed the benzamide drugs to possess good to weak potencies (74.7–870 µM)
in the inhibition of glycosidases, and to have good to moderate selectivity in the inhibition of a panel
of 18 glycosidases. Furthermore, in the inhibition of selected glycosidases, there is a core subset of
three animal glycosidases, which is always inhibited (rat intestinal maltase α-glucosidase, bovine
liver β-glucosidase and β-galactosidase). This could indicate the involvement of the boron atom
in the binding. These glycosidases are targeted for the management of diabetes, viral infections
(via a broad-spectrum approach) and lysosomal storage disorders. Assays against cancer cell lines
revealed potency in growth inhibition for three molecules, and selectivity for one of these molecules,
with the growth of the normal cell line MCF10A not being affected by this compound. One of
these molecules showed both potency and selectivity; thus, it is a candidate for further study in
this area. This paper provides numerous novel aspects, including expedited access to borylated
2,3,4,5-tetrachlorophthalimides and to 2,3,4,5-tetrachlorobenzamides. The latter constitutes a novel
family of glycosidase modulating drugs. Furthermore, a greener synthetic access to such structures
is described.

Keywords: boron; phthalimide; benzamide; glycosidase; cancer; boron neutron capture therapy

1. Introduction

The phthalimide scaffold appears in several drugs, including the fungicide N-
(trichloromethylthio)phthalimide (Folpet®), thalidomide—now used for leprosy—and
in the first line treatment of multiple myeloma [1], the antibacterial talmetoprim, the
antifungal amphotalide, and the antiepileptic taltrimide (Figure 1) [2].
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Phthalimide analogues have also been shown to display glycosidase inhibition [3–5],
with the 2,3,4,5-tetrachlorophthalimide scaffold deemed necessary for potent activity and
the corresponding unsubstituted phthalimide derivatives showing reduced activity [6].

In our group, we are interested in the use of organic boron as a pharmacophoric
group in its boronic acid (R-B(OH)2) and boronate ester (R-B(OR′)2) [7,8] functional groups
and in the development of synthetic methodologies for the installation of this pharma-
cophore on biologically active molecules to study and expand the palette of enzyme–drug
interactions [9–13].

Glycosidase enzymes are involved in a number of disease states, ranging from diabetes
and lysosomal storage disorders to viral infections, with their modulation being paramount
in the management of these diseases [14–22]. The introduction of boron atoms to drug
molecules also provides access to potential boron neutron capture therapy (BNCT) agents.
BNCT provides the opportunity to utilise a type of radiotherapy that causes minimal
damage to healthy tissue [23–25].

We report the synthesis of a family of novel drugs consisting of borylated 2,3,4,5-
tetrachlorophthalimides and 2,3,4,5-tetrachlorobenzamides. The latter group arose from a
decarbonylation side reaction, giving expedited access to them. Drugs have been character-
ized, including by X-ray crystallographic analysis in two instances. These confirmed the
structural integrity, the outcome of the side reaction and the conformation of the boronate
ester groups in the solid state. Furthermore, biological assays against glycosidase enzymes
and cancer cell lines highlighted a good inhibitor for bovine liver β-galactosidase and three
potent growth inhibitors and, of these, one selective growth inhibitor for cancer versus
healthy cell lines in the cancer assay. These drugs represent an optimal set for further
derivatisations.

2. Results and Discussion
2.1. Summary of Synthetic Work

Synthesis of the N-borylated 2,3,4,5-tetrachlorophthalimides was attempted via two
synthetic strategies: the double acyl substitution route (reaction of 1 with meta 2, para
2, ortho 4, meta 4 and para 4, Scheme 1) and the SN2 route (reaction of 6 with ortho 7
and para 7).
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Scheme 1. Synthetic routes to borylated phthalimide analogues meta 3, para 3, ortho 5, meta 5, para
5, ortho 8 and para 8. (i) Et3N, DMF, 85 ◦C, 2d, 60% (meta 3), 44% (para 3); (ii) Et3N, DMF, 85 ◦C, 2d,
then 105 ◦C, 3d, 52% (meta 5), 37% (ortho 5); NaH, DMF, 100 ◦C, 3d, 46% (para 5); (iii) NaH, DMF,
100 ◦C, 2d, 60% (ortho 8), 56% (para 8).

Synthesis of the 2,3,4,5-tetrachlorophthalimides meta 3 and para 3 was achieved in
moderate to good yields in one synthetic step via double acyl substitution from 2,3,4,5-
tetrachlorophthalic anhydride 1, which was reacted with 3- and 4-(aminomethyl)phenylboronic
acid pinacol ester hydrochloride meta 2 and para 2 in DMF at 85 ◦C. Reagent 2-(aminomethyl)-
phenylboronic acid pinacol ester hydrochloride was not commercially available for synthe-
sis of ortho 3 (not shown).

An unexpected decarbonylation reaction gave products ortho 5, meta 5 and para 5,
and decarboxylation reaction gave ortho 8 and para 8.

2.2. Decarbonylation Reaction

To our knowledge, there are limited literature reports to the synthesis of 2,3,4,5-
tetrachlorobenzyl scaffolds. Two main synthetic strategies were employed.

One method involves the synthesis of 2,3,4,5-tetrachlorophthalic acid diesters from
direct esterification of 2,3,4,5-tetrachlorophthalic anhydride with primary alcohols at tem-
peratures of 200 ◦C or above, which is accompanied by decarbonylation to give the expected
tetrachlorophthalic acid diester and the decarbonylated 2,3,4,5-tetrachlorobenzoate ester in
a ~2:1 ratio. [26] When the reaction is base catalysed (potassium carbonate, 3.63 mol%), the
ratio of products is reversed (~1:2), with the decarbonylated product forming in greater
amounts. The same authors also synthesised 2,3,4,5-tetrachlorobenzoic acid from 2,3,4,5-
tetrachlorophthalic acid or anhydride by reaction in water, catalysed by sodium hydroxide
(1 eq) at 200 ◦C for 7 h (93%). Then, synthesis of the corresponding secondary amides
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(2,3,4,5-tetrachlorobenzanilide and 2,3,4,5-tetrachlorobenzamide) is achieved in two further
steps by derivatising 2,3,4,5-tetrachlorobenzoic acid to the corresponding acid chloride, then
by reaction with aniline and ammonium hydroxide, respectively, in excellent overall yield.

A second method, described by Harvey et al., achieves the synthesis of the same
set of target molecules via a two-/three-step sequence from aromatic starting materials
(e.g., toluene, ethylbenzene), firstly via perchlorination with chlorine bubbling through the
aromatic starting material, iron powder and anhydrous ferric chloride boiling in carbon
tetrachloride for 8 h, followed by reaction of the perchlorinated aromatics with sulfuric acid
at 180–200 ◦C for heptachlorotoluene or 260–280 ◦C for nonachloroethylbenzene starting
material used. The reaction with the nonachloroethylbenzene required a further step,
namely the reaction with potassium permanganate in 2N sodium hydroxide at 80 ◦C. The
yields for 2,3,4,5-tetrachlorobenzoic acid were 29% and 14%, respectively [27].

Earlier synthetic strategies include the reaction of tetrachlorophthalic acid in a sealed
vessel at 300 ◦C in subcritical acetic acid [28], of tetrachloro(trichloromethyl)benzene
(unknown isomer/s) in a sealed vessel at 280 ◦C in subcritical water [29]. A later publication,
reporting on the phytotoxicity activity of benzoic acid derivatives, includes production
of a small library of 2,3,4,5-tetrachlorobenzamides; however, the synthetic details to this
sub-family are scarce [30].

Here, decarbonylation occurred during the reaction of boron-bearing amines with
phthalic anhydride to produce the corresponding secondary amides (ortho 5, meta 5 and
para 5). The reaction mechanism is hypothesised to proceed through an acyl substitution
reaction occurring at an anhydride carbonyl by the nitrogen atom of the amine reagent.
This is followed by decarbonylation of the adjacent carboxylate and formation of an anionic
intermediate, with the resulting electron pair held in the aromatic C-sp2 orbital bearing the
carboxylate group. This lone pair is thought to be stabilised by inductive and resonance
effects via the nearby four electronegative chlorine atoms. This lone pair then strips off a
proton intramolecularly from the quaternary nearby nitrogen atom, thus, providing the
2,3,4,5-tetrachlorobenzamide products.

2.3. Decarboxylation Reaction to Benzamides

Our methodology achieves the transformation of 2,3,4,5-tetrachlorophthalic anhydride
and 2,3,4,5-tetrachlorophthalimide to the corresponding decarbonylated secondary amides
in one synthetic step, avoiding the use of corrosive reagents and harsh conditions, and at
lower temperature by heating the reaction mixture to 100 ◦C in DMF for 48 h to give the
products ortho 8 and para 8 in moderate yields.

3. X-ray Crystallography Commentary

The structure of compound meta 5 is shown in Figure 2. The asymmetric unit com-
prises two molecules, which exhibit essentially the same conformations and only one of
these is shown. As expected, the trans-amide group is essentially planar (O1a-C-N1a-H
172.4◦), while the two phenyl substituents are twisted (CAr-CAr-C-O1a 75.5◦; CAr-CAr-N1a-
C 33.1◦) to minimise repulsion with the amide functional group.

In the structure of ortho 8 (Figure 3), the substituents on the B-substituted ring are in
ortho positions. In comparison with meta 5, the insertion of a methylene group between the
amide and B-substituted phenyl ring relieves torsional strain (CAr-CAr-C(H2)-N1 4.6◦). The
other structural features resemble those found in meta 5, defined by the dihedral angles
O1-C-N1-H 173.8◦ and CAr-CAr-C-O1 76.6◦, CAr-C-N1a-C 61.1◦.

The boronic ester groups in both structures are close to coplanar with the adjacent
phenyl ring (out of plane twist <10◦) and the C-B bonds (ortho 8 1.561(6) Å; meta 5 1.558(6)
and 1.557(6) Å) are reinforced due to π-bonding with the sp2-hybridised B-atom. In twisted
(purely σ-bonded) aromatic boronate esters (CAr-CAr-B-O ~90◦), the CAr-B bond is typically
in a range 1.57–1.59 Å [31,32].
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Intermolecular H-bonding in both structures comprises one-dimensional N-H . . .
O chains of the amide functional group (in its trans H-N-C=O conformation). There are
differences in the symmetry of the chains in the two structures. When the boronate ester is
ortho on the benzamide ring, adjacent molecules are related by the c glide place (Figure 4A),
orthogonal to the place of the page and propagating right to left, leading to an alternating
(zig-zag) array of H-bonds along the chain.
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In the structure of the meta 5 isomer (Figure 4B), the presence of two molecules in
the asymmetric unit (molecules A and B) breaks any symmetry relationship between
adjacent molecules within the H-bonded chain, and the orientations of the N-H . . . O bonds
are approximately the same along the chain, with rotation of the nearby aromatic rings
facilitating closer packing.

