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Objective: Cervical cancer poses a remarkable health burden to females
globally. Despite major advances in early detection and treatment
modalities, some patients still relapse. The present study proposed a novel
immune molecular classification that reflected distinct recurrent risk and
therapeutic responses in cervical cancer.

Methods: We retrospectively collected two cervical cancer cohorts: TCGA and
GSE44001. Consensus clustering approach was conducted based on
expression profiling of recurrence- and immune-related genes. The
abundance of immune cells was inferred via five algorithms. Immune
functions and signatures were quantified through ssGSEA. Genetic mutations
were analyzed by maftools package. Immunotherapeutic response was inferred
via tumor mutation burden (TMB), Tumor Immune Dysfunction and Exclusion
(TIDE), and Submap methods. Finally, we developed a LASSO model for
recurrence prediction.

Results: Cervical cancer samples were categorized into two immune subtypes
(IC1, and IC2). IC2 exhibited better disease free survival (DFS), increased immune
cell infiltration within the immune microenvironment, higher expression of
immune checkpoints, higher activity of immune-relevant pathways (APC co-
inhibition and co-stimulation, inflammation-promoting, MHC class |, IFN

Abbreviations: IRGs, immune-related genes; TCGA, the Cancer Genome Atlas; GEO, Gene Expression
Omnibus; DFS, disease free survival; HR, hazard ratio; CDF, cumulative distribution function; DEGs,
differential expressed genes; FC, fold change; FDR, false discovery rate; GO, Gene Ontology; KEGG,
functional annotation and Kyoto Encyclopedia of Genes and Genomes; TMB, tumor mutation burden;
TIDE, Tumor Immune Dysfunction and Exclusion; CTL, cytotoxic T lymphocyte; CR, complete
response; PR, partial response; SD, stable disease; PD, progressive disease; IC50, half maximal
inhibitory concentration; LASSO, least absolute shrinkage and selection operator; AUROC, area
under the time-dependent receiver-operating characteristic; DCA, decision curve analysis.
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response, leukocyte and stromal fractions, macrophage regulation, and TCR
Shannon), and higher frequencies of genetic mutations. This molecular
classification exhibited a remarkable difference with existing immune
subtypes, with diverse PANoptosis (pyroptosis, apoptosis and necroptosis)
features. Patients in IC2 were more likely to respond to immunotherapy and
targeted, and chemotherapeutic agents. The immune subtype-relevant
signature was quantified to predict patients’ recurrence risk.

Conclusion: Altogether, we developed an immune molecular classification,
which can be utilized in clinical practice to aid decision-making on recurrence

management.
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Introduction

Cervical cancer poses a significant health burden to females
worldwide (Castle et al., 2021). Although this malignancy is
preventable and treatable, it remains the fourth most diagnosed
cancer as well as the fourth major cause of cancer-related deaths
in females (Sung et al, 2021). It is estimated that around
600,000 females are diagnosed with cervical cancer, and over
300,000 females die from this malignancy globally each year
(Sung et al, 2021). Most cervical cancer cases correlate to
infection with high-risk HPV. Primary treatment of cervical
cancer that typically includes surgery, chemoradiation, or their
combination has a cure rate of about 95% for early-stage disease
as well as 40%-60% for locally advanced disease (Micco et al.,
2022). Recurrent cervical cancer is defined as local tumor
regrowth, lymph node or distant metastasis following the
primary tumor has regressed for at least 6 months (Micco
et al, 2022). Management of recurrent cervical cancer
depends upon treatment history, location, and degree of
recurrence. Up to 26% of patients with early-stage cervical
cancer relapse following initial surgery (Cibula et al., 2022).
Furthermore, many patients with treatment history experience
recurrence without symptoms.

Accumulated evidence demonstrates that the complex
cellular compositions within the immune microenvironment
result in intratumoral heterogeneity (Qiu et al, 2020).
Immune-related genes (IRGs) correlate to the immune
microenvironment, clinical outcomes as well as treatment
response in cervical cancer (Xu et al.,, 2021). PANoptosis is an
inflammatory programmed cell death, which can be activated by
components that are simultaneously involved in pyroptosis,
apoptosis and/or necroptosis (Karki et al., 2020). If one or
more programmed cell death pathways are hindered in tumor
cells, PANoptosis is beneficial for tumor suppression via
inducing mechanisms by which the host activates alternative
cell death defense mechanisms (Lee et al., 2021). Currently, the
use of immunotherapy to treat cervical cancer is being actively
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researched, though several

(pembrolizumab, etc.), have gained the approval of the FDA

immunotherapy  drugs
(Colombo et al, 2021). Because immunotherapies have
established a new standard of care in cervical cancer
treatment, novel biomarkers to recognize ideal patient
populations for these therapies are of importance. In the
present study, in accordance with the expression profiling of
recurrence-related IRGs, we proposed a novel immune molecular
classification, and classified cervical cancer patients into two
immune subtypes with distinct recurrence risk, immune
microenvironment as well as immuno-, targeted- and
chemotherapeutic responses, thus aiding clinical therapeutic
decision-making.

