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Objective: Cervical cancer poses a remarkable health burden to females

globally. Despite major advances in early detection and treatment

modalities, some patients still relapse. The present study proposed a novel

immune molecular classification that reflected distinct recurrent risk and

therapeutic responses in cervical cancer.

Methods:We retrospectively collected two cervical cancer cohorts: TCGA and

GSE44001. Consensus clustering approach was conducted based on

expression profiling of recurrence- and immune-related genes. The

abundance of immune cells was inferred via five algorithms. Immune

functions and signatures were quantified through ssGSEA. Genetic mutations

were analyzed bymaftools package. Immunotherapeutic response was inferred

via tumor mutation burden (TMB), Tumor Immune Dysfunction and Exclusion

(TIDE), and Submap methods. Finally, we developed a LASSO model for

recurrence prediction.

Results: Cervical cancer samples were categorized into two immune subtypes

(IC1, and IC2). IC2 exhibited better disease free survival (DFS), increased immune

cell infiltration within the immune microenvironment, higher expression of

immune checkpoints, higher activity of immune-relevant pathways (APC co-

inhibition and co-stimulation, inflammation-promoting, MHC class I, IFN
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response, leukocyte and stromal fractions, macrophage regulation, and TCR

Shannon), and higher frequencies of genetic mutations. This molecular

classification exhibited a remarkable difference with existing immune

subtypes, with diverse PANoptosis (pyroptosis, apoptosis and necroptosis)

features. Patients in IC2 were more likely to respond to immunotherapy and

targeted, and chemotherapeutic agents. The immune subtype-relevant

signature was quantified to predict patients’ recurrence risk.

Conclusion: Altogether, we developed an immune molecular classification,

which can be utilized in clinical practice to aid decision-making on recurrence

management.

KEYWORDS

cervical cancer, recurrence, immune subtypes, immune microenvironment,
therapeutic response, PANoptosis

Introduction

Cervical cancer poses a significant health burden to females

worldwide (Castle et al., 2021). Although this malignancy is

preventable and treatable, it remains the fourth most diagnosed

cancer as well as the fourth major cause of cancer-related deaths

in females (Sung et al., 2021). It is estimated that around

600,000 females are diagnosed with cervical cancer, and over

300,000 females die from this malignancy globally each year

(Sung et al., 2021). Most cervical cancer cases correlate to

infection with high-risk HPV. Primary treatment of cervical

cancer that typically includes surgery, chemoradiation, or their

combination has a cure rate of about 95% for early-stage disease

as well as 40%–60% for locally advanced disease (Miccò et al.,

2022). Recurrent cervical cancer is defined as local tumor

regrowth, lymph node or distant metastasis following the

primary tumor has regressed for at least 6 months (Miccò

et al., 2022). Management of recurrent cervical cancer

depends upon treatment history, location, and degree of

recurrence. Up to 26% of patients with early-stage cervical

cancer relapse following initial surgery (Cibula et al., 2022).

Furthermore, many patients with treatment history experience

recurrence without symptoms.

Accumulated evidence demonstrates that the complex

cellular compositions within the immune microenvironment

result in intratumoral heterogeneity (Qiu et al., 2020).

Immune-related genes (IRGs) correlate to the immune

microenvironment, clinical outcomes as well as treatment

response in cervical cancer (Xu et al., 2021). PANoptosis is an

inflammatory programmed cell death, which can be activated by

components that are simultaneously involved in pyroptosis,

apoptosis and/or necroptosis (Karki et al., 2020). If one or

more programmed cell death pathways are hindered in tumor

cells, PANoptosis is beneficial for tumor suppression via

inducing mechanisms by which the host activates alternative

cell death defense mechanisms (Lee et al., 2021). Currently, the

use of immunotherapy to treat cervical cancer is being actively

researched, though several immunotherapy drugs

(pembrolizumab, etc.), have gained the approval of the FDA

(Colombo et al., 2021). Because immunotherapies have

established a new standard of care in cervical cancer

treatment, novel biomarkers to recognize ideal patient

populations for these therapies are of importance. In the

present study, in accordance with the expression profiling of

recurrence-related IRGs, we proposed a novel immune molecular

classification, and classified cervical cancer patients into two

immune subtypes with distinct recurrence risk, immune

microenvironment as well as immuno-, targeted- and

chemotherapeutic responses, thus aiding clinical therapeutic

decision-making.