4. Glycosidase Assay

In our laboratory we are interested in glycosidase modulation [13,18,19,21]. Screening
for selectivity, as well as potency, is of paramount importance in carbohydrate-active
enzyme research.

Our drugs and controls are, therefore, screened against two panels of glycosidases,
respectively, in methanol (Table 1) and water (Table 2). This allows identification of the
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glycosidase-related disease area(s), selectivity profile and potency of biological action for
each drug.

Following the glycosidase inhibition range recommendations [21], an IC50 value > 250 µm
denotes weak inhibition, 100–249 µm denotes moderate inhibition, 10–99 µm good in-
hibition, 0.1–9 µm potent inhibition and <0.1 µm very potent inhibition. Our 2,3,4,5-
tetrachlorobenzamides enter as a novel family of glycosidase inhibitors.

4.1. Glycosidases

The glycosidases screened are the following: rice α-glucosidase, yeast α-glucosidase,
Bacillus α-glucosidase, rat intestinal maltase α-glucosidase, almond β-glucosidase, bovine
liver β-glucosidase, coffee beans α-galactosidase, bovine liver β-galactosidase, Jack bean
α-mannosidase, snail β-mannosidase, Penicillium decumbens α-L-rhamnosidase, bovine
kidney α-L-fucosidase, Eschierichia coli β-glucuronidase, bovine liver β-glucuronidase,
porcine kidney trehalase, Aspergillus niger amyloglucosidase and bovine kidney N-acetyl-
β-glucosaminidase.

The disease areas for each glycosidase follow:
α-Glucosidase (EC 3.2.1.20) inhibition is linked to the management of diabetes, certain

forms of hyperlipoproteinemia and obesity [33,34]. α-Glucosidase modulators also have
potential as broad-spectrum anti-viral agents [35–38], for cancer [39] and lysosomal storage
disorder Pompe disease [40,41].

β-Glucosidase (EC 3.2.1.21), α-Galactosidase (EC 3.2.1.22), and β-galactosidase (EC 3.2.1.23)
are, respectively, linked to lysosomal storage disorders, such as Gaucher disease [42,43], Fabry
disease [40], and GM1 gangliosidosis and Morquio syndrome B [40,44].

Other glycosidases involved in lysosomal storage disorders include α-mannosidase
(EC 3.2.1.24), β-mannosidase (EC 3.2.1.25), α-L-fucosidase (EC 3.2.1.51), trehalase (EC
3.2.1.28), and β-glucuronidase (EC 3.2.1.31), whose malfunction cause, respectively, man-
nosidoses [45–47], fucosidosis [48,49], trehalase deficiency [50,51] and Sly disease [52].
Inhibition of β-glucuronidase may also help in controlling cancers and other diseases [53].

α-L-Rhamnosidase (EC 3.2.1.40) inhibition is linked to bacterial virulence [54,55].
Amyloglucosidase (EC 3.2.1.3) inhibition is important in diabetes management [56] and
N-acetyl-β-D-glucosaminidase (EC 3.2.1.96) is involved in cancer progression and diabetic
kidney disease [57].

4.2. Biological Activities for Phthalimides and Benzamides in the Literature

An overview of the literature in the field provides the following studies for phthala-
mides, 2,3,4,5-chlorophthalimides, and benzamides.

4.2.1. Phthalamides

A siastatin-derivatised phthalimide produced a very potent inhibition of bovine kidney
α-L-fucosidase (IC50 0.013 µM) [58].

SAR studies on phthalimide analogues with Saccharomyces cerevisiae (yeast) α-glucosidase
highlight good inhibitions for N-phenylphthalimides derivatised at the ortho-position with
non-polar groups [59]. This was not found by us with our phthalimide drugs, but with our
benzamide drugs.

On the other side of the molecule, substitutions of the phthalimide scaffold H atoms
with other groups, such as amine or hydroxyl, tend to largely abrogate potency, but the
introduction of nitro or alkyl groups tend to produce good inhibitors.
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Table 1. Glycosidase inhibition studies from laboratory 1. Percentage inhibition data and IC50 values (on coloured background) for the most potent activities in a
panel of 15 glycosidases.

Compound Enzyme

α-Glucosidase β-Glucosidase α-
Galactosidase

β-
Galactosidase

α-
Mannosidase

β-
Mannosidase

α-L-
Rhamnosidase

α-L-
Fucosidase β-Glucuronidase Trehalase Amyloglucosidase

Rice Yeast
Rat

Intestinal
Maltase

Almond Bovine
Liver

Coffee
Beans

Bovine
Liver Jack Bean Snail Penicillium

decumbens
Bovine
Kidney E. coli Bovine

Liver
Porcine
Kidney A. niger
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aNI 
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aNI 
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(30.2%） 
175 aNI b (30.2%） 213 aNI b (7.6%） 

aNI b 

(39.1%） 
aNI b (2.2%） 

aNI b 

(3.3%） 
932 aNI b (6.0%） 

aNI b 

(0%） 
aNI b (2.8%） 
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cNI d(0%） cNI d(0%） cNI d(3%） 
cNI d 

(11.6%） 
cNI d 

(21.2%） 
cNI d (0%） cNI d (0%） cNI d (3.4%） cNI d (0%） cNI d (0%） cNI d (0%） 

cNI d 

(3.8%） 
cNI d (0%） 

cNI d 

(1.2%） 
cNI d (0%） 

 
para 8 

aNI 
b(2.1%） 

aNI b(0%） 207 
aNI b 

(29.6%） 
702 aNI b (18.0%） 74.7 aNI b (4.5%） 

aNI b 

(34.7%） 
aNI b (3.3%） 

aNI b 

(7.2%） 

aNI b 

(34.7%
） 

aNI b (18.8%） 
aNI b 

(4.1%） 
aNI b (0%） 

 
ortho 8 

aNI b (0％) aNI b (0％) 305 254 922 aNI b (114.4％) 278 
aNI b 

(12.5％) 
aNI b (39％) aNI b (6.2％) 

aNI b 

(19.9％) 

aNI b 

(41.7％
) 

aNI b (16.3％) 
aNI b 

(16.8％) 
aNI b (0％) 

For BSH and BPA.  
aNI: No inhibition (less than 50% inhibition at 

1000 μM). 

cNI: No inhibition (less than 50% inhibition at 100 
μM). 

For our drugs: aNI: No inhibition (less than 50% inhibition 
at 100  μM). 

cNI: No inhibition (less than 50% inhibition 
at 10 μM). 

b (   ): inhibition % at 1000 μM. d (   ): inhibition % at 100 μM. b (   ): inhibition % at 100 μM. d (   ): inhibition % at 10 μM. 

Table 2. Glycosidase inhibition studies from laboratory 2. Results expressed as % inhibition at ~400 μM. 

Compound Enzyme 
Appearance of the 1 

mg/mL Aqueous Solution 
Tested 

α-Glucosidase β-
Glucosidase 

α-Mannosidase N-Acetyl-β-
Glucosaminidase 

β-Glucuronidase 
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Table 1. Cont.

Compound Enzyme

α-Glucosidase β-Glucosidase α-
Galactosidase

β-
Galactosidase

α-
Mannosidase

β-
Mannosidase

α-L-
Rhamnosidase

α-L-
Fucosidase β-Glucuronidase Trehalase Amyloglucosidase

Rice Yeast
Rat

Intestinal
Maltase

Almond Bovine
Liver

Coffee
Beans

Bovine
Liver Jack Bean Snail Penicillium

decumbens
Bovine
Kidney E. coli Bovine

Liver
Porcine
Kidney A. niger
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Table 2. Glycosidase inhibition studies from laboratory 2. Results expressed as % inhibition at ~400 µM.

Compound Enzyme
Appearance of the
1 mg/mL Aqueous

Solution Tested

α-Glucosidase β-Glucosidase α-Mannosidase N-Acetyl-β-
Glucosaminidase β-Glucuronidase

Yeast Bacillus Almond JACK BEAN Bovine Kidney Bovine Liver
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Table 2. Cont.

Compound Enzyme
Appearance of the
1 mg/mL Aqueous

Solution Tested

α-Glucosidase β-Glucosidase α-Mannosidase N-Acetyl-β-
Glucosaminidase β-Glucuronidase

Yeast Bacillus Almond JACK BEAN Bovine Kidney Bovine Liver
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Another study on a library of N-phenylphthalimide derivatives showed the strongest
potency against the three α-glucosidases screened was displayed by N-(2,4-dinitrophenyl)-
phthalimide, having two nitro groups in ortho and para positions. This is a moderate
inhibitor of yeast α-glucosidase (IC50 158 µM) and a good inhibitor of maltase (IC50 51 µM),
displaying no inhibition of sucrase [60].

N-Phenylphthalimide derivatives substituted with non-polar groups departing from
the ortho position of the phenyl group keep providing inhibition of Saccharomyces cerevisiae
α-glucosidase as low as 16 µM [61].

Other examples include the Hashimoto papers [62–64].
Several members of a phthalimide moiety connected by an alkyl chain to variously

substituted phenoxy rings were screened against α-glucosidase. The inhibition potency
appeared to be governed by the chain length of the substrate. Substrates possessing
10 carbons afforded the highest levels of activity, which were one to two orders of magnitude
more potent than the known inhibitor 1-DNJ [4,65].

Bian and coworkers screened, against α-glucosidase, a series of N-substituted-(p-
toluenesulfonylamino)phthalimides. Many analogues provide good inhibitions of the
enzymes, with aromatic pendants and tethers containing 1–3 atoms generally producing
the most potent inhibitions [3].

Another study of N-phenoxy-substituted phthalimides showed that the presence of a
thiazolidine-2,4-dione or a rhodanine group, located at the 4-position of the phenyl ring,
resulted in the best activity, with IC50 values as low as 5 µM against Saccharomyces cerevisiae
α-glucosidase [66].

A series of phthalimide-benzamide-1,2,3-triazole hybrids showed good/moderate in-
hibitory activity against Saccharomyces cerevisiae α-glucosidase. The most potent compound
displayed an IC50 of 40 µm [67].

4.2.2. 2,3,4,5-Tetrachlorophthalimides

A 2,3,4,5-tetrachlorophthalimide, derivatised at the N-atom with a doubly ortho-
substituted phenyl group, produced potent inhibitions. The use of linear alkyl chains
departing from the phthalimide N atom produces potent and very potent inhibitions as the
chain lengthens [59].

2,3,4,5-Tetrachlorophthalimides N-derivatised with a phenyl group attached directly
to the N or through a linear alkyl tether (1–6 CH2 units) all displayed potent IC50 (3–11 µM)
towards one α-glucosidase screened and more potent than the \1-DNJ control. The replace-
ment of the four chlorine atoms with hydrogen atoms and the replacement of hydrogen
atoms with other groups (e.g., nitro, amine) partially or completely abrogated the inhibitory
activity of the drugs [6].