Materials and methods
Data collection and processing

RNA sequencing, somatic mutation data (MAF format) and
clinical follow-up information of cervical cancer patients were
downloaded from the Cancer Genome Atlas (TCGA; https://
portal.gdc.cancer.gov/). After thoroughly querying the Gene
Expression Omnibus (GEO) database (https://www.ncbinlm.nih.
gov/gds/), an eligible cervical cancer dataset (GSE44001) with
disease recurrence information and genetic profiling was enrolled
(Lee et al., 2013). All data were downloaded on 15 April 2022. After
removal of samples without recurrence time and status (i.e. disease
free survival (DFS)), we included 174 samples in the TCGA dataset
and 300 samples in the GSE44001 dataset for subsequent analysis.
The demographics and follow-up data were listed in Supplementary
Table SI. A total of 782 IRGs were collected from previously
published literature, as listed in Supplementary Table S2
(Charoentong et al., 2017). In addition, we collected the gene sets
of PANoptosis (pyroptosis, apoptosis and necroptosis) were
acquired from previously published literature (Supplementary
Table S3) (Pan et al,, 2022).
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Unsupervised consensus clustering
analysis

Univariate cox regression analysis of IRGs was implemented
based on recurrence time and status both in the TCGA and
GSE44001 datasets. In accordance with p < 0.05, recurrence-
related IRGs were obtained, with hazard ratio (HR)>1 as a risk
factor and HR < 1 as a protective factor. Then, protective and risk
factors of the two datasets were separately intersected for
subsequent consensus clustering analysis. Unsupervised
consensus clustering was implemented for constructing an
immune molecular classification using ConsensusClusterPlus
package (version 1.52.0) based on recurrence-related IRGs
(Wilkerson and Hayes, 2010). The clustering procedure, with
100 iterations, was carried out by subsampling 80% of the data in
each iteration. The optimal number of clusters was identified
based on consensus cumulative distribution function (CDF),
relative change in area under CDF curve, and consensus

heatmap.

Differential expression and functional
enrichment analyses

By limma package (Ritchie et al., 2015), differential expressed
genes (DEGs) between subtypes were selected according to |fold
change (FC)|>1.5 and false discovery rate (FDR)<0.05. Gene
Ontology (GO) functional annotation and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analyses of
up-regulated and down-regulated genes were carried out using
clusterProfiler package (Yu et al, 2012), respectively, with
FDR<0.05 as the threshold value. The GSEA function of

clusterProfiler package was also employed to conduct
functional enrichment analysis between subtypes. The
“c2.cp.kegg.v7.4.symbols.gmt” and  “h.all.v7.4.symbols.gmt”

gene sets in the Molecular Signatures database (http://www.
gsea-msigdb.org/) (Liberzon et al., 2015) were utilized as

reference sets.

Immune cell infiltrations

EPIC (Racle et al, 2017), Estimation of Stromal and
Immune cells in Malignant Tumor tissues using Expression
data (ESTIMATE) (Yoshihara et al., 2013), MCP-counter
(Becht et al., 2016), single-sample gene set enrichment
analysis (ssGSEA) (Hénzelmann et al., 2013), and Tumor
Immune Estimation Resource (TIMER) (Li et al, 2017)
algorithms were implemented for inferring the relative
proportions of infiltrating immune cells. The activity of
known immune functions or signatures was estimated with
ssGSEA approach.
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Mutational analysis

The mutation frequencies of genes were calculated and
visualized utilizing maftools package (version 2.4.05)
(Mayakonda et al., 2018). Tumor mutation burden (TMB), a
promising biomarker for immunotherapeutic response, was
computed as the total number of nonsynonymous mutations
in the coding region per megabase (Wang et al., 2021).