Materials and methods

Data collection and processing

RNA sequencing, somatic mutation data (MAF format) and

clinical follow-up information of cervical cancer patients were

downloaded from the Cancer Genome Atlas (TCGA; https://

portal.gdc.cancer.gov/). After thoroughly querying the Gene

Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.

gov/gds/), an eligible cervical cancer dataset (GSE44001) with

disease recurrence information and genetic profiling was enrolled

(Lee et al., 2013). All data were downloaded on 15 April 2022. After

removal of samples without recurrence time and status (i.e. disease

free survival (DFS)), we included 174 samples in the TCGA dataset

and 300 samples in the GSE44001 dataset for subsequent analysis.

The demographics and follow-up data were listed in Supplementary

Table S1. A total of 782 IRGs were collected from previously

published literature, as listed in Supplementary Table S2

(Charoentong et al., 2017). In addition, we collected the gene sets

of PANoptosis (pyroptosis, apoptosis and necroptosis) were

acquired from previously published literature (Supplementary

Table S3) (Pan et al., 2022).
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Unsupervised consensus clustering
analysis

Univariate cox regression analysis of IRGs was implemented

based on recurrence time and status both in the TCGA and

GSE44001 datasets. In accordance with p < 0.05, recurrence-

related IRGs were obtained, with hazard ratio (HR)>1 as a risk

factor and HR < 1 as a protective factor. Then, protective and risk

factors of the two datasets were separately intersected for

subsequent consensus clustering analysis. Unsupervised

consensus clustering was implemented for constructing an

immune molecular classification using ConsensusClusterPlus

package (version 1.52.0) based on recurrence-related IRGs

(Wilkerson and Hayes, 2010). The clustering procedure, with

100 iterations, was carried out by subsampling 80% of the data in

each iteration. The optimal number of clusters was identified

based on consensus cumulative distribution function (CDF),

relative change in area under CDF curve, and consensus

heatmap.

Differential expression and functional
enrichment analyses

By limma package (Ritchie et al., 2015), differential expressed

genes (DEGs) between subtypes were selected according to |fold

change (FC)|>1.5 and false discovery rate (FDR)<0.05. Gene
Ontology (GO) functional annotation and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway enrichment analyses of

up-regulated and down-regulated genes were carried out using

clusterProfiler package (Yu et al., 2012), respectively, with

FDR<0.05 as the threshold value. The GSEA function of

clusterProfiler package was also employed to conduct

functional enrichment analysis between subtypes. The

“c2.cp.kegg.v7.4.symbols.gmt” and “h.all.v7.4.symbols.gmt”

gene sets in the Molecular Signatures database (http://www.

gsea-msigdb.org/) (Liberzon et al., 2015) were utilized as

reference sets.

Immune cell infiltrations

EPIC (Racle et al., 2017), Estimation of Stromal and

Immune cells in Malignant Tumor tissues using Expression

data (ESTIMATE) (Yoshihara et al., 2013), MCP-counter

(Becht et al., 2016), single-sample gene set enrichment

analysis (ssGSEA) (Hänzelmann et al., 2013), and Tumor

Immune Estimation Resource (TIMER) (Li et al., 2017)

algorithms were implemented for inferring the relative

proportions of infiltrating immune cells. The activity of

known immune functions or signatures was estimated with

ssGSEA approach.

Mutational analysis

The mutation frequencies of genes were calculated and

visualized utilizing maftools package (version 2.4.05)

(Mayakonda et al., 2018). Tumor mutation burden (TMB), a

promising biomarker for immunotherapeutic response, was

computed as the total number of nonsynonymous mutations

in the coding region per megabase (Wang et al., 2021).

Prediction of immunotherapeutic
response

Tumor Immune Dysfunction and Exclusion (TIDE) was

computed in accordance with two main mechanisms of tumor

immune escape: inducing T cell dysfunction in tumor tissue with

increased cytotoxic T lymphocyte (CTL) infiltration as well as

preventing T cell infiltration within tumor tissue with reduced

CTL level (Jiang et al., 2018; Fu et al., 2020). The

immunotherapeutic response was predicted with TIDE

algorithm on the basis of gene expression profiling. Submap

approach was also utilized to infer the responses (complete

response (CR), partial response (PR), stable disease (SD), and

progressive disease (PD)) to immune checkpoint blockade of PD-

1 and CTLA4 from the IMvigor210 cohort (Yang et al., 2020).

