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LncRNA ZFASI1 serves as a prognostic biomarker to
predict the survival of patients with ovarian cancer
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Abstract. Ovarian cancer (OC) is one of the most fatal types
of gynecological malignancy. Certain long non-coding
RNAs (IncRNA) have been reported to have crucial roles
in cancer progression. Zinc finger nuclear transcription
factor, X-box binding 1-type containing 1 antisense RNA 1
(ZFAST1) is anovel regulator IncRNA in various cancer types.
The expression pattern of most IncRNAs, including ZFASI,
in OC remains to be determined. In the present study, it
was demonstrated that ZFAS1 was overexpressed in OC vs.
normal cell lines. However, ZFAS1 was downregulated in
OC compared with normal samples in the GEPIA dataset.
Furthermore, OC samples of higher stages (stage I1I/TV) had
higher levels of ZFAS1 compared with those in early-stage
OC (stage I/IT) samples. Of note, higher ZFASI expression
was associated with shorter overall survival time and
disease-free survival time of OC patients. Protein-protein
interaction networks of proteins co-expressed with ZFAS1
in OC were constructed. Furthermore, Gene Ontology
and Kyoto Encyclopedia of Genes and Genomes analysis
of genes co-expressed with ZFAS1 indicated that ZFAS1
is associated with translation, mRNA splicing, cell-cell
adhesion, DNA repair, protein sumoylation, positive
regulation of GTPase activity and DNA replication. The
present study may provide novel clues to validate ZFASI as
a biomarker in OC.
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Introduction

Ovarian cancer (OC) is one of the most fatal types of gyne-
cological malignancy. According to a recent survey, OC
caused ~14,240 deaths in 2017 worldwide (1). However, the
mechanisms underlying OC progression have remained
largely elusive. Long non-coding RNAs (IncRNA) are a novel
class of RNA transcripts with a length of >200 nucleotides
that lack any protein-coding capacity. Emerging studies have
demonstrated that certain IncRNAs are dysregulated in tumor
cells and have crucial roles in the progression of cancer,
including prostate cancer, breast cancer, glioma and OC (2).
Mechanistically, IncRNAs bind to RNAs, DNA and proteins
to regulate multiple biological functions, including cell prolif-
eration, apoptosis, epithelial-mesenchymal transition and cell
migration. Several IncRNAs have been reported to be associ-
ated with OC progression. For instance, LINK-A was reported
to promote OC cell migration and invasion by activating
the transforming growth factor-f pathway (3). Furthermore,
Shu et al (4) indicated that IncRNA regulator of Akt signaling
associated with hepatocellular carcinoma (HCC) and renal
cell carcinoma promoted OC cell proliferation and invasion by
association with HuR and the microRNA (miRNA/miR)-200
family. Therefore, exploring the expression pattern of IncRNAs
in OC is useful for the identification of novel biomarkers for
OcC.

LncRNA zinc finger nuclear transcription factor, X-box
binding 1-type containing 1 antisense RNA 1 (ZFASI) has
been reported to be upregulated in several types of cancer,
including HCC, colorectal cancer, gastric cancer and glioma.
In gastric cancer, ZFAS1 was demonstrated to be involved
in regulating cancer progression through influencing
Wnt/B-catenin signaling and epigenetically repressing
Kruppel-like factor 2 (KLF2) and NKD inhibitor of WNT
signaling pathway 2 (NKD2) (5). In colorectal cancer,
ZFASI1 promotes proliferation and metastasis via regulating
zinc finger E-box binding homeobox 1 (ZEBI) expression
and interacting with cyclin D kinase 1 (6). ZFAS1 was
reported to promote OC cell malignancy by interacting with
miR-150-5p (7). These reports suggested ZFAS1 may serve
as a regulator in cancer progression. However, the expression
pattern and functional roles of ZFASI in OC progression have
remained to be elucidated.
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In the present study, the expression levels of ZFAS1 were
compared between OC and normal samples and the associa-
tion of ZFAS1 expression with clinicopathological features in
OC was determined by analyzing publicly available datasets.
The potential biological functions of ZFAS1 were analyzed by
performing a Bioinformatics analysis. The present study may
provide clues that validate ZFASI as a novel biomarker for
OcC.