The same group also investigated other groups bonded to the phthalimide N, namely
branched and cyclical alkyl groups and a dodecaborane group. All drugs displayed
comparable or more potent activity (1–49 µM) than 1-DNJ. Cyclical alkyl groups and the
borane group produced the most potent inhibitions [5].

The pendant groups attached to the phthalimide unit can clearly interact effectively
with a number of sites in the vicinity of the active site, which is presumably occupied by
the 2,3,4,5-tetrachlorophthalmide scaffold. This is highlighted by the variety and length of
pendant groups. Hydrophobicity seems to be the common motif.

N-Phenyl-2,3,4,5-tetrachlorophthalimide derivatives substituted with non-polar groups
departing from the ortho, meta and para positions of the phenyl group keep providing inhi-
bition of α-glucosidase as low as 13 µM against Saccharomyces cerevisiae [61].

4.2.3. Benzamides

A series of N-substituted 1-aminomethyl-β-D-glucopyranoside derivatives was screened
against Saccharomyces cerevisiae α-glucosidase, rat intestinal maltase α-glucosidase and su-
crase. The most potent inhibitions were produced when the benzamide aromatic ring
displayed groups in the para position to the amide. The three most potent compounds
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comprised O-acetyl groups in the 3-, 4- and 5-positions (IC50 7.7 and 15.6 µM against rat
intestinal maltase α-glucosidase and sucrase), a nitro group in the 4-position (IC50 36.2 µM
against Saccharomyces cerevisiae α-glucosidase) and an O-acetyl group in the 4-position (IC50
96.5 µM against Saccharomyces cerevisiae α-glucosidase) [68].

1-DNJ derivatised with benzamides also produced potent to very potent inhibitions of
sweet almond and A. faecalis β-glucosidases (IC50 0.15–21 µM) [69].

Further, 24 Metronidazole-tethered benzamide triazoles demonstrated weak to good
activity against β-glucuronidase, with no toxicity against 3T3 mouse fibroblast cell lines [70].
The most active compound has an IC50 12.4 µM with an activity ~four-times higher than
the standard inhibitor, D-saccharic acid-1,4-lactone (IC50 45.8 µM) [53].

Iminosugar-benzamide derivatives displayed good to moderate inhibitions of As-
pergillus niger amyloglucosidase, Saccharomyces cerevisiae α-glucosidase and human lym-
phocytes lysosomal α-glucosidase [71].

4.3. Biological Activities for Our Drug Library Screened in Methanol

Biological activities for controls, and our 2,3,4,5-tetrachloro phthalimides and benza-
mides, follow in Tables 1 and 2.

For Table 1:

4.3.1. Controls

Borocaptate sodium (BSH) and 4-borono-L-phenylalanine (BPA), and their 10B-enriched
congeners 10B-BSHand 10B-BPA, were the controls. To our knowledge, these drugs have
never been reported in a glycosidase assay. BSH and BPA are the drugs currently clinically
used in BNCT. It is possible to see that none of them significantly inhibit any of the gly-
cosidases in the panel at 100 or 1000 µM. In the panel, percent inhibitions range from a
minimum value of 0 to a maximum value of 19.6.

4.3.2. 2,3,4,5-Tetrachlorophthalimides

The 2,3,4,5-tetrachlorophthalimide drugs presented in this work do not provide any
appreciable degree of inhibition, most likely because the spatial geometry and length of
tether extending from the phthalimide scaffold are probably not able to reach the sites
of interaction.

para 3 and meta 3 possess the CH2 spacer between the phthalimide and the aromatic
boron group, with para 3 displaying the boronate ester group in para position and meta 3
in meta position to the phthalimide.

Of the benzamides, para 5, with no CH2 spacer between the aromatic boron group and
the benzamide, shows moderate inhibition towards maltase α-glucosidase, with an IC50
188 µM. Weak inhibitions are displayed towards bovine liver β-glucosidase (IC50 543 µM)
and bovine liver β-galactosidase (IC50 333 µM).

meta 5, with no CH2 spacer between the aromatic boron group and the benzamide,
again, shows moderate inhibition towards bovine liver β-glucosidase (IC50 175 µM) and
bovine liver β-galactosidase (IC50 213 µM). Weak inhibition is observed towards maltase
α-glucosidase, with an IC50 of 274 µM, and E. coli β-glucuronidase (IC50 932 µM).

para 5 and meta 5 display the boronate ester group, respectively, in para and meta
position from the benzamide. Both display partially selective inhibition profiles, inhibiting
only 3–4 within the panel of 16 enzymes. Interestingly, their inhibitory profiles show a swap
in potency, with para 5 preferentially selecting one α-glucosidase and meta 5 selecting
β-glycosidases.

ortho 5, the ortho congener to para 5 and meta 5, displays no significant inhibition of
any of the enzymes. Hence, the location of the boronate ester group has a negative effect
on drug–enzyme interactions, presumably either by preventing the drug from sitting in the
active site as para 5 and meta 5 and/or abrogating any further interactions the aromatic
boronate group may have with the enzyme.
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4.3.3. 2,3,4,5-Tetrachlorobenzamides

Benzamides para 8 and ortho 8, possessing the CH2 spacer between the aromatic boron
group and the benzamide, show partially selective inhibition of the same enzymes. para 8
has the boronate ester group para to the benzamide, whereas ortho 8 displays the boronate
ester group ortho to the benzamide. Presumably, the lack of one of the carbonyl groups
allows the pendant group to reach sites of favourable interactions with the enzymes. Since
the enzymes inhibited are the same, it is surmised that the drug SAR profiles are similar.

para 8 elicits moderate inhibition of maltase α-glucosidase, with an IC50 of 207 µM.
ortho 8 inhibits the same enzyme weakly, with a similar value of 305 µM. Weak inhibitions
are displayed towards bovine liver β-glucosidase (IC50 = 702 and 922 µM, respectively).

The two main differences are seen:

(a) In the inhibition of bovine liver β-galactosidase, which is inhibited weakly by ortho 8
(IC50 278 µM), but para 8 inhibits the same enzyme with a good IC50 74.7 µM. This is
the most potent drug in the small libraries reported in this communication.

(b) In the inhibition of almond β-glucosidase by ortho 8, which is on the edge of moder-
ate/weak, with an IC50 of 254 µM.

The drugs that show appreciable inhibition all inhibit the same glycosidase enzymes
(maltase α-glucosidase, bovine liver β-glucosidase and bovine liver β-galactosidase). Fur-
thermore, all drugs selectively inhibit glycosidases of animal origin vs. glycosidases of
plant or bacterial origin within the same glycosidase class. This is a positive result for
applications in a human disease medicinal chemistry context.

4.4. Biological Activities for Our Drug Library Screened in Water

For Table 2:
Some differences were noted in the results obtained from this second laboratory that

used just water to suspend or dissolve the compounds. The compounds did not fully
go into solution but nonetheless, activities were observed and so they are included here
for comparison.

No appreciable inhibition was detected for any of the controls and compounds against
Bacillus α-glucosidase, Jack bean α-glucosidase, bovine kidney A-acetyl-β-glucosaminidase
and bovine liver β-glucuronidase.

Three potent % inhibitions at a concentration of ~400 µM were seen for meta 5 (82.8%)
and para 8 (99.5%) against yeast α-glucosidase, and for ortho 8 (83.4%) against almond
β-glucosidase.

5. Cancer Assay and Structure Activity Relationships

In our laboratory, we are interested in BNCT as a potentially broad-spectrum approach
to cancer management. It would be advantageous upon irradiation, if the boron-containing
drugs accumulate more selectively in cancer cells vs. healthy cells [72,73]. In case the
drugs do not accumulate selectively in cancer vs. healthy cells, the delivery of radiation is
required with greater precision.

BNCT is essentially a non-invasive radiation technique and the least destructive
currently available [23–25]. Use of a borylated drug in BNCT would ideally require that it
is non-toxic in the absence of radiation. Following a first study of synthesis, purification
and toxicity of organic-boron-containing drugs for BNCT applications [13], we report here,
two further families of potential BNCT agents.

BNCT agents that contain organic boron groups are preferable to ones containing
inorganic boron. The currently utilised sodium borocaptate, BSH, with its inorganic boron
atoms, raises several toxicity concerns [74,75]. Boronophenylalanine, BPA, which contains
the organic boronic acid moiety, has long been known to show no discernible toxicity [76].
Similarly, in this area, candidate BNCT agents containing an organic boron group should
be more likely to reach the clinic.

It has long been known that organic boron is an essential element for plants [77,78]
and is likely to be essential for human and animal health [79].
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When comparing toxicological data for organic boron-containing molecules with their
non-borylated congeners, the trend is that the presence of organic boron lowers toxicity
profiles. For example, benzene has an LD50 (lethal dose) of 125 mg/kg (human, oral) [80]
and an LCLO (lethal concentration) of 20,000 ppm (human, 5 min); it is carcinogenic, and
also possibly mutagenic. The NIOSH Permissible Exposure Limit for benzene is 1 ppm,
the Recommended Exposure Limit is 0.1 ppm, and the Immediately Dangerous to Life and
Health concentration is at 500 ppm [81].

On the other hand, phenylboronic acid has an LD50 740 mg/kg (rat, oral) [82], with no
entry for RTECS, ACGIH, IARC, or NTP.

If a BNCT agent also has growth inhibition capability against cancer cells, then it is
important to screen them in more complex biological systems, such as spheroids, as we did
recently [72,73].

Table 3 shows, on a blue background, the percentage cell growth inhibition in response
to 25 µM of the drug. In this case, a higher value correlates with a greater growth inhibition.
Inhibition value ranges have been colour coded, according to potency, with 80–100%
inhibition in red, 60–79% in orange, 35–59% in green, 10–34% in blue and 0–9% in black.

On the green background, the GI50 values are provided for the most potent drugs. The
GI50 value provides the concentration in µM that induces a 50% cell growth inhibition. In
this case, a lower value correlates with greater growth inhibition.

5.1. Analysis of the Percent Cell Growth Inhibition Data

BSH, BPA and their 10B-enriched congeners 10B-BSH and 10B-BPA are the controls.
BSH and BPA are the drugs currently clinically used in BNCT. It is possible to see that none
of them significantly inhibit cell growth at 25 µM. Percent cell growth inhibitions range
from <0% to 19% in our panel of 10 cancer cell lines (HT29, U87, MCF-7, A2780, H460, A431,
Du145, BE2-C, SJ-G2 and MIA-Pa-Ca2) and a normal cell line (MCF10A). Specifically, only
10 out of 44 entries for the controls were double-digit (10% or greater) percent inhibitions.
The other 34 entries contained inhibition values between 0.01% and 9.99%, and nine entries
with values of 0% or <0%.