The demographics and follow-up information of the

IMvigor210 cohort was shown in Supplementary Table S4.

FDR< 0.05 was regarded as the threshold for a significant

response or nonresponse to anti-PD1 or anti-CTLA4 treatment.

Evaluation of sensitivity to targeted and
chemotherapeutic agents

Half maximal inhibitory concentration (IC50) values of AKT

inhibitor VIII, Cisplatin, Erlotinib, Lapatinib, Paclitaxel, and

Temozolomide were estimated to reflect therapeutic response

with pRRophetic package (Geeleher et al., 2014) on the basis of

the Genomics of Drug Sensitivity in Cancer database (www.

cancerRxgene.org) (Yang et al., 2013), and the prediction

accuracy was assessed with 10-fold cross-validation.

Establishment of an immune subtype-
relevant signature

Cervical cancer patients in the GSE44001 dataset were

randomly classified into the training and testing sets at a ratio

of 1:1. Firstly, in the training set, univariate cox regression

analysis of DEGs was conducted by survival package (version

3.1-12), with p < 0.05 as recurrence-related DEGs. Afterwards,

the least absolute shrinkage and selection operator (LASSO)
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algorithm was implemented utilizing glmnet package

(Engebretsen and Bohlin, 2019). Genes with regression

coefficient equal to zero after the shrinkage process were

removed. The optimal tuning parameter lambda (λ) was

selected when the partial likelihood deviance reached the

lowest on the basis of 10-fold cross-validation. The final

identified genes were utilized to establish a multivariate cox

regression model. The formula of the recurrence model was as

follows:

RiskScore � ∑
n

i�1
coef(i)pgene(i),

where coef(i) represents the coefficient of the ith gene, and

gene(i) represents the expression level of the ith gene.

RiskScore of each cervical cancer patient was computed.

The optimal cutoff was determined via surv_cutpoint

function of survminer package, and patients were classified

into high- and low-risk subgroups. Kaplan-Meier approach

was utilized to assess DFS, whereas log-rank test was

implemented for assessing recurrence risk. The area under

the receiver-operating characteristic curve (AUROC) was

used to appraise the predictive capacity of the immune

subtype-relevant signature. Above analyses were validated

in the GSE44001-testing set, GSE44001-entire set, and

independent TCGA dataset. Associations of the signature

and clinicopathological parameters with prognosis were

estimated through uni- and multivariate cox regression

analyses in the TCGA dataset.

Establishment of a nomogram

A nomogram that integrated the immune subtype-relevant

signature and clinicopathological parameters for recurrence

prediction was constructed using rms package. The calibration

curve was plotted for evaluating the predictive accuracy of the

nomogram via rms package. Decision curve analysis (DCA) was

conducted for determining the clinical application value of the

nomogram via computing the net benefits at distinct risk

thresholds.

Statistical analysis

Statistical analysis was executed via R software (version

4.1.0; https://www.r-project.org/). To compare continuous

variables between groups, Student’s t-test was

implemented, whereas Wilcoxon test was applied to

compare non-normally distributed variables. Through chi-

squared test, categorical variables between groups were

compared. The two-sided p ≤ 0.05 was regarded as

statistical significance.

Results

Construction of immune subtypes for
cervical cancer with different recurrence
outcomes based on recurrence-related
immune-related genes

Both in the TCGA and GSE44001 datasets, we determined

7 protective factors and 2 risk factors for cervical cancer

recurrence among IRGs by implementing univariate cox

regression analysis (Figure 1A), which were included for

consensus clustering analysis. Consensus matrix heatmap,

CDF and relative change in area under CDF curve showed

that cervical cancer samples in the TCGA dataset were clearly

classified as two immune subtypes (namely IC1 and IC2)

(Figure 1B; Supplementary Figures S1A,B). This classification

was confirmed in the GSE44001 dataset (Supplementary Figure

S2A), indicating that the clustering of samples was stable and

reliable. There was a remarkably difference in DFS outcome

between immune subtypes both in the TCGA (Figure 1C) and

GSE44001 (Supplementary Figure S2B) datasets, with a more

favorable DFS outcome for IC2. Clinicopathological features

were also compared between immune subtypes. The

proportion of non-recurrent patients was remarkably higher

in IC2 than that of IC1 both in the TCGA (Figures 1D,E) and

GSE44001 (Supplementary Figures S2C–E) datasets.