Materials and methods

Dataset analysis. The raw data were obtained from The Cancer
Genome Atlas (TCGA) data from Genomic Data Commons
Data Portal (portal.gdc.cancer.gov) and the University of
California Santa Cruz (UCSC) Xena project (http://xena.ucsc.
edu). The data were analyzed using Gene Expression Profiling
Interactive Analysis (GEPIA) (8), a newly developed interac-
tive web server for analyzing RNA sequencing (RNA-seq)
expression data. RNA-seq datasets used by GEPIA are based
on the UCSC Xena project, using a standard processing
pipeline. P<0.05 was selected as the cutoff for identifying
significantly differentially expressed genes.

Protein-protein interaction (PPI) network construction and
analysis. In the present study, genes co-expressed with ZFAS1
were determined. The Starbase (9) and TargetScan (10,11)
databases were used to predict the miRNAs targeting
ZFAS1-mRNA pairs. The Pearson correlation coefficient was
used as the threshold for selecting co-expressed ZFAS1-gene
pairs. An absolute value of the Pearson correlation coefficient
of =0.3 was used as the threshold. The Search Tool for the
Retrieval of Interacting Genes/Proteins version 10.0 (STRING;
string-db.org) (12,13) was used for the exploration of potential
ZFASI protein interactions. The PPI networks of DEGs gener-
ated by STRING were derived from validated experiments.
A combined score of >0.9 was considered significant. P<0.05
was considered to indicate a statistically significant difference.
The PPI networks were visualized using Cytoscape (14).

Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analysis. MAS 3.0 (mas.
capitalbiotech.com/mas3) may be used to analyze inter-gene
correlations and for gene function annotation. In the present
study, the DAVID tool (https://david.ncifcrf.gov/tools.jsp) was
used to perform GO and KEGG pathway analysis using the
genes co-expressed with ZFAS1. P<0.05 was selected as the
threshold of significance.

Cell culture. The OVCA429, SKOV3, A2780 and COV644
OC cell lines and normal human ovarian surface epithelial
(HOSE) cells were purchased from the Cell Bank of the
Chinese Academy of Sciences. All cell lines were veri-
fied by using short tandem repeat analysis. The OVCA429,
SKOV3, A2780 and COV644 cell lines were cultured in
Dulbecco's modified Eagle's medium (Gibco-BRL; Thermo
Fisher Scientific, Inc.) supplemented with 10% fetal bovine
serum (Gibco; Thermo Fisher Scientific, Inc.) and antibiotics
(Gibco-BRL; Thermo Fisher Scientific, Inc.). HOSE cells
were cultured in medium composed of a 1:1 mixture of
MCDB 105 (Sigma-Aldrich, Merck KGaA) and M199 (Gibco;
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Thermo Fisher Scientific, Inc.) medium containing 10% fetal
bovine serum (Gibco; Thermo Fisher Scientific, Inc.). Cells
were cultured in a humidified atmosphere containing 5% CO,
at 37°C.

Transfection. Lipofectamine 3000 (Invitrogen; Thermo Fisher
Scientific, Inc.) was used to perform transfection according
to the manufacturer's instructions. The SKOV3 cells were
transfected with siZFAS1 and siNC at a final concentration of
50 nM. After 48 h, the cells were used to perform cell counting
kit-8 (CCK-8) and cell cycle assays. The following siRNA
sequences were used: siZFAS1, 5'-"AGCGGTTTGGTGCGG
TGTGAAGCGCGACAT-3" and siNC, 5'-UUCUCCGAACGU
GUCACGUATdT-3".

CCK-8 viability assay. The transfected cells (3x10° cells/well)
were seeded in 96-well culture plates and incubated with 10 pl
CCK-8 reagent (Beyotime Institute of Biotechnology) per well
at 37°C for 2 h. Viability ability was detected at the selected
time points (0, 1, 2 and 3 days following seeding). The optical
density was determined at a wavelength of 450 nm.

Reverse transcription-quantitative (RT-q)PCR analysis. For
RT-qPCR, an Ultrapure RNA kit (CWBIO) was used to extract
RNA. A PrimeScript RT reagent kit (Takara) was used to
perform RT. Reaction parameters were as follows: 42°C for
15 min, 85°C for 5 sec and 4°C for 5 min. AceQ Universal
SYBR gqPCR Master Mix (Vazyme) was used to perform
Real-time PCR on an ABI 7500 system (Applied Biosystems;
Thermo Fisher Scientific, Inc.). Reaction parameters were as
follows: Initial denaturation at 95°C for 5 min; 40 cycles of
95°C for 10 sec and 60°C for 30 sec. The sequences of the
primers were as follows: ZFASI forward, 5~ ACGTGCAGA
CATCTACAACCT-3' and reverse, 5"“TACTTCCAACACCCG
CAT-3"; B-actin forward, 5'-GAGCTACGAGCTGCCTGA
CG-3' and reverse, 5'-CCTAGAAGCATTTGCGGTGG-3".
[-actin was used as a reference. The 2224 method was used to
quantify the data (15).

