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Background: Inflammatory bowel disease (IBD) is a gastrointestinal chronic disease with an unpredictable disease course. Computational 
methods such as machine learning (ML) have the potential to stratify IBD patients for the provision of individualized care. The use of ML methods 
for IBD was surveyed, with an additional focus on how the field has changed over time.
Methods: On May 6, 2021, a systematic review was conducted through a search of MEDLINE and Embase databases, with the search 
structure (“machine learning” OR “artificial intelligence”) AND (“Crohn* Disease” OR “Ulcerative Colitis” OR “Inflammatory Bowel Disease”). 
Exclusion criteria included studies not written in English, no human patient data, publication before 2001, studies that were not peer reviewed, 
nonautoimmune disease comorbidity research, and record types that were not primary research.
Results: Seventy-eight (of 409) records met the inclusion criteria. Random forest methods were most prevalent, and there was an increase in 
neural networks, mainly applied to imaging data sets. The main applications of ML to clinical tasks were diagnosis (18 of 78), disease course 
(22 of 78), and disease severity (16 of 78). The median sample size was 263. Clinical and microbiome-related data sets were most popular. Five 
percent of studies used an external data set after training and testing for additional model validation.
Discussion: Availability of longitudinal and deep phenotyping data could lead to better modeling. Machine learning pipelines that consider 
imbalanced data and that feature selection only on training data will generate more generalizable models. Machine learning models are increas-
ingly being applied to more complex clinical tasks for specific phenotypes, indicating progress towards personalized medicine for IBD.
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Introduction
Inflammatory bowel disease (IBD) is an umbrella term for a 
set of chronic diseases, of which there are 2 main subtypes: 
Crohn’s disease (CD) and ulcerative colitis (UC). The global 
prevalence of IBD increased to 84.3 per 100 000 by 2017, 
and with it comes a greater burden to patients and health 
services.1 Due to a number of factors contributing to its eti-
ology, IBD disease course is highly variable. Patients can expe-
rience a mild disease or a severe, refractory disease requiring 
many interventions. A patient’s disease course is often unclear 
at diagnosis.

There has been a relative explosion in the use of artificial 
intelligence and machine learning (ML) techniques for com-
plex diseases, after the success of these algorithms in fields 
like oncology.2 Unlike traditional statistical techniques, ML 
infers patterns from data, allowing model application to un-
seen cases. Key concepts for this field are included in Box 1, 
and a further breakdown of ML terms, metrics, and methods 

are detailed elsewhere.3,4 For IBD, ML has the potential to 
improve patient care at every stage of their disease course 
through prediction modeling: from a quick subtype diagnosis 
so appropriate treatment can be identified, to assessing disease 
activity and identifying those patients more likely to develop 
complications and require surgery. For clinicians, this poten-
tial is exciting but comes with many questions about which 
ML methods may be successful. Here, practical guidelines 
are provided to guide interpretation of current and future 
research in this field (Appendix 1). Although this systematic 
review centers around applications to IBD, these are general 
guidelines for ML interpretation.
In a previous, broader systematic review of artificial intel-
ligence and ML applications to autoimmune diseases,3 a 
number of popular methods and applications were identified, 
and the research assessed guided some recommendations 
for the field. In addition, other systematic reviews have been 
published commenting on this area, including Tontini et al’s 
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review of artificial intelligence for gastrointestinal endoscopy5 
and Nguyen et al’s study on machine learning for diagnosis 
and prognosis in IBD.6 The aim of this systematic review was 
to assess common data types, applications, and methods in 
the field of ML for IBD and to evaluate changes in the field 
over the past few years. The broad scope of this review allows 
for the assessment of trends and the recording of the full 
range of ML applications to IBD.

Methods
Literature Search
An electronic literature search was performed using 2 
databases available through OvidSP: MEDLINE(R) and 
Epub Ahead of Print, In-Process, In-Data-Review & Other 

Non-Indexed Citations and Daily 1946, and Embase 1974. 
The literature search was completed in May 2021. Search terms 
were combined using Boolean operators as follows: (“ma-
chine learning” OR “artificial intelligence”) AND (“Crohn* 
Disease” OR “Ulcerative Colitis” OR “Inflammatory Bowel 
Disease”). Any record in which these search terms were 
identified in the title, abstract, and/or subject headings would 
appear in the list of records (last search May 6, 2021).