Immune subtypes-relevant genes and
their biological significance

To unveil the molecular mechanisms underlying immune

subtypes, DEGs between IC1 and IC2 were selected with |FC|

>1.5 and FDR<0.05. In the TCGA dataset, 1223 DEGs with up-

regulation and 976 with down-regulation were determined in

IC1 compared with IC2 (Supplementary Table S5). Moreover,

138 DEGs with up-regulation and 539 with down-regulation

were investigated in IC1 compared with IC2 in the

GSE44001 dataset (Supplementary Table S6). DEGs with

down-regulation were remarkably linked with immune-

relevant pathways (cytokine, chemokine and their receptor

signaling, etc.; Figure 2A; Supplementary Figure S3A).

Moreover, DEGs with up-regulation were mainly correlated to

cervical cancer-relevant pathways (Hippo signaling pathway,

etc.; Figure 2B; Supplementary Figure S3B). GSEA was also

employed for pathways activated in IC1 and IC2. Both in the

TCGA and GSE44001 datasets, epithelial mesenchymal

transition, pancreas beta cells and O-glycan biosynthesis were

remarkably activated in IC1 (Figure 2C; Supplementary Figure

S3C). Moreover, B cell receptor, chemokine, and T cell receptor

signaling pathways and primary immunodeficiency displayed

remarkable activation in IC2.
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Immune subtypes with distinct immune
microenvironment and immune
checkpoints

Five approaches (MCP-counter, ESTIMATE, ssGSEA, EPIC,

and TIMER) were applied for inferring the abundance of immune

cells across cervical cancer from the TCGA and

GSE44001 datasets. The consistent results from distinct

approaches showed that IC2 exhibited the higher abundance of

immune cells in comparison to IC1 both in two datasets (Figures

3A,B). Moreover, we acquired known immune checkpoints from

previously published literature (Danilova et al., 2019; Li et al., 2019;

Zheng et al., 2020). Both in the TCGA and GSE44001 datasets,

BTLA, CD244, CD274, CD28, CD40, CTLA4, ICOS, PDCD1,

PDCD1LG2, and TIGIT displayed higher expression in IC2 in

comparison to IC1 (Figures 3C,D).

FIGURE 1
Construction of immune subtypes for cervical cancer with different recurrence outcomes based on recurrence-related IRGs in the TCGA
dataset. (A) Univariate cox regression analysis of protective factors and risk factors for cervical cancer recurrence among IRGs in the TCGA and
GSE44001 datasets. (B) Consensus matrix heatmap of cervical cancer samples based on the expression profiling of recurrence-related IRGs when
k = 2. (C) Kaplan-Meier curves of DFS between IC1 and IC2 in the TCGA dataset. (D) Landscape of clinicopathological parameters in two
immune subtypes (****p < 0.0001). (E) Comparison of DFS, T, N, M, histological stage, age, grade, and HPV between immune subtypes.
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Immune subtypes with distinct immune
functions

By applying ssGSEA approach, we inferred the activity of

immune-relevant pathways across cervical cancer. In comparison

to IC1, we observed that APC co-inhibition and co-stimulation,

inflammation-promoting, MHC class I, type I and II IFN

responses exhibited increased activity in IC2 both in the

TCGA and GSE44001 datasets (Figures 4A,B).

Associations of our molecular
classification with existing immune
subtypes

As depicted in Figure 5A, our molecular classification

exhibited a remarkable difference with existing immune

subtypes (Ceccarelli et al., 2016). Compared with IC1, higher

proportion of C2 and lower proportion of C1 were observed in

IC2 (Figure 5B). However, there was no remarkable difference in

DFS among existing immune subtypes (C1, C2, and C4)

(Figure 5C). Thus, immune subtypes we proposed was a novel

molecular classification of cervical cancer different from existing

immune subtypes. The activity of immune signatures was

compared between IC1 and IC2. Compared with IC1, IFN

gamma response, leukocyte fraction, macrophage regulation,

stromal fraction, and TCR Shannon exhibited higher activity

in IC2 (Figure 5D).