Statistical analysis. Statistical analysis was performed
using SPSS 19.0 software (IBM Corp.). Student's t-test or
Mann-Whitney U-test was used to perform statistical compar-
isons between two groups depending on the test condition.
One-way analysis of variance was used to perform statistical
comparisons among multiple groups followed by Dunnett's
post-hoc test. P<0.05 was considered to indicate statistical
significance.

Results

LncRNA ZFASI is upregulated in advanced- vs. early-stage
OC.In order to assess the roles of ZFASI in OC, the expression
levels of ZFAS1 in OC and normal samples were first analyzed
using the GEPIA dataset. Of note, the analysis revealed that
ZFASI1 was significantly downregulated in OC compared with
that in normal samples (Fig. 1A). This result was not consistent
with that of a previous study (7).

It was then assessed whether ZFASI expression is asso-
ciated with the stage of OC by analyzing TCGA RNA-seq
dataset. As presented in Fig. 1B, ZFASI was overexpressed
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Figure 1. ZFASI is upregulated in OC vs. normal ovarian cells and in advanced- vs. early-stage OC tissues. (A) In the GEPIA dataset, ZFAS1 was down-
regulated in OC compared to normal samples. ““P<0.05 vs. OC. (B) In TCGA RNA-seq dataset, ZFAS1 was overexpressed at higher-stage (stage II1/IV) OC
compared with that in the early-stage OC (stage 1/IT) samples. ““P<0.001 vs. stage I+II. (C) ZFASI was significantly upregulated in the OVCA429, SKOV3,
A2780 and COV644 OC cell lines compared with that in normal HOSE cells. "P<0.05 and “P<0.01 vs. HOSE. (D) Silencing efficiency. (E) Knockdown of
ZFAS1 markedly inhibited SKOV3 cell proliferation. (F) Knockdown of ZFAS1 in SKOV3 cells significantly increased the percentage of cells in G1 phase, but
decreased the percentage of cells in S phase. (G) Cell cycle data were expressed as the mean + standard deviation. "P<0.05 and ““P<0.001 vs. NC. OC, ovarian
cancer; ZFASI, zinc finger nuclear transcription factor, X-box binding 1-type containing 1 antisense RNA 1; HOSE, human ovarian surface epithelium; TCGA,
The Cancer Genome Atlas; NC, negative control; siZFASI, small interfering RNA targeting ZFAS1; OD, optical density; RNA-seq, RNA sequencing; GEPIA,

Gene Expression Profiling Interactive Analysis.

at higher stages (stage I1I/IV) of OC compared with that in
early-stage (stage I/II) OC samples.

The expression of ZFASI in OC cell lines was detected
by RT-qPCR. It was revealed that the expression levels of
ZFAS1 were significantly higher in the OVCA429, SKOV3,
A2780 and COV644 cell lines than those in normal HOSE
cells (Fig. 1C).

Knockdown of ZFASI suppresses SKOV3 cell viability. The
effect of ZFASI on OC cell viability was detected using a Cell
Counting Kit (CCK)-8 assay following ZFASI knockdown. The

silencing efficiency was confirmed using RT-qPCR analysis
(Fig. 1D). As presented in Fig. 1E, knockdown of ZFAS1 mark-
edly inhibited SKOV3 cell viability at 72 h post-transfection. Cell
cycle analysis demonstrated that knockdown of ZFASI in SKOV3
cells significantly increased the percentage of cells in Gl phase,
but decreased the percentage of cells in S phase (Fig. 1F and G).
These results suggested that knockdown of ZFAS1 suppressed
SKOV3 cell viability by inducing cell cycle arrest.