It is evident that more efficacious BNCT agents are required.
When analysing the data for the borylated drugs, a number of Structure–Activity

Relationship considerations can be evinced.
A general overarching consideration is that the vast majority of percent cell growth

inhibitions for the borylated drugs are significantly greater than the percent cell growth
inhibitions for the BSH and BPA controls.

There are three drugs that possess potent inhibitions, namely tetrachlorophthalimides
para 3 and meta 3, and tetrachlorobenzamide ortho 5.

para 3 is the only tetrachlorophthalimide that displays potent inhibition. It displays
the boronate ester group in para position to the phthalimide and it has the CH2 spacer
between the phthalimide and the aromatic boron group. Inhibitions range from 98% to
>100% for 9 out of 10 cancer cell lines and for the normal cell line. Only the A431 cancer
cell line displays a lower inhibition (85%).

Tetrachlorophthalimide meta 3 possesses a similar structure to para 3, with the
boronate ester group in meta position to the phthalimide. The installation of the boronate
ester group in the meta position reduces potency significantly for all cancer lines and the
normal cell line, though to varying extents. The smallest reduction in inhibition is seen
in cell lines U87 (70%), MCF-7 (67%), A2780 (70%) and MCF10A (69%). A further loss in
growth inhibition is seen in HT29 (53%), H460 (42%), A431 (48%), Du145 (43%) and BE2-C
(45%). The greatest loss of growth inhibition is displayed in cell lines SJ-G2 (35%) and
MIA-Pa-Ca2 (29%). Hence, the location of the boron ester group in para position greatly
favours cell growth inhibition. These two drugs likely interact in similar ways with the
cells, with the boronate ester group likely trying to interact with the same site/s (designated
Site A for discussion purposes), but not managing quite as effectively when it is in the
meta position.



Molecules 2022, 27, 3447 15 of 28

Table 3. Cancer Screening. On blue background DOSE SCREEN: Percentage (%) Cell Growth Inhibition in response to 25 µM of Drug (the higher the value the
greater the growth inhibition) and inhibition value ranges: 80–100% (red), 60–79% (orange), 35–59% (green), 10–34% (blue) and 0–9% (black). On green background
DOSE RESPONSE: GI50 = Concentration (µM) that inhibits cell growth by 50% (the lower the value the greater the growth inhibition). In bold are highlighted the
values of the three most potent drugs.

Compound

HT29 U87 MCF-7 A2780 H460 A431 Du145 BE2-C SJ-G2 MIA-Pa-Ca2 MCF10A
Mode of
Action SelectiveColon

Carcinoma Glioblastoma Breast
Carcinoma

Ovarian
Carcinoma

Lung
Carcinoma

Skin
Carcinoma

Prostate
Carcinoma Neuroblastoma Glioblastoma Pancreatic

Carcinoma
Breast

(Normal)

BSH 3 ± 2 <0 15 ± 3 2 ± 5 8 ± 2 <0 0 ± 8 10 ± 6 3 ± 8 2 ± 6 8 ± 3 NA
10B-BSH 5 ± 1 0 ± 2 5 ± 3 5 ± 4 4 ± 2 <0 7 ± 7 8 ± 7 1 ± 9 2 ± 4 13 ± 4 NA

BPA 14 ± 0 <0 <0 4 ± 1 7 ± 8 4 ± 6 19 ± 10 13 ± 10 5 ± 8 3 ± 3 4 ± 1 NA
10B-BPA 15 ± 4 <0 1 ± 3 8 ± 4 8 ± 5 4 ± 4 15 ± 9 10 ± 6 5 ± 10 11 ± 3 <0 NA
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Table 3. Cont.

Compound

HT29 U87 MCF-7 A2780 H460 A431 Du145 BE2-C SJ-G2 MIA-Pa-Ca2 MCF10A
Mode of
Action SelectiveColon

Carcinoma Glioblastoma Breast
Carcinoma

Ovarian
Carcinoma

Lung
Carcinoma

Skin
Carcinoma

Prostate
Carcinoma Neuroblastoma Glioblastoma Pancreatic

Carcinoma
Breast

(Normal)
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Tetrachlorobenzamide ortho 5, displaying the boronate ester group in ortho position
and having no CH2 spacer between the benzamide and the aromatic boron group, also
displays potent cell growth inhibition and a significant level of cell selectivity. This ca-
pability makes this drug the most interesting from a medicinal chemistry perspective.
Cell selectivity (in particular, cancer versus healthy cell selectivity) is an area of active
research in our group [72]. The removal of one of the carbonyl groups allows for greater
conformational flexibility to this molecule, which may allow the boronate ester to interact
with a different site than para 3 and meta 3 (designated Site B for discussion purposes).
The ortho-phthalimide congener has not been synthetically achievable so far, and so it was
not tested. Percent cell growth inhibitions range from 97 to >100 for most cancer cell lines
(HT29, MCF-7, A2780, H460, A431, Du145, BE2-C and MIA-Pa-Ca2). It is 92% for SJ-G2
and drops dramatically for U87 (58%) and for the normal cell line MCF10A (58%). This
selectivity between cancer versus healthy cells is a highly desirable drug capability.

The comparison in percent inhibition between benzamide ortho 5 and its congener
ortho 8 is particularly interesting. The only structural difference is the CH2 spacer between
the benzamide and the aromatic boron group. However, there is a complete abrogation of
cell growth inhibition produced by meta 3. It can be evinced that ortho 8 likely interacts
with the same sites para 3 and meta 3 interact with, whereas ortho 5 has a different mode
of action, interacting with another site that seems to be overexpressed in all cancer cell
lines, apart from U87 and the normal cancer cell line MCF10A.

Of the drugs that inhibited cell growth to a lesser extent, para 8 is the benzamide
analogue of para 3. para 8 is thought to also interact with Site A due to structural similarities
with para 3; however, it shows a significantly reduced growth inhibition, probably due to
the boronate ester group interacting not as efficiently on Site A. In this case as well, cell
selectivity is displayed in inhibition. Normal cells MCF10A (2%) and SJ-G2 (8%), Du145
(<0%) and A431 (<0%) were not inhibited, whereas BE2-C (15%), MCF-7 (18%) and U87
(14%) were minimally inhibited, MIA-Pa-Ca2 (23%), H460 (21%) and HT29 (36%) were
somewhat more inhibited, and finally, A2780 was significantly inhibited (58%).

Benzamide para 5, not possessing the CH2 spacer between the benzamide and the
para-aromatic boron group, is thought to interact with Site A, due to structural similarities
with its phthalimide congeners; however, it does not efficiently interact with Site A. This
may be due to the boronate ester not reaching Site A due to the lack of the CH2 spacer and
the greater degree of conformational flexibility deriving from the removal of the carbonyl
group from the phthalimide scaffold. This results in an overall reduction in cell growth
inhibition. In this case as well, cell selectivity is displayed in inhibition. Normal cells
MCF10A (2%) and Du145 (1%) were not inhibited, whereas U87 (21%) and SJ-G2 (28%)
were somewhat more inhibited, MCF-7 (42%), A2780 (50%), H460 (54%), BE2-C (54%) and
MIA-Pa-Ca2 (52%) were significantly inhibited, and finally, HT29 (69%) and A431 (64%)
were inhibited the most.

Benzamide meta 5, not possessing the CH2 spacer between the benzamide and the
aromatic boron group, shows selective and significant inhibition for A2780 (49%). The
benzamide structure provides a greater degree of conformational flexibility, likely placing
the meta-positioned boronate ester somewhere in between Site A and Site B, and preventing
it from interacting efficiently with either.

Benzamide ortho 8, possessing the CH2 spacer between the benzamide and the aro-
matic boron group, is thought to interact with Site A, due to structural similarities with its
phthalimide congeners; however, it does not efficiently interact with Site A, thus, showing
almost complete abrogation of cell growth inhibition.

Based on Structure–Activity Relationship data obtained, two modes of cell growth
inhibition are put forward, Mode of Action A, which arises from drugs interacting at Site
A, and Mode of Action B, arising from drug ortho 5 interacting at Site B. Both Modes of
Action can be elicited in selective ways by drugs para 8 (for Mode of Action A) and ortho 5
(for Mode of Action B) and displaying minimal or zero inhibition on the normal cell line.
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5.2. Analysis of the GI50 Data

The GI50 was measured for the three most potent drugs, tetrachlorophthalimides para
3 and meta 3, and tetrachlorobenzamide ortho 5. para 3 shows consistent potency via GI50
values between 3 and 18 µM for all cancer cell lines and the normal cell line. Similarly,
meta 3 displays consistently potent GI50 values between 18 and 38 µM for all cancer cell
lines and the normal cell line. ortho 5 displays consistently potent GI50 values between 11
and 27 µM for all cancer cell lines and the normal cell line.

6. Experimental
6.1. Glycosidase Inhibition Experimental from Laboratory 1

In Table 1
The enzymes α-glucosidase (from yeast), β-glucosidases (from almond and bovine liver),

α-galactosidase (from coffee beans), β-galactosidase (from bovine liver), α-mannosidase (from
Jack bean), β-mannosidase (from snail), α-L-rhamnosidase (from Penicillium decumbens), α-
L-fucosidase (from bovine kidney), trehalase (from porcine kidney), β-glucuronidases (from
E. coli and bovine liver), amyloglucosidase (from A. niger), para-nitrophenyl glycosides, and
various disaccharides were purchased from Sigma-Aldrich Co (St Louis, MO, USA).

Brush border membranes were prepared from the rat small intestine according to the
method of Kessler et al. [83] and were assayed at pH 6.8 for rat intestinal maltase using
maltose. For rat intestinal maltase, porcine kidney trehalase, and A. niger amyloglucosidase
activities, the reaction mixture contained 25 mM maltose and the appropriate amount
of enzyme, and the incubations were performed for 10–30 min at 37 ◦C. The reaction
was stopped by heating at 100 ◦C for 3 min. After centrifugation (600× g; 10 min), the
resulting reaction mixture was added to the Glucose CII-test Wako (Wako Pure Chemical
Ind., Osaka, Japan). The absorbance at 505 nm was measured to determine the amount of
the released D-glucose. Other glycosidase activities were determined using an appropriate
para-nitrophenyl glycoside as substrate at the optimum pH of each enzyme. The reaction
mixture contained 2 mM of the substrate and the appropriate amount of enzyme. The
reaction was stopped by addition of 400 mM Na2CO3. The released para-nitrophenol was
measured spectrometrically at 400 nm. All reactions run in methanol.

6.2. Glycosidase Inhibition Experimental from Laboratory 2

In Table 2
All enzymes and para-nitrophenyl substrates were purchased from Sigma. Enzymes

were assayed at 27 ◦C in 0.1 M citric acid/0.2 M disodium hydrogen phosphate buffers
at the optimum pH for the enzyme. The incubation mixture consisted of 10 µL enzyme
solution, 10 µL of 1 mg/mL aqueous solution of extract and 50 µL of the appropriate 5 mM
para-nitrophenyl substrate made up in buffer at the optimum pH for the enzyme. The
reactions were stopped by addition of 70 µL 0.4 M glycine (pH 10.4) during the exponential
phase of the reaction, which had been determined at the beginning using uninhibited
assays in which water replaced inhibitor. Final absorbances were read at 405 nm using a
Versamax microplate reader (Molecular Devices). Assays were carried out in triplicate, and
the values given are means of the three replicates per assay. All reactions run in water.