Prediction of immunotherapeutic
response

Tumor Immune Dysfunction and Exclusion (TIDE) was
computed in accordance with two main mechanisms of tumor
immune escape: inducing T cell dysfunction in tumor tissue with
increased cytotoxic T lymphocyte (CTL) infiltration as well as
preventing T cell infiltration within tumor tissue with reduced
CTL level (Jiang et al, 2018; Fu et al, 2020). The
immunotherapeutic predicted with TIDE
algorithm on the basis of gene expression profiling. Submap

response was
approach was also utilized to infer the responses (complete
response (CR), partial response (PR), stable disease (SD), and
progressive disease (PD)) to immune checkpoint blockade of PD-
1 and CTLA4 from the IMvigor210 cohort (Yang et al., 2020).
The
IMvigor210 cohort was shown in Supplementary Table S4.
FDR <0.05 was regarded as the threshold for a significant
response or nonresponse to anti-PD1 or anti-CTLA4 treatment.

demographics and follow-up information of the

Evaluation of sensitivity to targeted and
chemotherapeutic agents

Half maximal inhibitory concentration (IC50) values of AKT
inhibitor VIII, Cisplatin, Erlotinib, Lapatinib, Paclitaxel, and
Temozolomide were estimated to reflect therapeutic response
with pRRophetic package (Geeleher et al., 2014) on the basis of
the Genomics of Drug Sensitivity in Cancer database (www.
cancerRxgene.org) (Yang et al, 2013), and the prediction
accuracy was assessed with 10-fold cross-validation.

Establishment of an immune subtype-
relevant signature

Cervical cancer patients in the GSE44001 dataset were
randomly classified into the training and testing sets at a ratio
of 1:1. Firstly, in the training set, univariate cox regression
analysis of DEGs was conducted by survival package (version
3.1-12), with p < 0.05 as recurrence-related DEGs. Afterwards,
the least absolute shrinkage and selection operator (LASSO)
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algorithm was implemented utilizing glmnet package
(Engebretsen and Bohlin, 2019). Genes with regression
coefficient equal to zero after the shrinkage process were
removed. The optimal tuning parameter lambda () was
selected when the partial likelihood deviance reached the
lowest on the basis of 10-fold cross-validation. The final
identified genes were utilized to establish a multivariate cox
regression model. The formula of the recurrence model was as

follows:

RiskScore = 2coef(i)*gene(i),

i=1

where coef(i) represents the coefficient of the i gene, and
gene(i) represents the expression level of the i™ gene.
RiskScore of each cervical cancer patient was computed.
The optimal cutoff was determined via surv_cutpoint
function of survminer package, and patients were classified
into high- and low-risk subgroups. Kaplan-Meier approach
was utilized to assess DFS, whereas log-rank test was
implemented for assessing recurrence risk. The area under
the receiver-operating characteristic curve (AUROC) was
used to appraise the predictive capacity of the immune
subtype-relevant signature. Above analyses were validated
in the GSE44001-testing set, GSE44001-entire set, and
independent TCGA dataset. Associations of the signature
and clinicopathological parameters with prognosis were
estimated through uni- and multivariate cox regression
analyses in the TCGA dataset.

Establishment of a nomogram

A nomogram that integrated the immune subtype-relevant
signature and clinicopathological parameters for recurrence
prediction was constructed using rms package. The calibration
curve was plotted for evaluating the predictive accuracy of the
nomogram via rms package. Decision curve analysis (DCA) was
conducted for determining the clinical application value of the
nomogram via computing the net benefits at distinct risk
thresholds.

Statistical analysis

Statistical analysis was executed via R software (version
4.1.0; https://www.r-project.org/). To compare continuous
Student’s  t-test
implemented, whereas Wilcoxon test was applied to

variables  between  groups, was
compare non-normally distributed variables. Through chi-
squared test, categorical variables between groups were
compared. The two-sided p < 0.05 was regarded as

statistical significance.
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Results

Construction of immune subtypes for
cervical cancer with different recurrence
outcomes based on recurrence-related
immune-related genes

Both in the TCGA and GSE44001 datasets, we determined
7 protective factors and 2 risk factors for cervical cancer
recurrence among IRGs by implementing univariate cox
regression analysis (Figure 1A), which were included for
consensus clustering analysis. Consensus matrix heatmap,
CDF and relative change in area under CDF curve showed
that cervical cancer samples in the TCGA dataset were clearly
classified as two immune subtypes (namely ICl1 and IC2)
(Figure 1B; Supplementary Figures S1A,B). This classification
was confirmed in the GSE44001 dataset (Supplementary Figure
S2A), indicating that the clustering of samples was stable and
reliable. There was a remarkably difference in DFS outcome
between immune subtypes both in the TCGA (Figure 1C) and
GSE44001 (Supplementary Figure S2B) datasets, with a more
favorable DFS outcome for IC2. Clinicopathological features
subtypes. The
proportion of non-recurrent patients was remarkably higher
in IC2 than that of IC1 both in the TCGA (Figures 1D,E) and
GSE44001 (Supplementary Figures S2C-E) datasets.