Immune subtypes with distinct genetic
mutations

Through maftools approach, we analyzed and visualized

genetic mutations of cervical cancer. The mutation frequencies

of the top 500 mutated genes were compared between IC1 and

FIGURE 2
Immune subtypes-relevant genes and their biological significance in the TCGA dataset. (A) Themain biological process (BP), molecular function
(MF), cellular component (CC) and KEGG enrichment results of genes with down-regulation in IC1. (B) The main BP, MF, CC and KEGG enrichment
results of genes with up-regulation in IC1. (C) GSEA for the main Hallmark and KEGG pathways activated in IC1 or IC2.
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IC2 immune subtypes. With p < 0.05, mutations in 18 genes

differed significantly between immune clustered (Figure 6A).

Compared with IC1, MUC17, SYNE1, MYH15, PRKDC,

RALGAPA1, ZNF91, CDK12, DGKK, MAPK1, ANAPC1,

EPG5, FRYL, MIA3, WDR44, COL15A1, KAT6A, and

LAMA3 displayed higher mutation frequencies in IC2.

However, lower mutation frequency of TP73 was observed in

IC2. We also computed TMB of each cervical cancer, and

analyzed the difference in TMB between immune subtypes. In

Figure 6B, compared with IC1, higher TMB score was observed

in IC2. Especially, we compared mutation frequencies of

SYNE1 and MAPK1 between immune subtypes. Higher

FIGURE 3
Immune subtypes with distinct immune microenvironment and immune checkpoints. (A,B) Heatmaps of the abundance of immune cells
inferred by several approaches in IC1 and IC2 immune subtypes in the TCGA and GSE44001 datasets. (C,D) Expression of known immune
checkpoints in two immune subtypes in the TCGA and GSE44001 datasets (ns: no significance; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).
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mutation frequencies of SYNE1 and MAPK1 were found in

IC2 compared with IC1 (Figures 6C,D). Altogether, our data

demonstrated that IC2 exhibited higher genetic mutations

than IC1.

Immune subtypes with distinct
immunotherapeutic responses

TIDE is a reliable biomarker to predict response to

immunotherapy (Jiang et al., 2018; Fu et al., 2020). The lower

TIDE score, the greater the likelihood of immunotherapeutic

response. Here, we computed TIDE in cervical cancer from the

TCGA and GSE44001 datasets. Higher dysfunction, and lower

exclusion score were observed in IC2 than IC1 (Figures 6E,F)

both in two datasets. There was no remarkable difference in

TIDE score between immune subtypes in the TCGA dataset.

Differently, IC2 exhibited lower TIDE score in comparison to

IC1. Altogether, our data demonstrated that patients in IC2 were

more likely to respond to immunotherapy. Furthermore, we

employed Submap approach to compare the expression

profiling of two immune subtypes with that of the

IMvigor210 anti-PD-L1 immunotherapy dataset. Both in the

TCGA and GSE44001 datasets, the expression profiling of

IC2 was similar to that of patients who responded to anti-PD-

L1 immunotherapy (Figures 7A,B). Thus, patients in IC2 were

more suitable for immunotherapy, which were similar to TIDE

prediction.

Immune subtypes with distinct targeted,
and chemotherapeutic responses

Then, we analyzed the difference in targeted, and

chemotherapeutic responses between IC1 and IC2 immune

subtypes. Both in the TCGA and GSE44001 datasets, lower

IC50 values of AKT inhibitor VIII, Cisplatin, Erlotinib,

Lapatinib, Paclitaxel, and Temozolomide were observed in

IC2 compared with IC1 (Figures 7C,D). This indicated that

patients in IC2 were more likely to respond to above targeted,

and chemotherapeutic agents.

Construction of an immune subtype-
relevant recurrence model for cervical
cancer

A total of 212 DEGs between immune subtypes were

shared by the TCGA and GSE44001 datasets (Figure 8A).