Inclusion and Exclusion Criteria
This systematic review sought to expand and better charac-
terize a subsection of a previous review of ML in autoimmune 
disease; therefore the same criteria was employed. Studies 
that applied ML to IBD, or a subtype of IBD, were included. 
Studies that used ML for analysis of complications that arise 
from IBD were also included. Studies that were not written 
in English, were published prior to 2001, that did not use 
real human patient data, were not peer reviewed, or were not 
original research articles were also excluded. Therefore, the 
following publication types (as labeled by OvidSP) were not 
assessed during screening: conference abstracts, conference 
review, editorial, erratum, journal article comment, journal 
article review, letter, letter comment, note, and review. The 
abstract of each study was assessed by 2 reviewers independ-
ently for inclusion in the systematic review. The full text was 
assessed when a decision on inclusion could not be made 
based on the abstract, and a consensus was reached by the 2 
reviewers. The following data items were collected for each 
study that met the criteria: the task ML was applied to, the 
type of ML (supervised or unsupervised), all ML algorithms 
trialed by the researchers, the best performing ML algorithm, 
sample size, clinical population (IBD, UC, or CD), data type, 
the best results achieved, whether a training and testing split 
was used, whether other cross-validation was used, whether 
the model was applied to independent test data, and the 
year of publication. This systematic review conforms to the 
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) standards.7

Graphical Representations of Data
Articles were graphically summarized in sunburst or pie 
chart diagrams using a custom R script utilizing the Plotly 
library.8,9 The R scripts can be downloaded from Github 
(github.com/isstafford/review_ml_ibd_2021). Briefly, all ar-
ticles were classified according to the machine-learning ap-
proach used (method), the type of information being analyzed 
(data type), and the outcome which is being predicted (task). 
These categories and the sorting of studies into categories 
were agreed upon by all authors. The R script counts unique 
titles under each level of the 3-class hierarchy, and the results 
are displayed in a sunburst diagram. The innermost ring 
represents the highest level of the hierarchy, whereas the out-
ermost ring represents the individual articles. Since some ar-
ticles discuss multiple methods, tasks, or outcomes, they may 
be represented more than once on the diagram.

Graphical summaries of sample sizes and uses of ML 
method types over time were generated using ggplot2 in R.10 
For the sample size graphical summary, the ML method was 
counted as used if it was recorded as a method in the re-
search article, even if the ML method did not generate the 
optimal model. Machine learning methods were sorted into 
type groups (eg, ridge regression and logistic regression were 

Box 1 – Key Concepts

Artificial Intelligence: methods that enable computers to 
mimic human intelligence.
Machine Learning: methods that infer patterns from data to 
perform a specific task, usually classification or regression.
Deep Learning: neural network–based approaches that ena-
ble machines to train themselves to perform tasks.
Supervised Learning: the ML model learns patterns in data 
and associates this information with an already present la-
bel. The model can then apply this learning to new data and 
predict these labels.
Unsupervised Learning: the ML model identifies patterns 
and clusters the data in a way that explains the data struc-
ture (not according to labels).
Feature Selection: a collection of methods that reduce the 
dimensionality of a data set, such that ML is performed on a 
subset of the most informative variables for the task.
Cross Validation: a method that can reduce the overfitting of 
ML models, meaning the results will generalize well to new 
data. During training the data are split into k folds, and the 
ML model trained on k-1 folds. The model performance is 
tested on the final fold, and the process is repeated so each 
fold becomes the test fold exactly once.

Key Messages

What is already known?

•	 Machine learning has been applied with success 
to cancer diagnostics, and now these methods are  
increasingly being applied to complex conditions, such 
as inflammatory bowel disease.

What is new here?

•	 In the past 2.5 years, the number of articles published 
in this field has increased by 68%; this has been 
accompanied by a shift in machine learning applications 
from diagnostics to prognostics, and the use of more 
complex methods such as neural networks.

How can this study help patient care?