6.3. Cancer Screening Experimental

All test agents were prepared as stock solutions (20 mM) in dimethyl sulfoxide (DMSO)
and stored at −20 ◦C. Cell lines used in the study included HT29 (colorectal carcinoma);
U87, SJ-G2, (glioblastoma); MCF-7, (breast carcinoma); A2780 (ovarian carcinoma); H460
(lung carcinoma); A431 (skin carcinoma); Du145 (prostate carcinoma); BE2-C (neuroblas-
toma); MiaPaCa-2 (pancreatic carcinoma); and SMA560 (spontaneous murine astrocytoma),
together with the one non-tumour-derived normal breast cell line (MCF10A). All cell lines
were incubated in a humidified atmosphere 5% CO2 at 37 ◦C. The cancer cell lines were
maintained in Dulbecco’s modified Eagle’s medium (DMEM; Sigma, Australia) supple-
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mented with foetal bovine serum (10%), sodium pyruvate (10 mM), penicillin (100 IUmL−1),
streptomycin (100 µg mL−1) and L-glutamine (2 mM).

The non-cancer MCF10A cell line was maintained in DMEM:F12 (1:1) cell culture
media, 5% heat-inactivated horse serum, supplemented with penicillin (50 IUmL−1), strep-
tomycin (50 µg mL−1), HEPES (20 mM), L-glutamine (2 mM), epidermal growth factor
(20 ng mL−1), hydrocortisone (500 ng mL−1), cholera toxin (100 ng mL−1) and insulin
(10 mg mL−1).

Growth inhibition was determined by plating cells in duplicate in medium (100 µL) at
a density of 2500–4000 cells per well in 96-well plates. On day 0 (24 h after plating), when
the cells were in logarithmic growth, medium (100 µL) with or without the test agent was
added to each well. After 72 h drug exposure, growth inhibitory effects were evaluated
using the MTT (3-(4,5-dimethyltiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and
absorbance read at 540 nm. The percentage growth inhibition was calculated at a fixed
concentration of 25 µM, based on the difference between the optical density values on day
0 and those at the end of drug exposure. Each data point is the mean ± the standard error
of the mean (SEM) calculated from three replicates which were performed on separate
occasions and separate cell line passages.

6.4. Chemistry Experimental
6.4.1. General Experimental

Reaction solvents were purchased from the Aldrich Chemical Company (St Louis,
MO, USA) in sure-sealTM reagent bottles. All other solvents (analytical or HPLC grade)
were used as supplied without further purification. Deuterated chloroform (CDCl3) and
water (D2O) were used as NMR solvent. Triethylamine, sodium hydride (60% dispersion
in mineral oil), tetrachlorophthalimide and tetrachlorophthalic anhydride were purchased
from Sigma Aldrich. All boron-containing reagents were purchased from Boron Molecular,
apart from BSH (>97%), 10B-BSH (>97%), BPA (>98%) and 10B-BPA (>98%) which came from
Katchem spol. s r. o. The reagents were used as provided without further purification, with
NMR analysis confirming an acceptable degree of purity and correct structural identity.

Purification via silica gel column chromatography was performed on Davisil 40–63-micron
silica gel.

Thin layer chromatography (t.l.c.) was performed on aluminium sheets coated with
60 F254 silica by Merck and visualised using UVG-11 Compact UV lamp (254 nm) or stained
with the cerium molybdate stain (12.0 g ammonium molybdate, 0.5 g ceric ammonium
molybdate in 15 mL concentrated sulfuric acid and 235 mL distilled water).

Nuclear Magnetic Resonance (NMR) spectra were recorded on Bruker AscendTM 400
in deuterated chloroform (CDCl3). Chemical shifts (δ) are quoted in ppm and coupling
constants (J) in Hz. Residual signals from the CDCl3 (7.26 ppm for 1H-NMR and 77.16 ppm
for 13C-NMR) were used as an internal reference [84].

Infrared spectroscopy (IR) spectra were obtained on a PerkinElmer Spectrum Two
Spectrometer and on a PerkinElmer Spectrum 2 with UATR. Only characteristic peaks are
quoted and in units of cm−1.

High-resolution mass spectrometry (HRMS) spectra were obtained from samples
suspended in acetonitrile (1 mL with 0.1% formic acid at a concentration of ~1 mg/mL,
before being further diluted to ~10 ng/µL in 50% acetonitrile/water containing 0.1%
formic acid). Samples were infused directly into the HESI source of a Thermo Scientific
Q Exactive™ Plus Hybrid Quadrupole-Orbitrap™ Mass Spectrometer using an on-board
syringe pump at 5 µL/min. Data were acquired on the QE+ in both positive and negative
ion mode at a target resolution of 70,000 at 200 m/z. The predominant ions were manually
selected for MS/MS fragmentation (collision energies were altered for each compound to
obtain sufficient fragmentation). Data analysis of each sample was performed manually
using Thermo Qualbrowser whilst the Isotopic Patterns of predicted chemical formula
were modelled using Bruker Compass Isotope Pattern.
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Crystallographic data were collected on an Oxford Diffraction Gemini CCD diffrac-
tometer employing either graphite-monochromated Mo-Kα radiation (0.71073 Å) or Cu-Kα

(1.54184 Å). The sample was cooled to 190 K with and Oxford Cryosystems Desktop Cooler.
Data reduction and empirical absorption corrections were performed with Oxford Diffrac-
tion CrysAlisPro software. Structures were solved by direct methods and refined with
SHELXL [85]. All non-H atoms were refined with anisotropic thermal parameters. The
crystal of ortho 8 was a non-merohedral twin which was refined using the HKLF 5 mode
in SHELX. Molecular structure diagrams were produced with Mercury [86]. The data in
CIF format were deposited at the Cambridge Crystallographic Data Centre (CCDC 215189
and 2151899).

Melting points were taken on a Dynalon SMP100 Digital Melting Point Device and
are uncorrected.

6.4.2. Experimental
From Synthetic Strategy 1

4,5,6,7-Tetrachloro-2-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)isoindol-
ine-1,3-dione meta 3
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Tetrachlorophthalic anhydride 1 (445 mg, 1.558 mmol, 1.2 equiv.) and 3-(aminomethyl)-
phenylboronic acid pinacol ester hydrochloride meta 2 (353 mg, 1.309 mmol, 1.0 equiv.)
were stirred in N,N dimethylformamide (8 mL) until dissolved. Triethylamine (328 mg,
0.45 mL, 3.245 mmol, 2.5 equiv.) was then added dropwise to reaction mixture. A white
precipitate crashed out upon addition of triethylamine. The stirring reaction mixture was
then heated to 85 ◦C. After 48 h the reaction mixture was gravity filtered to remove the
precipitate (triethylamine salt and excess tetrachlorophthalic anhydride by NMR analysis),
which was collected in a sample vial and retained for analysis. The filtrate was then
evaporated and the solid recrystallized from methanol (20 mL) to afford the product
meta 3 as a pale creamy yellow solid (389 mg, 60.0%). M.p. 316–320 ◦C. m/z (HRMS ES+):
Relative intensities for C21H19BCl4NO4, [M + H]+, found 499.01957 (22%), 500.01581 (82%),
501.01824 (40%), 502.01293 (100%), 503.04453 (34%), 504.01001 (45%), 505.04176 (16%),
506.00706 (9%); calculated 499.01921 (18%), 500.01596 (76%), 501.01748 (40%), 502.01323
(100%), 503.01528 (34%), 504.01064 (50%), 505.01292 (13%), 506.00829 (12%). νmax (thin film,
cm−1): 2979 (w, alkyl CHs), 1776 (w, C=O), 1716 (s, C=ON, amide I), 1606, 1486 (w, ArC=C),
1432 (m, C-B), 1389, 1361, 1330, 1075 (s, sp2 B-O). δH (CDCl3, 400 MHz): 7.85 (1 H, s, Ha),
7.73 (1 H, d, JHb,Hc 7.6 Hz, Hb), 7.52 (1 H, d, JHd,Hc 7.6 Hz, Hd), 7.33 (1 H, t, JHc,Hb/Hd 7.6 Hz,
Hc), 4.85 (2 H, s, CH2), 1.34 (12 H, s, 4× CH3). δc (CDCl3, 100 MHz): 163.2 (2 × C=O), 140.1
(ArCq-CH2), 135.00, 134.6 (2 × ArCH), 134.5 (2 × ArCq-CO), 131.7 (ArCH), 129.7, 128.2
(ArCH), 127.60 (4 × ArCq-Cl), 83.9 (2 × pinacol Cq), 42.4 (N-CH2) and 24.8 (4 × pinacol
CH3). ArCq-B is not visible. δB (dissolved in CDCl3, 96 MHz): 31.5 ppm (Figures S1 and S2,
in the Supplementary Materials).

4,5,6,7-Tetrachloro-2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)isoind-
oline-1,3-dione para 3
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Tetrachlorophthalic anhydride 1 (453 mg, 1.558 mmol, 1.2 equiv.) and 4-(aminomethyl)-
phenylboronic acid pinacol ester hydrochloride para 2 (356 mg, 1.321 mmol, 1.0 equiv.)
were stirred in N,N-dimethylformamide (8 mL) until dissolved. Triethylamine (328 mg,
0.45 mL, 3.245 mmol, 2.5 equiv.) was then added dropwise to reaction mixture. A white
precipitate crashed out upon addition of triethylamine. The stirring reaction mixture was
then heated to 85 ◦C. After 48 h the reaction mixture was gravity filtered. The filtrate
was then evaporated and the solid recrystallised from petroleum ether (60:80)/ethanol
(30/80 mL) to afford the product para 3 as a pale creamy yellow solid (289 mg, 44.4%).
M.p. 242–246 ◦C. m/z (HRMS ES+): Relative intensities for C21H19BCl4NO4, [M + H]+,
found 499.01957 (22%), 500.01581 (82%), 501.01824 (40%), 502.01293 (100%), 503.04453 (34%),
504.01001 (45%), 505.04176 (16%), 506.00706 (9%); calculated 499.01921 (18%), 500.01596
(76%), 501.01748 (40%), 502.01323 (100%), 503.01528 (34%), 504.01064 (50%), 505.01292
(13%), 506.00829 (12%). νmax (thin film, cm−1): 2978 (m, ArCH2), 2938, 2893 (w, alkyl C-H),
1778 (w, C=O), 1715 (s, C=ON, amide I), 1512 (s, C=ON, amide II), 1433 (m, C-B), 1373, 1360,
1345, 1087 (s, sp2 B-O), 662 (s, C-B(-O)2, out of plane bending). δH (CDCl3, 400 MHz): 7.77
(2 H, d, J 8.0 Hz, 2 × ArH), 7.42 (2 H, d, J 8.0 Hz, 2 × ArH), 4.85 (2 H, s, CH2), 1.32 (12 H,
s, 4 × CH3). δC (CDCl3, 100 MHz): 163.4 (C=O), 140.3 (ArCq-CH2), 138.3 (2 × ArCq-CO),
135.4 (2 × ArCH), 129.9, 127.7 (4 × ArCq-Cl), 128.3 (2 × ArCH), 84.0 (2 × pinacol Cq),
42.6 (N-CH2) and 25.0 (4 × pinacol CH3). ArCq-B is not visible. δB (dissolved in CDCl3,
96 MHz): 31.1 ppm.