Among them, 26 DEGs were remarkably linked with

recurrence of cervical cancer, which were used for

subsequent recurrence model establishment (Supplementary

FIGURE 4
Immune subtypes with distinct immune-relevant pathways. (A,B) The activity of immune-relevant pathways in IC1 and IC2 immune subtypes in
the TCGA and GSE44001 datasets (ns, no significance; *p < 0.05; **p < 0.01; ****p < 0.0001).
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Table S7). The GSE44001 dataset was randomly classified into

the training and testing sets. In the training set, we applied

LASSO algorithm to remove DEGs with regression coefficient

equal to zero (Figure 8B). Moreover, based on 10-fold cross-

validation, the optimal tuning parameter λ was

0.0271963 when the partial \likelihood deviance reached

the lowest (Figure 8C). Finally, TMEM125, TFF1, DECR2,

LONRF3, DAPL1, and ANKRD35 were included for

establishing a multivariate cox regression model. By

combining regression coefficients and expression values of

above DEGs, we computed risk score of cervical cancer cases

(Table 1). With the optimal cutoff, patients were classified into

high- and low-risk subgroups. In Figure 8D, we observed that

high-risk cases exhibited worse DFS in comparison to low-risk

cases in the training set. AUROC values at 1-, 3- and 5-year

DFS were all >0.60, demonstrating the excellent performance

of this model in predicting recurrence (Figure 8E). The similar

results were observed in the testing set (Figures 8F,G), the

GSE44001 (Figures 8H,I) and TCGA (Figures 8J,K) datasets.

Thus, the immune subtype-relevant recurrence model

exhibited the favorable efficiency in predicting cervical

cancer recurrence.

FIGURE 5
Associations of our molecular classification with existing immune subtypes in the TCGA dataset. (A) The distribution of existing immune
subtypes (C1, C2 and C4) across our molecular classification. (B) Comparison of proportion of existing immune subtypes between IC1 and
IC2 immune subtypes. (C) Kaplan-Meier curves of DFS among existing immune subtypes (C1, C2 and C4). (D) The activity of immune signatures
between IC1 and IC2 immune subtypes (ns, no significance; **p < 0.01; ***p < 0.001; ****p < 0.0001).

Frontiers in Genetics frontiersin.org09

Qiang et al. 10.3389/fgene.2022.1007108

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1007108


FIGURE 6
Immune subtypes with distinct genetic mutations and immunotherapeutic responses. (A) Waterfall diagrams of the mutational frequencies of
genes with remarkable differences between IC1 and IC2 immune subtypes in the TCGA dataset. (B) Comparison of TMB between two immune
subtypes in the TCGA dataset. (C,D)Comparison of mutation frequencies of SYNE1 andMAPK1 between immune subtypes in the TCGA dataset. (E,F)
Comparison of dysfunction, exclusion, and TIDE score between immune subtypes in the TCGA andGSE44001 datasets (ns, no significance; *p <
0.05; **p < 0.01; ****p < 0.0001).
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The immune subtype-relevant recurrence
model independently predicts cervical
cancer recurrence

Then, we observed that concordance index (C-index) was

0.72, indicating the high prediction accuracy of the recurrence

model (Figure 9A). In the TCGA dataset, patients with ≤45 had

the relatively higher risk score than those with >45 (Figure 9B).

Both in the TCGA and GSE44001 datasets, IC1 exhibited the

higher risk score than IC2 (Figures 9B,C). Uni- and multivariate

cox regression analysis demonstrated that the model

independently predicted cervical cancer recurrence (Figures 9D,E).

Establishment of a nomogram for cervical
cancer recurrence

To facilitate clinical application of the immune subtype-

relevant recurrence model, we established a nomogram

comprising the risk score and other clinicopathological

parameters (Figure 9F). As demonstrated by calibration

curves, the nomogram-predicted DFS exhibited the relatively

high consistency to actual outcomes (Figure 9G). The net benefits

of the nomogram were better than other clinicopathological

parameters (Figure 9H), indicating the excellent clinical

usefulness.