•	 Two main requirements were identified for translation 
of machine learning models into the clinic: generaliza-
ble models generated from robust pipelines, and the 
collection of deep and specific patient phenotype data.
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both included under “regression”). Multiple methods from 
the same type group within the same article were counted 
once to avoid skewing the data. In cases where articles 
investigated multiple classification problems with different 
sample sizes, each classification problem counted as a sepa-
rate entry. All ML method groups with sufficient data for a 
boxplot (n ≥ 5) were included in the visualization. The same 
ML method groups were plotted for the use of ML types 
over time.

Results
Initially, 409 records were identified, and 135 records were 
subsequently removed as duplicates. When the study criteria 
regarding original research articles, year of publication, 
and language were applied, 153 entries were removed. Of 
the remaining 121 screened articles, 33 were excluded after 
assessing the abstract against the inclusion and exclusion 
criteria, and a further 9 were excluded after a full-text read 
(Figure 1). A technical analysis of the ML applications in these 
studies is outside the scope of this review. Here, summary sta-
tistics are provided regarding popular methods, applications, 
and data; summary statistics are also provided regarding the 
sample sizes, cross-validation, and trends in ML usage in re-
cent years. The chosen ML models and data types used for 
each type of task are detailed in Table 1.

Of 78 studies included in the systematic review, the majority 
used supervised ML, with 4 articles employing unsupervised 
methods,11–14 and 5 utilizing both supervised and unsupervised 
ML15–19 for varied clinical applications. Many articles trialed dif-
ferent ML methods before selecting the optimal one, and some 
researchers implemented ML for multiple IBD applications. 
Three main clinical application areas were identified: diag-
nosis (23%),15,20–36 disease course (28%),15,30,37–56 and disease 
severity (21%).19,57–71 Diagnosis classification tasks involved 
differentiating IBD patients (or one subtype) from controls. 
Studies of disease course examined relapse, remission, and sur-
gery ML classifiers. Disease severity studies sought to predict 
patients’ IBD activity or those who may develop complications. 
The most prevalent method implemented was random forest 
(47%), with regressions, neural networks, and support vector 
machines also used regularly (31%, 28%, and 27%, respec-
tively. Percentages here sum to over 100%, as multiple methods 
were trialed by one study in many instances). Other tree-based 
methods were used by 22% of studies (13% boosting with 
trees, 9% decision trees). Clinical data (41%) and data related 
to the microbiome (23%) were the most commonly used in 
ML modeling. The median sample size, not including external 
validation data sets that were additional to usual training and 
testing data, was 263 (range, 12-7 400 000). A breakdown of 
sample sizes per ML method used can be viewed in Figure 
2. Validation data sets in addition to the expected training 

Figure 1. Flowchart documenting number of records found and reviewed at each stage.



1576 Stafford et al

and testing sets were used in 5% of studies.12,32,41,72 Another 
7 studies trained their models with cross-validation on one 
data set and tested their method on an external, independent 

data set.23,29,45,59,61,66,73 Crohn’s disease data (only) was used in 
27 studies,12,17,19,26–29,32,37–39,41,44,47–50,58,60,63,65,74–79 and UC data 
(only) was used in 15 studies,25,40,42,46,52,55,59,61,62,64,68–70,80,81 with 

Table 1. Summary of ML Models Chosen as Most Optimal for the Clinical Task, and the Types of Data Used (ML models and data types sorted 
alphabetically).

Task No. Studies Chosen ML Models Data Types Used 

Disease Course 22 Bayes Network, Boosting, Decision Tree, Hierarchical 
Clustering, Neural Network, Partial Least Squares 
Discriminant Analysis, Random Forest, Regression, 
Support Vector Machine

Clinical, Gene Expression, Genetic, Imag-
ing, Metabolomic, Metatranscriptomic, 
Microbiome

Diagnosis 18 Boosting, Hierarchical Clustering, Neural Network, 
Random Forest, Regression, Support Vector Machine

Gene Expression, Genetic, Imaging, 
Metabolomic, Microbiome

Disease Severity 16 Bayes Network, Boosting, Decision Tree, Hierarchical 
Clustering, Intelligent Monitoring, Neural Network, 
Regression, Support Vector Machine