2,3,4,5-Tetrachloro-N-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)benza-
mide ortho 5
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135.4 (2 × ArCH), 129.9, 127.7 (4 × ArCq-Cl), 128.3 (2 × ArCH), 84.0 (2 × pinacol Cq), 42.6 (N-
CH2) and 25.0 (4 × pinacol CH3). ArCq-B is not visible. δB (dissolved in CDCl3, 96 MHz): 
31.1 ppm. 

2,3,4,5-Tetrachloro-N-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)phenyl)benzamide ortho 5 

 

Tetrachlorophthalic anhydride (560 mg, 1.959 mmol, 1.2 equiv.) and 2-amino phenyl-
boronic acid pinacol ester (352 mg, 1.607 mmol, 1.0 equiv.) were stirred in N,N-dimethyl-
formamide (9 mL) to give a cloudy orange solution. Triethylamine (404 mg, 0.56 mL, 3.994 
mmol, 2.5 equiv.) was added dropwise and stirred at 85 °C for 72 h, and at 105 °C for a 
further 72 h. Evaporation gave a dark brown oily residue. Recrystallisation attempts using 
ethanol (20 mL) and petroleum ether (60/80) (20 mL)/chloroform (5 mL) did not yield 
enough product. The residue was purified by flash column chromatography (hexane:ace-
tone, 1:1). After evaporation a recrystallization using chloroform (20 mL) gave a filtrate 
which was left to stand for 3–4 days. Crystallisation gave product ortho 5 (284 mg, 37.4%). 
M.p. 106–108 °C. m/z (HRMS ES+): Relative intensities for C19H19BCl4NO3, [M+H]+, found 
459.02226 (26%), 460.02068 (77%), 461.02147 (35%), 462.01769 (100%), 463.02069 (28%), 
464.01455 (46%), 465.01838 (11%), 466.01142 (10%); calculated 459.02429 (18%), 460.02101 
(77%), 461.02249 (39%), 462.01824 (100%), 463.02026 (32%), 464.01558 (50%), 465.01788 
(12%), 466.01314 (11%). νmax (thin film, cm−1): 3357 (m, sh, NH, hydrogen-bonded), 2980, 
2933 (m, alkyl CHs), 1690 (s, C=ONH, amide I), 1612 (w, ArC=C), 1580 (m, C=ONH, amide 
II), 1536 (w, C=ONH, bending), 1450 (m, C-N), 1407 (m, C-B), 1351, 1323, 1303, 1140 (s, sp2 
B-O), 758 (s, C-Cl), 652 (s, C-B(-O)2, out of plane bending). δH (CDCl₃, 400 MHz), major:mi-
nor conformer 2:1. Major conformer: 9.90–9.81 (1 H, broad s, NH), 8.59 (1 H, d, JHa,Hb 8.4 
Hz, Ha), 7.82 (1 H, dd, JHd,Hc 7.2 Hz, JHd,Hb 1.6 Hz, Hd), 7.71 (1 H, s, He), 7.53 (1 H, td, JHb,Ha/Hc 
7.6 Hz, JHb,Hd 1.5 Hz, Hb), 7.16 (1 H, td, JHc,Hd/Hb 7.5 Hz, Hz, JHc,Ha 0.9 Hz, Hc), 1.33 (12 H, s, 4 
× CH₃). δc (CDCl3, 100 MHz): 162.3 (C=O), 144.0 (NHCq), 136.8 (Cq), 136.5 (Cd), 134.9 (Cq), 
133.2 (Cb), 132.7, 130.2 (2 × Cq), 127.8 (Ce), 124.1 (Cc), 120.0 (Ca), 84.8 (2 × pinacol Cq) and 
25.0 (4 × pinacol CH3); note, ArCq-B is not visible. δB (dissolved in CDCl3, 96 MHz): 31.1 
ppm. 
2,3,4,5-tetrachloro-N-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)benzamide 
meta 5 

 

Tetrachlorophthalic anhydride (580 mg, 2.029 mmol, 1.2 equiv.) and 3-aminophenyl-
boronic acid pinacol ester (354 mg, 1.616 mmol, 1.0 equiv.) were stirred in N,N dimethyl-
formamide (9 mL) to give a golden-yellow solution. Triethylamine (404 mg, 0.56 mL, 3.994 
mmol, 2.5 equiv.) was added dropwise and the reaction stirred at 85 °C for 48 h and then 

Tetrachlorophthalic anhydride (560 mg, 1.959 mmol, 1.2 equiv.) and 2-amino phenyl-
boronic acid pinacol ester (352 mg, 1.607 mmol, 1.0 equiv.) were stirred in N,N-dimethylfor-
mamide (9 mL) to give a cloudy orange solution. Triethylamine (404 mg, 0.56 mL,
3.994 mmol, 2.5 equiv.) was added dropwise and stirred at 85 ◦C for 72 h, and at 105 ◦C
for a further 72 h. Evaporation gave a dark brown oily residue. Recrystallisation attempts
using ethanol (20 mL) and petroleum ether (60/80) (20 mL)/chloroform (5 mL) did not
yield enough product. The residue was purified by flash column chromatography (hex-
ane:acetone, 1:1). After evaporation a recrystallization using chloroform (20 mL) gave a
filtrate which was left to stand for 3–4 days. Crystallisation gave product ortho 5 (284 mg,
37.4%). M.p. 106–108 ◦C. m/z (HRMS ES+): Relative intensities for C19H19BCl4NO3,
[M + H]+, found 459.02226 (26%), 460.02068 (77%), 461.02147 (35%), 462.01769 (100%),
463.02069 (28%), 464.01455 (46%), 465.01838 (11%), 466.01142 (10%); calculated 459.02429
(18%), 460.02101 (77%), 461.02249 (39%), 462.01824 (100%), 463.02026 (32%), 464.01558
(50%), 465.01788 (12%), 466.01314 (11%). νmax (thin film, cm−1): 3357 (m, sh, NH, hydrogen-
bonded), 2980, 2933 (m, alkyl CHs), 1690 (s, C=ONH, amide I), 1612 (w, ArC=C), 1580 (m,
C=ONH, amide II), 1536 (w, C=ONH, bending), 1450 (m, C-N), 1407 (m, C-B), 1351, 1323,
1303, 1140 (s, sp2 B-O), 758 (s, C-Cl), 652 (s, C-B(-O)2, out of plane bending). δH (CDCl3,
400 MHz), major:minor conformer 2:1. Major conformer: 9.90–9.81 (1 H, broad s, NH), 8.59
(1 H, d, JHa,Hb 8.4 Hz, Ha), 7.82 (1 H, dd, JHd,Hc 7.2 Hz, JHd,Hb 1.6 Hz, Hd), 7.71 (1 H, s, He),
7.53 (1 H, td, JHb,Ha/Hc 7.6 Hz, JHb,Hd 1.5 Hz, Hb), 7.16 (1 H, td, JHc,Hd/Hb 7.5 Hz, Hz, JHc,Ha
0.9 Hz, Hc), 1.33 (12 H, s, 4 × CH3). δc (CDCl3, 100 MHz): 162.3 (C=O), 144.0 (NHCq),
136.8 (Cq), 136.5 (Cd), 134.9 (Cq), 133.2 (Cb), 132.7, 130.2 (2 × Cq), 127.8 (Ce), 124.1 (Cc),
120.0 (Ca), 84.8 (2 × pinacol Cq) and 25.0 (4 × pinacol CH3); note, ArCq-B is not visible. δB
(dissolved in CDCl3, 96 MHz): 31.1 ppm.
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1778 (w, C=O), 1715 (s, C=ON, amide I), 1512 (s, C=ON, amide II), 1433 (m, C-B), 1373, 
1360, 1345, 1087 (s, sp2 B-O), 662 (s, C-B(-O)2, out of plane bending). δH (CDCl₃, 400 MHz): 
7.77 (2 H, d, J 8.0 Hz, 2 × ArH), 7.42 (2 H, d, J 8.0 Hz, 2 × ArH), 4.85 (2 H, s, CH₂), 1.32 (12 
H, s, 4 × CH₃). δC (CDCl3, 100 MHz): 163.4 (C=O), 140.3 (ArCq-CH2), 138.3 (2 × ArCq-CO), 
135.4 (2 × ArCH), 129.9, 127.7 (4 × ArCq-Cl), 128.3 (2 × ArCH), 84.0 (2 × pinacol Cq), 42.6 (N-
CH2) and 25.0 (4 × pinacol CH3). ArCq-B is not visible. δB (dissolved in CDCl3, 96 MHz): 
31.1 ppm. 