were also compared between immune

Immune subtypes-relevant genes and
their biological significance

To unveil the molecular mechanisms underlying immune
subtypes, DEGs between IC1 and IC2 were selected with |FC|
>1.5 and FDR<0.05. In the TCGA dataset, 1223 DEGs with up-
regulation and 976 with down-regulation were determined in
IC1 compared with IC2 (Supplementary Table S5). Moreover,
138 DEGs with up-regulation and 539 with down-regulation
were investigated in ICl compared with IC2 in the
GSE44001 dataset (Supplementary Table S6). DEGs with
down-regulation were remarkably linked with immune-
relevant pathways (cytokine, chemokine and their receptor
etc; S3A).

Moreover, DEGs with up-regulation were mainly correlated to

signaling, Figure 2A; Supplementary Figure
cervical cancer-relevant pathways (Hippo signaling pathway,
etc; Figure 2B; Supplementary Figure S3B). GSEA was also
employed for pathways activated in IC1 and IC2. Both in the
TCGA and GSE44001

transition, pancreas beta cells and O-glycan biosynthesis were

datasets, epithelial mesenchymal
remarkably activated in ICI (Figure 2C; Supplementary Figure
S3C). Moreover, B cell receptor, chemokine, and T cell receptor
signaling pathways and primary immunodeficiency displayed

remarkable activation in IC2.

frontiersin.org


https://www.r-project.org/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1007108

Qiang et al.

A B consensus matrx k=2 C
o 1.00: TCGA
@ Toon cscum ecne 101
B, <D
PRRCPN @1 - 1c2
5 : .z ors
8 GsEao01 sk ) TR T £
8 % ” oG potcive r— 3
s S 050
i 2 a0 — = s
2 2
£ 5
3
. 025
Log-rank
p=000021
000
. 5 ) %
[ p— . Time(years)
I 5544001 _protective 0 I I =78 1 2 0 0
I —
I n
Toar 4 0 10 15 20
L3 20 o Time(years)
setsize
1 I Cluster
] [ DFS *x*
Cluster Grade Stage  T.Stage  N.Stage M.Stage HPV Age
Hic @Ec W NA  EN0  EMo NA <45
D2 MG MWu MET ENT WM [l negative [l >45
0BG D W NA NA [ positive
DFS | [ NA T3
NO NA
E W vES
ors [l vo [ ves TStage [l v I~ [l Nstage [l v [l W Mstage [l Mo [l m
100+ 100 - 100~ 100
075 - 075 - 075 - 075 -
= s = s
£ £ £ £
§oso §oso- §oso- §oso
£ £ £ £
025 025~ 025 - 025 -
000 000 000 - 000 - . :
iét 12 iét 12 it 12 ié1 it
Chi-squared test P=8¢-04 Chi-squared test P=0.5085 Chi-squared test P=0.1123 Chi-squared test P=0.9527
stage [l 0 o Il Age [l <+ [l > Grade [l ot [ o2 [l c: M ¢ 1PV [l neguive [ posiive
1.00 = 1.00 = 1.00 = 1.00
075 0.75 = 075 = 075
= = = =
s £ £ £
5 030 5 0s0- 5 0s0- 5 0s0
3 3 3 3
&£ £ £ £
025 025 = 025 - 025
0.00 - 0.00 - 0.00 - a A 0.00 -
ié1 1&2 ié1 12 ié1 12 ié1 12
Chi-squared test P=0.3451 Chi-squared test P=0.4459 Chi-squared test P=0.1055 Chi-squared test P=0.1389

FIGURE 1

Construction of immune subtypes for cervical cancer with different recurrence outcomes based on recurrence-related IRGs in the TCGA

dataset. (A) Univariate cox regression analysis of protective factors and

GSE44001 datasets. (B) Consensus matrix heatmap of cervical cancer samples based on the expression profiling of recurrence-related IRGs when
k = 2. (C) Kaplan-Meier curves of DFS between IC1 and IC2 in the TCGA dataset. (D) Landscape of clinicopathological parameters in two

immune subtypes (****p < 0.0001). (E) Comparison of DFS, T, N, M, hi

Immune subtypes with distinct immune
microenvironment and immune
checkpoints

Five approaches (MCP-counter, ESTIMATE, ssGSEA, EPIC,
and TIMER) were applied for inferring the abundance of immune
from the TCGA
results from distinct

cells across cervical and

GSE44001

cancer

datasets. The consistent
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risk factors for cervical cancer recurrence among IRGs in the TCGA and

stological stage, age, grade, and HPV between immune subtypes.