Clinical, Gene Expression, Genetic, Imaging, 
Protein Biomarkers

Disease Subtype 8 Boosting, Hierarchical Clustering, Ran-
dom Forest, Similarity Network Fusion 
Clustering, Support Vector Machine

Clinical, Gene Expression, Metabolomic, 
Microbiome

Treatment Response 7 Neural Network, Random Forest Clinical, Gene Expression, Microbiome

Risk of Disease 6 Ensemble Model, Random Forest, Regression Clinical, Gene Expression, Genetic

Patient Clustering 4 Gaussian Mixture Model, Hierarchical Clustering, 
Latent Dirichlet Allocation, Neural Network

Immunoassay, Metagenomic, Online Posts, 
Questionnaire

Medication Adherence 1 Support Vector Machine Clinical

Metabolite Abundance 1 Sparse Neural Encoder-Decoder Network Metabolomic, Microbiome

Identification of Patients 1 Natural Language Processing Clinical

Figure 2. Sample sizes used for each group of machine learning methods. Abbreviations: BN, Bayes Network; DT, decision tree; NN, neural network; 
RF, random forest; SVM, support vector machine. Note that 10 outlier entries (sample sizes 20 368 to 7 400 000) have been excluded from the 
visualization.
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the remainder (n = 36) using a mix of CD and UC data, or IBD 
data as one class.11,13–16,18,20–24,30,31,33–36,43,45,51,53,54,56,57,66,67,71–73,82–88 
Half of the research using UC-only data focused on predicting 
disease activity with endoscopy data, whereas the aims of 
ML classifications on CD data were varied. A breakdown of 
the method and classification task can be found in Figure 3, 
which can be customized here (isstafford.github.io/review_
ml_ibd_2021/). More details regarding each study included in 
this review are found in Supplementary Table 1.

The literature search assessed in the previous systematic re-
view was completed on the December 18, 2018; therefore, 
comparisons were made between studies published before 
and during 2018 and those published from 2019 to the litera-
ture search date. Fifty-three articles have been published from 
2019 to May 2021. If a publication is published online and 
subsequently printed in a different year, the first publication 
date is used. Since the end of 2018, there has been a rapid 
expansion in the use of neural networks (a deep learning 
method) for IBD, with 21 studies trialing this method on their 
data from 2019 onwards, compared with 1 study prior to 
this. This increase coincides with more imaging data sets (4% 
2007-2018, 18% 2019-2021), specifically colonoscopy data; 
the majority of neural networks were applied to this data 
type. Support vector machine, random forest, and regression-
based methods were popular during both time periods (year 
on year breakdown of ML method group use, Figure 4). More 
studies utilized 2 data types in 2019-2021 (8% vs 17%), al-
most always combining clinical data with another data type. 
The median sample size of studies has not increased in recent 
years (N = 273 2007-2018, N = 257.5 2019-2021). Diagnosis 
has continued to be a popular ML application, but prior to 

2019, investigating treatment response was more popular 
(24% vs 1.8%); and exploring classification tasks connected 
to disease course is now the most popular application (12% 
vs 35.8%).

Discussion
The increased use of ML methods for IBD demonstrates the 
wider interest in artificial intelligence for health care. Due to 
the heterogeneity of ML model workflows, data types and 
reported metrics, it was not possible to ascertain any supe-
rior approaches. It is possible that some studies may have 
been excluded from the review, as Medical Subject Headings 
(MeSH) were not utilized in the search strategy. However, 
when the ML subject heading was expanded, the only al-
gorithm specified as a search term was “support vector ma-
chine,” which could have biased the search strategy towards 
only identifying additional articles that used this classifier. 
An additional limitation was the search of only 2 databases, 
as the systematic search focused on capturing models with 
clinical application. An assessment of the risk of bias was 
not performed, as there is no clear equivalent of PROBAST 
(Prediction model Risk Of Bias ASsessment Tool) to assess 
ML modeling. The construction of a tool that could assess po-
tential ML pipeline bias would be beneficial for the transition 
of models into clinical settings. Minimizing bias in modeling 
and creating generalizable models go hand in hand. 