FIGURE 7
Immune subtypes with distinct immuno-, targeted, and chemotherapeutic responses. (A,B) Submap for comparing the expression profiling of
two immune subtypes with that of IMvigor210 cohort (including four subsets with different responses to anti-PD-L1 immunotherapy in the TCGA and
GSE44001 datasets. (C,D) Comparison of the IC50 values of targeted, and chemotherapeutic agents (AKT inhibitor VIII, Cisplatin, Erlotinib, Lapatinib,
Paclitaxel, and Temozolomide) between two immune subtypes in the TCGA and GSE44001 datasets (**p < 0.01; ****p < 0.0001).
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PANoptosis features of immune subtypes
and immune subtype-relevant recurrence
model

Accumulated evidence demonstrates that pyroptosis,

apoptosis and necroptosis (PANoptosis) participate in cancer

immunity (Pan et al., 2022). Most of PANoptosis genes were

significantly linked to cervical cancer prognosis (Figures 10A,B).

In addition, there were notable interactions between PANoptosis

genes. Both in TCGA and GSE44001 datasets, most pyroptosis,

apoptosis and necroptosis genes displayed notable differential

FIGURE 8
Construction and verification of an immune subtype-relevant recurrencemodel for cervical cancer. (A) Venn diagram of shared DEGs between
IC1 and IC2 immune subtypes both in the TCGA and GSE44001 datasets. (B) Landscape of regression coefficients of 26 recurrence-related DEGs in
the training set. (C) Selection of the optimal tuning parameter λ via 10-fold cross-validation. Kaplan-Meier curves of DFS and ROC curves at 1-, 3-,
and 5-year DFS in the (D,E)GSE44001 training set, (F,G)GSE44001 testing set, (H,I)GSE44001 dataset and (J,K) TCGA dataset based on the risk
score.

TABLE 1 Multivariate cox regression results in the training set.

Gene coef HR HR
(lower, 0.95)

HR
(upper, 0.95)

P

TMEM125 0.26809 1.3075 0.7677 2.227 0.3237

TFF1 0.02287 1.0231 0.7495 1.397 0.8855

DECR2 0.14912 1.1608 0.6763 1.992 0.5885

LONRF3 0.11064 1.117 0.5829 2.141 0.7388

DAPL1 −0.26837 0.7646 0.5736 1.019 0.0673

ANKRD35 −0.23696 0.789 0.4803 1.296 0.3494

Abbreviations: coef, coefficient; HR, hazard ratio.
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expression between immune subtypes (Figures 10C,D). In

addition, the immune subtype-relevant recurrence model-

derived risk score was significantly correlated to PANoptosis

genes in two datasets (Figures 10E,F).

Discussion

Cervical cancer remains a major gynecological issue globally

(Mittal et al., 2022). Despite major advances in early detection

FIGURE 9
Evaluation of the clinical significance of the immune subtype-relevant recurrencemodel and establishment of a nomogram for cervical cancer. (A)
Forest diagram of multivariate cox regression analysis of each variable in the recurrence model in the TCGA dataset. (B) Distribution of the risk score
across distinct clinicopathological parameters in the TCGA dataset. (C)Distribution of the risk score across distinct clinicopathological parameters in the
GSE44001 dataset. (D,E)Uni- andmultivariate cox regression analysis for the associations of the risk score and clinicopathological parameters with
DFS in the TCGA dataset. (F) Establishment of a nomogram including independent variables in the TCGA dataset. (G)Calibration curves for assessing the
nomogram-predicted and actual survival outcome. (H) Decision curve analysis for evaluation of the net benefit.
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FIGURE 10
PANoptosis features of immune subtypes and immune subtype-relevant recurrence model. (A) The network of PANoptosis (pyroptosis,
apoptosis, and necroptosis) genes. (B) Prognostic significance of PANoptosis genes and their interactions. (C,D)Heatmaps of the expression patterns
of PANoptosis genes across two subtypes. (E,F) Correlations between immune subtype-relevant recurrence model-derived risk score and
PANoptosis genes (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).
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and treatment modalities, some patients still relapse. Clinical

management of recurrent cervical cancer depends upon

treatment history, location as well as degree of recurrence

(Zhang et al., 2022). Recurrent cervical cancer usually exhibits

challenges for clinicians due to undesirable survival outcomes

and limited therapeutic options (Grau et al., 2020). Here, cervical

cancer samples were categorized as two immune subtypes with

distinct recurrence risk. The novel immune molecular

classification was different from existing immune subtypes

(Ceccarelli et al., 2016).