2,3,4,5-Tetrachloro-N-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)phenyl)benzamide ortho 5 

 

Tetrachlorophthalic anhydride (560 mg, 1.959 mmol, 1.2 equiv.) and 2-amino phenyl-
boronic acid pinacol ester (352 mg, 1.607 mmol, 1.0 equiv.) were stirred in N,N-dimethyl-
formamide (9 mL) to give a cloudy orange solution. Triethylamine (404 mg, 0.56 mL, 3.994 
mmol, 2.5 equiv.) was added dropwise and stirred at 85 °C for 72 h, and at 105 °C for a 
further 72 h. Evaporation gave a dark brown oily residue. Recrystallisation attempts using 
ethanol (20 mL) and petroleum ether (60/80) (20 mL)/chloroform (5 mL) did not yield 
enough product. The residue was purified by flash column chromatography (hexane:ace-
tone, 1:1). After evaporation a recrystallization using chloroform (20 mL) gave a filtrate 
which was left to stand for 3–4 days. Crystallisation gave product ortho 5 (284 mg, 37.4%). 
M.p. 106–108 °C. m/z (HRMS ES+): Relative intensities for C19H19BCl4NO3, [M+H]+, found 
459.02226 (26%), 460.02068 (77%), 461.02147 (35%), 462.01769 (100%), 463.02069 (28%), 
464.01455 (46%), 465.01838 (11%), 466.01142 (10%); calculated 459.02429 (18%), 460.02101 
(77%), 461.02249 (39%), 462.01824 (100%), 463.02026 (32%), 464.01558 (50%), 465.01788 
(12%), 466.01314 (11%). νmax (thin film, cm−1): 3357 (m, sh, NH, hydrogen-bonded), 2980, 
2933 (m, alkyl CHs), 1690 (s, C=ONH, amide I), 1612 (w, ArC=C), 1580 (m, C=ONH, amide 
II), 1536 (w, C=ONH, bending), 1450 (m, C-N), 1407 (m, C-B), 1351, 1323, 1303, 1140 (s, sp2 
B-O), 758 (s, C-Cl), 652 (s, C-B(-O)2, out of plane bending). δH (CDCl₃, 400 MHz), major:mi-
nor conformer 2:1. Major conformer: 9.90–9.81 (1 H, broad s, NH), 8.59 (1 H, d, JHa,Hb 8.4 
Hz, Ha), 7.82 (1 H, dd, JHd,Hc 7.2 Hz, JHd,Hb 1.6 Hz, Hd), 7.71 (1 H, s, He), 7.53 (1 H, td, JHb,Ha/Hc 
7.6 Hz, JHb,Hd 1.5 Hz, Hb), 7.16 (1 H, td, JHc,Hd/Hb 7.5 Hz, Hz, JHc,Ha 0.9 Hz, Hc), 1.33 (12 H, s, 4 
× CH₃). δc (CDCl3, 100 MHz): 162.3 (C=O), 144.0 (NHCq), 136.8 (Cq), 136.5 (Cd), 134.9 (Cq), 
133.2 (Cb), 132.7, 130.2 (2 × Cq), 127.8 (Ce), 124.1 (Cc), 120.0 (Ca), 84.8 (2 × pinacol Cq) and 
25.0 (4 × pinacol CH3); note, ArCq-B is not visible. δB (dissolved in CDCl3, 96 MHz): 31.1 
ppm. 
2,3,4,5-tetrachloro-N-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)benzamide 
meta 5 

 

Tetrachlorophthalic anhydride (580 mg, 2.029 mmol, 1.2 equiv.) and 3-aminophenyl-
boronic acid pinacol ester (354 mg, 1.616 mmol, 1.0 equiv.) were stirred in N,N dimethyl-
formamide (9 mL) to give a golden-yellow solution. Triethylamine (404 mg, 0.56 mL, 3.994 
mmol, 2.5 equiv.) was added dropwise and the reaction stirred at 85 °C for 48 h and then 

Tetrachlorophthalic anhydride (580 mg, 2.029 mmol, 1.2 equiv.) and 3-aminophenylbo-
ronic acid pinacol ester (354 mg, 1.616 mmol, 1.0 equiv.) were stirred in N,N dimethyl-
formamide (9 mL) to give a golden-yellow solution. Triethylamine (404 mg, 0.56 mL,
3.994 mmol, 2.5 equiv.) was added dropwise and the reaction stirred at 85 ◦C for 48 h and
then at 105 ◦C for a further 72 h. The reaction mixture was evaporated and recrystallised
with ethanol (20 mL) and the reaction solution left to crystallise in the freezer for three days
at −25 ◦C to produce meta 5 as light-brown crystals (395 mg, 52%). M.p. 36–38 ◦C. m/z
(HRMS ES+): Relative intensities for C19H18BCl4NO3, [M + H]+, found 459.02469 (19%),
460.02087 (80%), 461.02264 (35%), 462.01773 (100%), 463.02026 (30%), 464.01450 (47%),
465.01779 (11%), 466.01114 (9%); calculated 459.02429 (18%), 460.02101 (77%), 461.02249
(39%), 462.01824 (100%), 463.02026 (32%), 464.01558 (50%), 465.01788 (12%), 466.01314
(11%). δH (CDCl3, 400 MHz): 7.95 (1 H, dd, JHb,Hc 7.7 Hz, JHb,Ha 1.2 Hz, Hb), 7.80 (1 H, s,
NH), 7.76 (1 H, d, JHa,Hb 1.6 Hz, Ha), 7.72 (1 H, s, He), 7.63 (1 H, d, JHd,Hc 7.2 Hz, Hd), 7.41
(1 H, t, JHc,Hb/Hd 7.6 Hz, Hc) and 1.34 (12 H, s). δB (dissolved in CDCl3, 96 MHz): 31.7.
X-ray Crystallographic analysis.

2,3,4,5-tetrachloro-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)benza-
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at 105 °C for a further 72 h. The reaction mixture was evaporated and recrystallised with 
ethanol (20 mL) and the reaction solution left to crystallise in the freezer for three days at 
−25 °C to produce meta 5 as light-brown crystals (395 mg, 52%). M.p. 36–38 °C. m/z (HRMS 
ES+): Relative intensities for C19H18BCl4NO3, [M+H]+, found 459.02469 (19%), 460.02087 
(80%), 461.02264 (35%), 462.01773 (100%), 463.02026 (30%), 464.01450 (47%), 465.01779 
(11%), 466.01114 (9%); calculated 459.02429 (18%), 460.02101 (77%), 461.02249 (39%), 
462.01824 (100%), 463.02026 (32%), 464.01558 (50%), 465.01788 (12%), 466.01314 (11%). δH 
(CDCl₃, 400 MHz): 7.95 (1 H, dd, JHb,Hc 7.7 Hz, JHb,Ha 1.2 Hz, Hb), 7.80 (1 H, s, NH), 7.76 (1 
H, d, JHa,Hb 1.6 Hz, Ha), 7.72 (1 H, s, He), 7.63 (1 H, d, JHd,Hc 7.2 Hz, Hd), 7.41 (1 H, t, JHc,Hb/Hd 
7.6 Hz, Hc) and 1.34 (12 H, s). δB (dissolved in CDCl3, 96 MHz): 31.7. X-Ray Crystallo-
graphic analysis. 

2,3,4,5-tetrachloro-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)ben-
zamide para 5 

 

Tetrachlorophthalic anhydride (560 mg, 1.958 mmol, 1.2 equiv.) and 4-amino phenyl-
boronic acid pinacol ester (353 mg, 1.611 mmol, 1.0 equiv.) were stirred in N,N-dimethyl-
formamide (9 mL) into a cloudy orange solution. Sodium hydride (168 mg, 17.51 mmol, 
2.5 equiv.) was then carefully added as hydrogen gas was given off. The reaction mixture 
was then heated to 100 °C for 72 h. After cooling, two drops of R.O. water were added to 
quench the reaction and evaporated. The residue was eluted in ethanol (10 mL) and a 
black solid precipitated. The filtrate contained product para 5, which was coevaporated 
with DCM (354 mg, 46%). M.p. 218–220 °C. m/z (HRMS ES+): Relative intensities for 
C19H19BCl4NO3, [M+H]+, found 459.02445 (20%), 460.02049 (77%), 461.02242 (38%), 
462.01751 (100%), 463.02008 (30%), 464.01432 (47%), 465.01768 (12%), 466.01123 (10%); cal-
culated 459.02429 (18%), 460.02101 (77%), 461.02249 (39%), 462.01824 (100%), 463.02026 
(32%), 464.01558 (50%), 465.01788 (12%), 466.01314 (11%). νmax (thin film, cm−1): 3266 (w, 
br, NH), 2976, 2926, 2855 (m, alkyl CHs), 1661 (s, C=ONH, amide I), 1597 (w, ArC=C), 1529 
(m, C=ONH, amide II), 1505 (w, C=ONH, bending), 1444 (m, C-N), 1399 (m, C-B), 1389, 
1356, 1316, 1084 (s, sp2 B-O), 833 (s, C-Cl), 653 (s, C-B(-O)2, out of plane bending). δH 
(CDCl₃, 400 MHz): 7.83 (2 H, d, J 8.0 Hz, 2 × ArH), 7.75 (1 H, s, He), 7.65 (1 H, s, NH), 7.61 
(2 H, d, J 7.6 Hz, 2 × ArH), 1.35 (12 H, s, 4 × CH3). δc (CDCl3, 100 MHz): 136.2 (2 × ArCH), 
128.7 (Ce), 119.1 (2 × ArCH), 84.0 (2 × pinacol Cq) and 25.0 (4 × pinacol CH3); note, other Cq 
are not visible. δB (dissolved in CDCl3, 96 MHz): 31.8 ppm. 

From Synthetic Strategy 2 
2,3,4,5-tetrachloro-N-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)ben-

zamide ortho 8 

 

Tetrachlorophthalimide 6 (352 mg, 1.235 mmol, 1.0 equiv.) and 2-(bromomethyl)phe-
nylboronic acid pinacol ester ortho 7 (455 mg, 1.838 mmol, 1.2 equiv.) were stirred in N,N-
dimethylformamide (9 mL). Sodium hydride (123 mg, 12.80 mmol, 2.5 equiv.) was then 
carefully added as hydrogen gas was given off to give a pale creamy yellow reaction 

Tetrachlorophthalic anhydride (560 mg, 1.958 mmol, 1.2 equiv.) and 4-amino phenyl-
boronic acid pinacol ester (353 mg, 1.611 mmol, 1.0 equiv.) were stirred in N,N-dimethylfor-
mamide (9 mL) into a cloudy orange solution. Sodium hydride (168 mg, 17.51 mmol,
2.5 equiv.) was then carefully added as hydrogen gas was given off. The reaction mixture
was then heated to 100 ◦C for 72 h. After cooling, two drops of R.O. water were added
to quench the reaction and evaporated. The residue was eluted in ethanol (10 mL) and
a black solid precipitated. The filtrate contained product para 5, which was coevapo-
rated with DCM (354 mg, 46%). M.p. 218–220 ◦C. m/z (HRMS ES+): Relative intensities
for C19H19BCl4NO3, [M + H]+, found 459.02445 (20%), 460.02049 (77%), 461.02242 (38%),
462.01751 (100%), 463.02008 (30%), 464.01432 (47%), 465.01768 (12%), 466.01123 (10%);
calculated 459.02429 (18%), 460.02101 (77%), 461.02249 (39%), 462.01824 (100%), 463.02026
(32%), 464.01558 (50%), 465.01788 (12%), 466.01314 (11%). νmax (thin film, cm−1): 3266
(w, br, NH), 2976, 2926, 2855 (m, alkyl CHs), 1661 (s, C=ONH, amide I), 1597 (w, ArC=C),
1529 (m, C=ONH, amide II), 1505 (w, C=ONH, bending), 1444 (m, C-N), 1399 (m, C-B),
1389, 1356, 1316, 1084 (s, sp2 B-O), 833 (s, C-Cl), 653 (s, C-B(-O)2, out of plane bending). δH
(CDCl3, 400 MHz): 7.83 (2 H, d, J 8.0 Hz, 2 × ArH), 7.75 (1 H, s, He), 7.65 (1 H, s, NH), 7.61
(2 H, d, J 7.6 Hz, 2 × ArH), 1.35 (12 H, s, 4 × CH3). δc (CDCl3, 100 MHz): 136.2 (2 × ArCH),
128.7 (Ce), 119.1 (2 × ArCH), 84.0 (2 × pinacol Cq) and 25.0 (4 × pinacol CH3); note, other
Cq are not visible. δB (dissolved in CDCl3, 96 MHz): 31.8 ppm.
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at 105 °C for a further 72 h. The reaction mixture was evaporated and recrystallised with 
ethanol (20 mL) and the reaction solution left to crystallise in the freezer for three days at 
−25 °C to produce meta 5 as light-brown crystals (395 mg, 52%). M.p. 36–38 °C. m/z (HRMS 
ES+): Relative intensities for C19H18BCl4NO3, [M+H]+, found 459.02469 (19%), 460.02087 
(80%), 461.02264 (35%), 462.01773 (100%), 463.02026 (30%), 464.01450 (47%), 465.01779 
(11%), 466.01114 (9%); calculated 459.02429 (18%), 460.02101 (77%), 461.02249 (39%), 
462.01824 (100%), 463.02026 (32%), 464.01558 (50%), 465.01788 (12%), 466.01314 (11%). δH 
(CDCl₃, 400 MHz): 7.95 (1 H, dd, JHb,Hc 7.7 Hz, JHb,Ha 1.2 Hz, Hb), 7.80 (1 H, s, NH), 7.76 (1 
H, d, JHa,Hb 1.6 Hz, Ha), 7.72 (1 H, s, He), 7.63 (1 H, d, JHd,Hc 7.2 Hz, Hd), 7.41 (1 H, t, JHc,Hb/Hd 
7.6 Hz, Hc) and 1.34 (12 H, s). δB (dissolved in CDCl3, 96 MHz): 31.7. X-Ray Crystallo-
graphic analysis. 