There is a clear dominance of tree-based methods: one or a 
combination of random forests, decision trees, and tree-based 
boosting methods were implemented by 55% of studies. This 
is potentially due to decision trees being highly interpretable, 

Figure 3. Sunburst of machine learning methods and the classification tasks used in conjunction with them.

http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izac115#supplementary-data
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with tree boosting and random forest preventing overfitting 
of this model type. Random forests are also well known as an 
ML algorithm that can leverage nonlinear relationships. This 
popularity is not inherently a drawback; however, a lack of 
comparison of different ML methods or a lack of reporting of 
this comparison in studies may make developing ML models 
for clinical application more challenging.

Overall, there was good reporting of a range of informa-
tive metrics in these studies, which was particularly important 
given many of their data sets had imbalanced classes. In cases 
where imbalanced data are used, a high accuracy score can 
mask poor prediction of the minority class. Although some 
studies sought to correct these imbalances with algorithm 
weighting82 or oversampling of the minority class,48,64 some 
researchers did not explicitly address this. Imbalanced data 
sets may be representative of the patient population, but it 
is important to consider whether enough samples from both 
classes were present in ML algorithm training, such that ac-
curate predictions can be made for both the majority and 
minority class. Another potential ML pipeline issue discov-
ered here was a use of feature selection on the whole data set, 
rather than just the training set. With this workflow, there is 
a danger that information regarding features in the test set 
leaks into the training set. Improvements to ML pipelines can 
only benefit patients, as more robust workflows allow the 
identification of the most successful models.

Although an increase in the use of external data sets in the 
expected workflow of training and testing on one data set and 

validating on an independent data set was not observed, other 
interesting approaches were employed, showing researchers 
bringing data sets together to extract additional informa-
tion. Some studies used all of their initial data set to train 
their model with cross-validation and subsequently tested the 
model on a different external data set.23,29,45,59,61,66,73 Others 
used a type of cross-validation called LODO, or leave-one-
data set-out, allowing researchers to utilize many, smaller 
data sets.27,84

The range of overall data set sizes used in studies was large. 
Some of the smaller sample sizes used may not have been ap-
propriate for the chosen ML method, although evaluating 
whether there was sufficient data to construct a classifier can 
be challenging; and the required sample size is contingent on 
the ML task. There is no standard power calculation avail-
able for studies using ML. The sample size required depends 
on the method used, with algorithms such as neural networks 
requiring more data. This trend was observed in the system-
atic review: larger data sets were used in conjunction with 
neural networks. The number of features used for modeling 
will also affect the required sample size. More features will 
generally produce a more complex model, so a larger data 
set is necessary. If the ML model has generalized well from 
training to testing data (or other independent data), this is a 
good indicator the data set was sufficient. It is also important 
to consider how representative the data set is of the patient 
population. An ML model may perform well in initial training 
and testing, but if the data set is biased in the demographics 

Figure 4. Implementation of machine learning methods over time; incomplete data for 2021.
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or phenotypes represented, then the modeling may translate 
poorly when implemented in clinical settings.

Although diagnosis (classifying controls and IBD patients) 
is still a popular application in 2021, it was encouraging to 
see the highest percentage of articles addressing issues sur-
rounding disease course in recent years. This suggests that 
more longitudinal and deeper phenotyping data are being 
collected, allowing a move towards more precise and com-
plex classification tasks. The median size of data sets has not 
grown in recent years. Although data set size is not an indi-
cator of data quality, it is surprising that even though we are 
in the era of “big data,” data set sizes are not increasing at 
a rate they might be expected to. A potential roadblock in 
garnering larger data sets for more specific classifiers may be 
linking up these other data types with phenotyping data. A 
community effort may be necessary to accumulate sufficient 
data sets for more accurate and generalizable ML models and 
external validation. Despite the uncontested power of ‘omics 
data sets in providing a—usually—unbiased representation of 
a patient profile, detailed clinical information remains fun-
damental for precise phenotyping and patient stratification. 
Projects such as UK Biobank89 have progressed this need for 
data, but phenotyping can be limited. With this data in place, 
robust pipelines and models that generalize well, the com-
munity takes the next step towards personalized medicine 
for IBD patients. Ways to assess the generalizability of ML 
models are addressed in the Appendix.
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Appendix: Application Of AI to IBD in 
Literature: Points to Consider for Clinicians
Rare indeed is the clinician who possesses the knowledge, ex-
perience, and time to master all the intersecting disciplines 
in health care ML research. Compounding this are the sus-
ceptibility of AI in health care to hype cycle effects,90 and a 
documented deficit in the quality and completeness of report-
ing in AI in health care articles.91