Higher ZFASI expression in OC tissues is associated with
poor prognosis. The association between ZFASI expression



4676
A TCGA
Overall Survival
2 —— Low ZFAS1 TPM
—— High ZFAS1 TPM
Logrank p=0.0053
© | HR(high)=1.4
© p(HR)=0.0054
T n(high)=212
= n(low)=212
& 8 b -+ censored
>
7}
“—
C
O < |
© o
(0]
o | R e
o TR T
S L PR T T
S
d | T T T
0 50 100 150
Months
C Kaplan Meier plotter
Overall survival
2 HR = 1.46 (1.19-1.79)
logrank P = 3e-04
© - censored
@
> S
E
£ 3
N
Expression
— low
S 4 — high
T T T T T
0 50 100 150 200 250
Time (months)
Number at risk
low 328 113 37 6 1 0
high 327 53 11 2 1 0

HAN et al: ZFAS1I AS A PROGNOSTIC BIOMARKER IN OVARIAN CANCER

B TCGA
Disease Free Survival

2t — Low ZFAS1 TPM
L —— High ZFAS1 TPM
Logrank p=0.025
© | HR(high)=1.3
© p(HR)=0.027
o n(high)=212
= n(low)=212
> 9|
5 o -+ censored
7}
“—
c
D < |
© o
[}
o
N
CS | 1 1 1 1 1
o
d ] T T T
0 50 100 150
Months
D Kaplan Meier plotter
Disease Free Survival
3 T HR =1.33(1.05-1.69)
logrank P = 0.019
@ -+ censored
> 3
g
o g .
g -
Expression
— low
S { — high
T T T T
o] 50 100 150 200
Time (months)
Number at risk
low 191 57 13 1 1
high 191 35 6 [¢] 0

Figure 2. Higher ZFAS1 expression is associated with poor prognosis in ovarian cancer. (A and B) TCGA dataset and (C and D) Kaplan-Meier plotter analysis
indicated that higher ZFAS1 expression was associated with shorter (A and C) overall survival time and (B and D) disease-free survival time. The expression
of ZFASI in OC tissues was categorized as high or low according to the median value. ZFASI, zinc finger nuclear transcription factor, X-box binding 1-type
containing 1 antisense RNA 1; TCGA, The Cancer Genome Atlas; HR, hazard ratio; TPM, transcripts per kilobase million.

and prognosis was investigated using TCGA and Kaplan-Meier
plotter datasets. The expression of ZFASI in OC tissues was
categorized as high or low according to the median value. By
analyzing TCGA datasets, it was revealed that higher ZFAS1
expression levels were associated with shorter overall survival
time (OS; Fig. 2A) and disease-free survival time (DFS;
Fig. 2B).

Next, the Kaplan-Meier plotter datasets, which included
1,287 OC samples with a mean OS of 31 months were
analyzed. In this dataset, OC patients with higher ZFASI1
expression had a shorter OS and DFS when compared with
patients with low expression (Fig. 2C and D). These results
suggested that ZFAS1 may serve as a novel prognostic marker
in OC patients.

Construction of ZFASI-associated PPI networks. In the present
study, a PPI network of ZFASI was first generated by calculating
the Pearson correlation coefficient between ZFAS1 and mRNAs
in TCGA OC datasets. ZFASI-mRNA pairs with an absolute
value of the Pearson correlation coefficient of 0.3 were selected.

Next, ZFAS1-mediated PPI networks in OC were constructed
by using the STRING database (combined score >0.9). A total
of 628 proteins and 12,158 edges were included in the PPI
network of genes positively co-expressed with ZFASI. Of note,
several hub genes were identified in this network, as presented
in Fig. 3. Module 1 contained 104 proteins and 5,096 edges
(Fig. 3A), Module 2 contained 47 proteins and 1,018 edges
(Fig.3B),Module 3 contained 39 proteins and 732 edges (Fig. 3C),
Module 4 contained 36 proteins and 602 edges (Fig. 3D) and
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Figure 3. Protein-protein interaction network of proteins positively co-expressed with zinc finger nuclear transcription factor, X-box binding 1-type containing 1
antisense RNA 1. (A) Module 1 contained 104 proteins and 5,096 edges, (B) Module 2 contained 47 proteins and 1,018 edges, (C) Module 3 contained
39 proteins and 732 edges, (D) Module 4 contained 36 proteins and 602 edges and (E) Module 5 contained 37 proteins and 298 edges.

Module 5 contained 37 proteins and 298 edges (Fig. 3E). A total
of 277 proteins and 1,216 edges were included in the PPI network
of genes negatively co-expressed with ZFAS1 (Fig. 4).