Immunoregulators experience immune editing when tumor

cells enable to escape immunological surveillance, permit

unchecked growth as well as spread (O’Donnell et al., 2019).

Also, tumor cells usually apply naturally occurring

immunoregulators to escape immune surveillance as well as

construct an immunosuppressive microenvironment, whereas

lowering anti-tumor activity via effector T cells. The results

from five algorithms revealed that IC2 exhibited the higher

abundance levels of immune cells within the immune

microenvironment than IC1. Immune checkpoints can be

regulated via agonist or antagonist monoclonal antibodies for

enhancing T cell activation as well as eliminating suppression of

T cell activation, thereby reactivating T cells to attack tumor cells

(van der Leun et al., 2020). Recent clinical trials showed that

survival outcomes were remarkably longer with cemiplimab,

anti-PD-1 inhibitor, compared with single-agent

chemotherapy for patients with recurrent cervical cancer

following the first-line platinum treatment (Tewari et al.,

2022). Moreover, dual PD-1 and CTLA-4 blockage

combination displayed durable clinical activity and favorable

tolerability as the second-line therapeutic regimen for advanced

cervical cancer (O’Malley et al., 2022). However, how to

predetermine which patients will respond to immunotherapy

remains an issue. Here, we observed that IC2 exhibited higher

expression of immune checkpoints (BTLA, CD244, CD274,

CD28, CD40, CTLA4, ICOS, PDCD1, PDCD1LG2, and

TIGIT) and higher activity of immune-relevant pathways

(APC co-inhibition and co-stimulation, inflammation-

promoting, MHC class I, IFN response, leukocyte and stromal

fractions, macrophage regulation, and TCR Shannon). Evidence

indicates that PANoptosis may open an additional avenue for

developing promising novel strategies cancer GC

immunotherapy. Herein, two immune subtypes exhibited

distinct PANoptosis features, and immune subtype-relevant

recurrence model-derived risk score correlated to PANoptosis.

In accordance with higher TMB, lower TIDE and higher

similarity to the expression profiling of patients who well

responded to immunotherapy, patients in IC2 were more

suitable for immune checkpoint blockade.

Concurrent chemoradiotherapy remains the standard of care

for patients with FIGO stage IB 2 or higher (Mittal et al., 2022).

Among them, cisplatin is the best-studied and most active single

chemotherapeutic drug. Additionally, targeted therapy (anti-

angiogenic agent) as well as tyrosine kinase inhibitors have

been applied for treating recurrent or metastatic patients.

IC2 patients were more likely to respond to targeted, and

chemotherapeutic agents (comprising AKT inhibitor VIII,

Cisplatin, Erlotinib, Lapatinib, Paclitaxel, and

Temozolomide). Currently, CEA, CA125 and SCC remain

three major biomarkers of cervical cancer for early

screening, treatment monitoring as well as prognostic

evaluation (Cao et al., 2022). However, because they exhibit

low sensitivity and specificity as expected, novel biomarkers

with high reliability, sensitivity and specificity are needed. In

the present study, the immune subtype-relevant signature

(covering TMEM125, TFF1, DECR2, LONRF3, DAPL1, and

ANKRD35) was quantified, which predicted cervical cancer

recurrence accurately and independently. Nonetheless, no

studies have reported the roles of the genes derived from

the signature in cervical cancer. Also, to facilitate clinical

practice, we established a nomogram that comprising the

immune subtype-relevant signature and known

clinicopathological parameters. Despite this, this is a

retrospective analysis based on two large cohorts. We will

verify above findings in a prospective, and larger cohort in our

future research.

Conclusion

Collectively, our findings proposed a novel immune

molecular classification for cervical cancer, which classified

cervical cancer patients into two immune subtypes with

distinct recurrence risk, immune microenvironment,

PANoptosis features as well as immuno-, targeted- and

chemotherapeutic responses. Altogether, our findings might

aid clinicians to make clinical therapeutic regimens for

cervical cancer patients and facilitate personalized precision

medicine.
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