The interested but busy clinician has aids at their dis-
posal in the form of guidelines and checklists on reporting 
requirements and quality. Some are tailored for clinicians, 

others more broadly to peer reviewers, users and authors.91–101 
We recommend that clinicians obtain these whenever possi-
ble, especially those customized for clinicians91–93,100 for self-
paced study and to have on hand as an assessment support 
tool when reading articles.

However, methodically going through a checklist every 
time an article is read may still pose a time challenge for the 
busy clinician, as some lists are quite lengthy. Realistically, it 
is to be expected that they will often read and assess articles a-
gainst background knowledge/situational awareness. Herein, 
we provide a brief exposition on our subjective choice of a 
subset of critical items for clinicians’ situational awareness 
in the absence of a checklist. This should also enhance their 
understanding and use of checklists.

Comparing ML Algorithms
Direct model performance measures include accuracy, recall 
(sensitivity), precision (positive predictive value), specificity, 
negative predictive value, area under the curve (AUC), and 
F1-score. Comparing ML algorithms on these measures a-
cross studies is not usually meaningful because of unmatched 
factors including specific model implementation; database 
size, type, structure, and quality; reported performance 
metrics; and specific application. However, studies have 
compared multiple ML algorithms and curated benchmarking 
repositories. These repositories document the application of 
numerous ML algorithms to multiple diverse data sets and 
provide general insights on performance gradients where con-
sistent performance gradients are observed.102–104 The caveat 
is these insights may not completely generalize, especially 
with more modern algorithms such as neural networks. These 
methods entail many analytical choices that impact ML ar-
chitecture, performance, and limitations. The algorithms are 
highly situational and operator-dependent. In fact, it has been 
argued that a fair machine vs machine comparison would 
have to eliminate operator interaction, making the question 
unanswerable.103 Generally, newer ML algorithms can lever-
age current computational capacity to predict on complex, 
large, high-dimensional better than older traditional ML 
algorithms—but not always.102–104

Importantly, choice of an ML model is not only related to 
direct performance measures. Indirect performance-related 
ML characteristics are equally important, but perhaps more 
difficult to compare across different workflows. These in-
clude algorithm susceptibility to overfitting, which can lead 
to difficulties achieving the same results in different data; the 
transparency of ML model decisions; the time and computa-
tional cost of ML algorithms; whether the data set is static 
(offline learning) or updating over time (online learning); raw 
data preprocessing (feature engineering); whether the model 
is robust to outliers; and if the ML algorithm contains statis-
tical assumptions. Even environmental impacts may come to 
play a role in algorithm selection. Increasing computational 
complexity correlates with increased energy consumption and 
greenhouse emissions. One group of investigators estimated 
that the CO2 emissions of a full training cycle for a neural 
network emits approximates the lifetime CO2 emissions of 4 
cars.105

Machine learning model selection will therefore always 
entail some trade-offs. A complex algorithm may deliver ex-
cellent performance for the task but at high computational 
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cost—and a limited understanding of how this performance 
was achieved. All ML algorithms have different strengths and 
weaknesses. Support vector machines, which find a boundary 
between different classes of points by optimally separating 
the closest points from the 2 classes, are less susceptible to 
overfitting and data outliers, but very large and noisy data sets 
present a challenge for the algorithm to extract a meaningful 
boundary between 2 classes. In contrast, a properly initialized 
deep neural network can approximate any complex decision 
boundary by identifying, exploiting, and revealing complex 
interactions. The constructed model may be highly accurate 
but has a propensity to overfit and sensitivity to initializa-
tion as the cost. For all ML methods, it is important to be 
aware of any assumptions contained within the model. This 
is especially important for more assumption-laden traditional 
ML. However, if those assumptions are met, the models can 
return a quick, competitive performance. It is therefore apt to 
consider whether a statistically significant ML performance 
translates into clinical impact for a specific application, given 
the totality of direct and indirect measures.