Construction of ZFASI-mediated competing endogenous
(ce)RNA network in OC. Previous studies have indicated
that ZFASI acts as a ceRNA in human cancers. In order to
explore the potential mechanism by which ZFASI regulates
OC progression, a ZFAS1-mediated ceRNA network was
constructed. The Starbase and TargetScan databases were
used to predict the miRNAs targeting ZFAS1-mRNA pairs.
As presented in Fig. 5A, this ceRNA network included
2 miRNAs [Homo sapiens (hsa)-miR-150-5p and

hsa-miR-590-3p] and 195 mRNAs. hsa-miR-150-5p has been
previously reported to be a target of ZFASI1 in OC (7). The
correlation between ZFASI and the candidate miRNAs was
then analyzed. It was revealed that ZFAS1 was negatively corre-
lated to the expression of hsa-miR-150-5p and hsa-miR-590-3p
in OC (Fig. 5B and C). However, the expression of ZFAS1
was not significantly correlated to miR-329 expression in OC
(Fig. 5D), which was previously reported to be sponged by
ZFASI in bladder cancer (16).

Enrichment analysis of ZFASI in OC. Enrichment analysis of
genes co-expressed with ZFAS1 was then performed by using
the DAVID tool. GO analysis indicated that genes positively
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Figure 4. Protein-protein interaction network of proteins negatively co-expressed with zinc finger nuclear transcription factor, X-box binding 1-type containing
1 antisense RNA 1. A total of 277 proteins and 1,216 edges were included. ZFASI, zinc finger nuclear transcription factor, X-box binding 1-type containing 1

antisense RNA 1; PPI, protein-protein interaction.

co-expressed with ZFASI are associated with translation,
translational initiation, ribosomal RNA processing, mRNA
splicing and hydrogen ion transmembrane transport (Fig. 6A).
KEGG analysis suggested that genes positively co-expressed
with ZFAS1 are associated with the pathways of ribosome,
oxidative phosphorylation, spliceosome, RNA transport and
RNA polymerase (Fig. 6B).

GO analysis revealed that genes negatively co-expressed
with ZFAS1 were associated with cell-cell adhesion, DNA
repair, protein sumoylation, positive regulation of GTPase

activity and DNA replication (Fig. 6C). KEGG analysis indi-
cated that genes negatively co-expressed with ZFASI were
associated with the insulin, thyroid hormone, AMP kinase,
mTOR and hypoxia-inducible factor-1 signaling pathways
(Fig. 6D).

Discussion

OC is one of the most fatal types of gynecological malignancy.
Of note, the prognosis of OC has remained poor with the 5-year
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Figure 5. ZFAS1-mediated ceRNA network in ovarian cancer. (A) ZFAS1-mediated ceRNA network. Correlation between ZFASI1 and candidate miRNAs
(B) hsa-miR-150-5p, (C) hsa-miR-590-3p and (D) miR-329. ZFASI, zinc finger nuclear transcription factor, X-box binding 1-type containing 1 antisense RNA
1; miR, microRNA; hsa, Homo sapiens; ceRNA, competing endogenous RNA.
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Figure 6. Functional analysis of genes co-expressed with ZFAS1. (A) GO analysis of positively correlated co-expressed genes. (B) KEGG analysis of positively
correlated co-expressed genes. (C) GO analysis of negatively correlated co-expressed genes. (D) KEGG analysis negatively correlated co-expressed genes.

survival rate of advanced-stage OC being <30%. LncRNAs act
as novel regulators in cancer progression and were observed

to be differentially expressed in various human cancer types,
including OC. Certain IncRNAs have been revealed to have
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crucial roles in OC by regulating cell viability, metastasis
and resistance to chemotherapeutics. For instance, IncRNA
small NF90-associated RNA was reported to promote OC
viability by upregulating growth factor receptor-bound
protein 2-associated binding protein (17), IncRNA prostate
cancer gene expression marker 1-induced OC tumorigenesis
through the Ras homolog family member pathway (18) and
metastasis-associated lung adenocarcinoma transcript 1
regulated OC cell viability, migration and apoptosis through
the phosphoinositide 3-kinase/AKT pathway (19). Of note, the
expression pattern and functional roles of the vast majority of
IncRNAs in OC have remained elusive.