2,3,4,5-tetrachloro-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)ben-
zamide para 5 

 

Tetrachlorophthalic anhydride (560 mg, 1.958 mmol, 1.2 equiv.) and 4-amino phenyl-
boronic acid pinacol ester (353 mg, 1.611 mmol, 1.0 equiv.) were stirred in N,N-dimethyl-
formamide (9 mL) into a cloudy orange solution. Sodium hydride (168 mg, 17.51 mmol, 
2.5 equiv.) was then carefully added as hydrogen gas was given off. The reaction mixture 
was then heated to 100 °C for 72 h. After cooling, two drops of R.O. water were added to 
quench the reaction and evaporated. The residue was eluted in ethanol (10 mL) and a 
black solid precipitated. The filtrate contained product para 5, which was coevaporated 
with DCM (354 mg, 46%). M.p. 218–220 °C. m/z (HRMS ES+): Relative intensities for 
C19H19BCl4NO3, [M+H]+, found 459.02445 (20%), 460.02049 (77%), 461.02242 (38%), 
462.01751 (100%), 463.02008 (30%), 464.01432 (47%), 465.01768 (12%), 466.01123 (10%); cal-
culated 459.02429 (18%), 460.02101 (77%), 461.02249 (39%), 462.01824 (100%), 463.02026 
(32%), 464.01558 (50%), 465.01788 (12%), 466.01314 (11%). νmax (thin film, cm−1): 3266 (w, 
br, NH), 2976, 2926, 2855 (m, alkyl CHs), 1661 (s, C=ONH, amide I), 1597 (w, ArC=C), 1529 
(m, C=ONH, amide II), 1505 (w, C=ONH, bending), 1444 (m, C-N), 1399 (m, C-B), 1389, 
1356, 1316, 1084 (s, sp2 B-O), 833 (s, C-Cl), 653 (s, C-B(-O)2, out of plane bending). δH 
(CDCl₃, 400 MHz): 7.83 (2 H, d, J 8.0 Hz, 2 × ArH), 7.75 (1 H, s, He), 7.65 (1 H, s, NH), 7.61 
(2 H, d, J 7.6 Hz, 2 × ArH), 1.35 (12 H, s, 4 × CH3). δc (CDCl3, 100 MHz): 136.2 (2 × ArCH), 
128.7 (Ce), 119.1 (2 × ArCH), 84.0 (2 × pinacol Cq) and 25.0 (4 × pinacol CH3); note, other Cq 
are not visible. δB (dissolved in CDCl3, 96 MHz): 31.8 ppm. 

From Synthetic Strategy 2 
2,3,4,5-tetrachloro-N-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)ben-

zamide ortho 8 

 

Tetrachlorophthalimide 6 (352 mg, 1.235 mmol, 1.0 equiv.) and 2-(bromomethyl)phe-
nylboronic acid pinacol ester ortho 7 (455 mg, 1.838 mmol, 1.2 equiv.) were stirred in N,N-
dimethylformamide (9 mL). Sodium hydride (123 mg, 12.80 mmol, 2.5 equiv.) was then 
carefully added as hydrogen gas was given off to give a pale creamy yellow reaction 

Tetrachlorophthalimide 6 (352 mg, 1.235 mmol, 1.0 equiv.) and 2-(bromomethyl)pheny-
lboronic acid pinacol ester ortho 7 (455 mg, 1.838 mmol, 1.2 equiv.) were stirred in N,N-
dimethylformamide (9 mL). Sodium hydride (123 mg, 12.80 mmol, 2.5 equiv.) was then
carefully added as hydrogen gas was given off to give a pale creamy yellow reaction mixture
and heated to 100 ◦C. After 48 h the reaction mixture was cooled to room temperature and
a yellow precipitate formed. Two drops of R.O. water were added to quench. Evaporation
afforded a crude residue, which was then dissolved in chloroform (30 mL) and gravity
filtered. The filtrate was dried affording ortho 8 (371 mg, 60%). M.p. 120–122 ◦C. m/z
(HRMS ES+): Relative intensities for C21H19BCl4NO4, [M + H]+, 473.04023 (20%), 474.03660
(80%), 475.03831 (39%), 476.03341 (100%), 477.03592 (32%), 478.03016 (46%), 479.03318 (12%),
480.02677 (9%); calculated 473.03994 (18%), 474.03668 (76%), 475.03818 (40%), 476.03392
(100%), 477.03596 (33%), 478.03129 (50%), 479.03358 (13%), 480.02889 (11%). δH (CDCl3,
400 MHz), major:minor conformers 5:1–3:1. Major conformer: 7.87 (1 H, dd, JHa,Hb 7.6,
JHa,Hc 1.2 Hz, Ha), 7.61 (1 H, s, He), 7.49 (1 H, d, JHd,Hc 7.5 Hz, Hd), 7.45 (1 H, td, JHc,Hd
7.5, JHc,Ha 1.3 Hz, Hc), 7.32 (2 H, td, J 7.5, 1.2 Hz, Hb and NH), 4.71 (2 H, d, J 6.4 Hz, CH2),
1.35 (12 H, s, 4 × CH3). Minor conformer: Only selected signals visible. 7.81 (1 H, d, J 6.7),
7.77 (1 H, d, J 7.4), 4.70 (2 H, s, CH2), 1.35 (12 H, s, 4 × CH3). δc (CDCl3, 100 MHz): 163.5
(C=O), 143.6 (CH2Cq), 136.9 (Ca), 136.1, 134.6, 133.6, 132.9 (4 × Cq), 132.0 (Cc), 130.3 (Cd),
128.7 (Ce), 127.4 (Cb), 125.7 (Cq), 84.4 (2 × pinacol Cq), 44.8 (CH2) and 25.1 (4 × pinacol
CH3); note, ArCq-B is not visible. δB (dissolved in CDCl3, 96 MHz): 31.8 ppm. X-ray
Crystallographic analysis.
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Tetrachlorophthalimide 6 (352 mg, 1.235 mmol, 1.0 equiv.) and 4-(bromomethyl)pheny-
lboronic acid pinacol ester para 7 (440 mg, 1.474 mmol, 1.2 equiv.) were stirred in N,N-
dimethylformamide (8 mL). Sodium hydride (123 mg, 12.80 mmol, 2.5 equiv.) was then
carefully added as hydrogen gas was given off to give a pale creamy yellow reaction mixture
and heated to 100 ◦C. After 48 h the reaction mixture was cooled to room temperature and
a golden honey colour solution with a golden yellow precipitate was visible. Two drops of
R.O. water were added to quench and evaporated. The residue was dissolved in chloroform
(30 mL) and gravity filtered. The filtrate was evaporated to give para 8 (339 mg, 56%).
M.p. 110–112 ◦C. m/z (HRMS ES+): Relative intensities for C21H19BCl4NO4, [M + H]+,
473.04016 (20%), 474.03632 (74%), 475.03815 (39%), 476.03317 (100%), 477.03586 (31%),
478.02997 (47%), 479.03320 (13%), 480.02664 (10%); calculated 473.03994 (18%), 474.03667
(78%), 475.03816 (41%), 476.03372 (100%), 477.03587 (33%), 478.03042 (46%), 479.03320
(13%), 480.02747 (10%). νmax (thin film, cm−1): 3265 (m, br, NH), 2976, 2926, 2853 (m, alkyl
CHs), 1652 (s, C=ONH, amide I), 1575 (w, ArC=C), 1517 (m, C=ONH, amide II), 1459 (m,
C-N), 1407 (m, C-B), 1358, 1340, 1088 (s, sp2 B-O), 751 (m, C-Cl), 657 (s, C-B(-O)2, out of
plane bending). δH (CDCl3, 400 MHz): 7.81 (2 H, d, J 8.0, 2 × ArH), 7.65 (1 H, s, He), 7.36
(2 H, d, J 8.0 Hz, 2 × ArH), 6.32–6.40 (1 H, br s, NH), 4.65 (2 H, d, J 5.6 Hz), 1.35 (12 H,
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s, 4 × CH3). δc (CDCl3, 400 MHz): 135.5 (2 × Ar-CH), 128.6 (Ce), 127.4 (2 × Ar-CH), 84.1
(2 × pinacol Cq) and 25.0 (4 × pinacol CH3); note, Cq are not visible. δB (dissolved in
CDCl3, 96 MHz): 31.6 ppm.

7. Conclusions

We reported an expedited synthesis to a small library of novel borylated 2,3,4,5-
tetrachlorophthalimides and 2,3,4,5-tetrachlorobenzamides. Biological assays against
glycosidase enzymes and cancer cell lines highlighted a good inhibitor for bovine liver
β-galactosidase and three potent growth inhibitors and, of these, one selective growth
inhibitor for cancer versus healthy cell lines in the cancer assay. These drugs are set for
further derivatisations and utilisation in BNCT.
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para 8; Table S1: Crystal data and structure refinement for meta 5; Table S2: Bond lengths [Å] and
angles [◦] for meta 5; Table S3: Crystal data and structure re-finement for ortho 8; Table S4: Bond
lengths [Å] and angles [◦] for ortho 8.
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