Data Set Quality, Construction, and Labelling
Good training, test and validation data sets are foundational. 
They should have accurate class labels (i.e. true positive and 
negative instances) that are well defined, and capture the full 
range of clinical, demographic and practice variables to be 
generalizable. Clinical expertise is as important as ML exper-
tise to detect unrepresentative data. Training, test and valida-
tion sets should originate from independent sources, or the 
data should be randomly (not manually) split. Care should be 
taken to prevent data leakage (test data information leaking 
into training data), causing biased results, poor generaliza-
tion, and camouflaged overfitting. This can occur in data 
with multiple samples, especially time series, from individual 
patients, or with data pre-processing or transformation prior 
to splitting. For example, normalizing a continuous variable 
in the prior to splitting data by using its global mean and 
standard deviation, is leaking some information from the test 
set into the training set.

Clinician rating schemes for diagnostic labelling (eg, label-
ling patients in the data set according to IBD disease activity, 
endoscopic image-based diagnosis) can affect performance, 
for example assessment by majority vote vs full adjudication 
on the same reference set can return significantly different er-
ror rates.100 Blinded adjudication by an expert panel provided 
with sufficient information and time is ideal for subjective 
labels.

Opportunities for poor representativeness abound. An IBD-
specific example is generalizing from general/adult-focused 
IBD data to early-onset IBD, with its unique phenotypes. 
Dichotomous classification, for example IBD vs healthy 
controls, is common and does not accurately reflect differ-
ential diagnosis in the clinic, pathology lab, radiology read-
ing room, or endoscopy suite, involving multiple diagnostic 
possibilities, thus generalizing poorly to real-world settings. In 
endoscopy studies, deficient representation can be caused by 
many factors such as endoscope brands, endoscopic modality 
(high vs standard resolution white light, chromoendoscopy), 
operator skill, number of study sites, inclusion/exclusion 
criteria (eg, only best archived images, patients with ade-
quate bowel preps). In digital pathology, randomly cropped 
vs whole slide images presence/absence of standardisation 

of whole-slide imaging and staining, could return different 
results.106,107 Distributional shifts occur when characteristics 
and context of contemporary data, such as evolving clini-
cal phenotypes, diverge from the training data, resulting in 
an outdated representation. Ongoing acquisition and use of 
training data representing current disease or practice are re-
quired.108,109

Imbalanced Data Sets
Imbalanced data are unavoidable, especially as ML 
algorithms move towards more complex prediction tasks. It 
may bias performance towards predicting the majority class 
at the expense of the minority class and makes overall accu-
racy an unreliable performance measure, as high accuracy 
can be achieved by just naïvely guessing the majority class. 
The severity of this effect is amplified with smaller, poorly 
separated, and/or suboptimally labeled data sets. Readers 
should determine if significant imbalance reflects a natural 
distribution vs an artifact of study execution. It is tempt-
ing to just rebalance the data by oversampling the minority 
class, either with real or synthetic data, or undersampling 
the minority class. If the imbalance is natural, performance 
on the unrealistically rebalanced data set may diverge from 
real-world results, which tend to be biased toward the mi-
nority class. Oversampling should occur after training/test-
ing set splits to avoid data leakage. If practical, enlarging the 
data set without distorting the natural proportions is desira-
ble. Other approaches include prioritizing the importance or 
more heavily penalizing false positives or false negatives, ac-
cording to the specific problem. Another approach is finding 
a feature set in which the classes are more separable. Finally, 
trying another ML method such as tree-based approach may 
be indicated.

Articles with imbalanced data should provide a full suite 
of direct performance metrics, given the untrustworthiness 
of overall accuracy in this scenario. Examining the confu-
sion matrix is key to assess class-specific performance, and it 
serves as the basis for calculating other measures such as preci-
sion, recall-balanced accuracy, and F1 score. For performance 
measures that are a function of prevalence such as predictive 
value, extrapolation from rebalanced data sets to the natural 
prevalence ratio should be provided.

Supplementary Data
Supplementary data is available at Inflammatory Bowel 
Diseases online.
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