ZFASI has been reported to be a potential biomarker
in HCC, colorectal cancer, gastric cancer and glioma. For
instance, Wang and Xing (20) reported that upregulation of
ZFASI in colorectal cancer tissues predicted poor prognosis.
Furthermore, a meta-analysis by Song et al (21) indicated
that high ZFAS1 expression in solid tumors was associated
with a shorter OS and recurrence-free survival. However,
the expression pattern of ZFAS1 in OC has remained largely
elusive. In the present study, the expression levels of ZFAS1
in OC and normal samples was first analyzed using the
GEPIA dataset. It was revealed that ZFAS1 was downregu-
lated in OC compared to normal samples. This result was
not consistent with that of a previous study by Xia et al (7),
reporting that ZFAS1 was upregulated in OC (7). Thus,
the present study hypothesized that ZFASI expression may
be associated with the progression of OC. The results of
TCGA analysis suggested that ZFAS1 was overexpressed
in advanced-stage OC compared with that in early-stage
OC samples. Furthermore, by detecting ZFAS1 expression
levels in OC cell lines, it was revealed that ZFAS1 was over-
expressed in OC cell lines. GEPIA was based on TCGA and
Genotype-Tissue Expression project (GTEx) data. The TCGA
and GTEx data were produced by two different groups,
which may be a possible reason why the results of the GEPTA
analysis were not consistent with those of Xia ez al (7). In
order to validate whether ZFAS1 may serve as a prognostic
marker for OC, the association between ZFAS1 expression in
OC tissues and survival time was then analyzed, revealing
that OC patients with higher ZFAS1 expression had a shorter
OS and DFS. Taken together, these results suggested that
ZFASI1 may serve as a novel biomarker for OC.

LncRNAs exert their roles in cancer cells by interacting
with other RNA molecules, proteins and DNA. ZFAS1 was
reported to promote the occurrence of nasopharyngeal
carcinoma by activating the Wnt/B-catenin pathway (22).
Knockdown of ZFASI repressed cell viability via inducing
KLF2 and NKD2 expression and inhibited cell migration and
invasion via reducing ZEBI1 and ZEB2 expression in gastric
cancer (5). ZFAS1 was also identified to be a ceRNA by
sponging miR-329 in bladder cancer (9), miR-940 in prostate
cancer (23), miR-486 in osteosarcoma (24) and miR-484 in
colorectal cancer (25). In the present study, a loss-of-function
assay was performed to examine the effect of ZFAS1 on OC
viability. The results suggested that knockdown of ZFASI1
significantly suppressed OC cell viability and induced cell
cycle arrest. These in vitro results were consistent with
previous study and showed that ZFASI played as an oncogene
in OC. In addition, a Bioinformatics analysis was performed to
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reveal the potential mechanisms underlying the role of ZFAS1
in OC progression. The proteins co-expressed with ZFAS1
were determined and PPI networks were constructed from
them. Furthermore, a Bioinformatics analysis was performed
to determine the GO terms and KEGG pathways enriched by
genes co-expressed with ZFASI. GO analysis indicated that
the genes positively co-expressed with ZFASI are associated
with translation, mRNA splicing, cell-cell adhesion, DNA
repair, protein sumoylation, positive regulation of GTPase
activity and DNA replication. In addition, a ZFASI-mediated
ceRNA network was constructed in OC, which included 2
miRNAs (hsa-miR-150-5p and hsa-miR-590-3p) and 195
mRNAs. Of note, Xia et al (7) also reported that ZFASI
interacted with miR-150-5p to promote Spl expression. The
present analyses were consistent with the study by Xia et al (7)
in terms of ZFAS1 being upregulated in OC and miR-150-5p
being a target of ZFASI. The present study provided novel
information contributing to the understanding of the functions
of ZFASI. For instance, it indicated that miR-590-3p was also
a potential target of ZFASI, which may regulate >150 ZFAS1
co-expressing genes in OC.

In conclusion, the present study indicated that ZFASI1
was overexpressed in OC compared with normal cells. By
analyzing GEPIA dataset, the present study found that ZFAS1
was downregulated in OC compared with normal samples;
however, it was highly expressed in advanced stage OC
compared to early stage OC samples. Higher ZFASI expres-
sion was associated with shorter OS and DFS in OC patients.
Knockdown of ZFAS1 suppressed SKOV3 cell viability and
cell cycle progression. Bioinformatics analysis indicated
that ZFASI is associated with translation, mRNA splicing,
cell-cell adhesion, DNA repair, protein sumoylation, posi-
tive regulation of GTPase activity and DNA replication. The
present study suggests that ZFAS1 may serve as a biomarker
for OC.
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