approaches showed that IC2 exhibited the higher abundance of
immune cells in comparison to IC1 both in two datasets (Figures
3A,B). Moreover, we acquired known immune checkpoints from
previously published literature (Danilova et al., 2019; Li et al., 2019;
Zheng et al., 2020). Both in the TCGA and GSE44001 datasets,
BTLA, CD244, CD274, CD28, CD40, CTLA4, ICOS, PDCD1,
PDCDILG2, and TIGIT displayed higher expression in IC2 in
comparison to IC1 (Figures 3C,D).
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Immune subtypes-relevant genes and their biological significance in the TCGA dataset. (A) The main biological process (BP), molecular function
(MF), cellular component (CC) and KEGG enrichment results of genes with down-regulation in IC1. (B) The main BP, MF, CC and KEGG enrichment
results of genes with up-regulation in IC1. (C) GSEA for the main Hallmark and KEGG pathways activated in IC1 or IC2.

Immune subtypes with distinct immune
functions

By applying ssGSEA approach, we inferred the activity of
immune-relevant pathways across cervical cancer. In comparison
to IC1, we observed that APC co-inhibition and co-stimulation,
inflammation-promoting, MHC class I, type I and II IEN
responses exhibited increased activity in IC2 both in the
TCGA and GSE44001 datasets (Figures 4A,B).

Associations of our molecular
classification with existing immune
subtypes

As depicted in Figure 5A, our molecular classification

exhibited a remarkable difference with existing immune
subtypes (Ceccarelli et al., 2016). Compared with IC1, higher
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proportion of C2 and lower proportion of C1 were observed in
IC2 (Figure 5B). However, there was no remarkable difference in
DFS among existing immune subtypes (Cl, C2, and C4)
(Figure 5C). Thus, immune subtypes we proposed was a novel
molecular classification of cervical cancer different from existing
immune subtypes. The activity of immune signatures was
compared between IC1 and IC2. Compared with IC1, IFN
gamma response, leukocyte fraction, macrophage regulation,
stromal fraction, and TCR Shannon exhibited higher activity
in IC2 (Figure 5D).

Immune subtypes with distinct genetic
mutations
Through maftools approach, we analyzed and visualized

genetic mutations of cervical cancer. The mutation frequencies
of the top 500 mutated genes were compared between IC1 and
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IC2 immune subtypes. With p < 0.05, mutations in 18 genes
differed significantly between immune clustered (Figure 6A).
Compared with IC1, MUCI17, SYNEI, MYH15, PRKDC,
RALGAPA1, ZNF91, CDKI12, DGKK, MAPKI1, ANAPCI,
EPG5, FRYL, MIA3, WDR44, COL15A1, KAT6A,
LAMA3 displayed higher mutation frequencies in IC2.

and
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However, lower mutation frequency of TP73 was observed in
IC2. We also computed TMB of each cervical cancer, and
analyzed the difference in TMB between immune subtypes. In
Figure 6B, compared with IC1, higher TMB score was observed
in IC2. Especially, we compared mutation frequencies of
SYNE1 and MAPKI between immune subtypes. Higher
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FIGURE 4

Immune subtypes with distinct immune-relevant pathways. (A,B) The activity of immune-relevant pathways in IC1 and IC2 immune subtypes in
the TCGA and GSE44001 datasets (ns, no significance; *p < 0.05; **p < 0.01; ****p < 0.0001).

mutation frequencies of SYNEI and MAPK1 were found in
IC2 compared with IC1 (Figures 6C,D). Altogether, our data
demonstrated that IC2 exhibited higher genetic mutations
than ICI.

Immune subtypes with distinct
immunotherapeutic responses

TIDE is a reliable biomarker to predict response to
immunotherapy (Jiang et al., 2018; Fu et al., 2020). The lower
TIDE score, the greater the likelihood of immunotherapeutic
response. Here, we computed TIDE in cervical cancer from the
TCGA and GSE44001 datasets. Higher dysfunction, and lower
exclusion score were observed in IC2 than ICI (Figures 6E,F)
both in two datasets. There was no remarkable difference in
TIDE score between immune subtypes in the TCGA dataset.
Differently, IC2 exhibited lower TIDE score in comparison to
IC1. Altogether, our data demonstrated that patients in IC2 were
more likely to respond to immunotherapy. Furthermore, we
employed Submap approach to compare the expression
with that of the
IMvigor210 anti-PD-L1 immunotherapy dataset. Both in the
TCGA and GSE44001 datasets, the expression profiling of
IC2 was similar to that of patients who responded to anti-PD-
L1 immunotherapy (Figures 7A,B). Thus, patients in IC2 were

profiling of two immune subtypes

Frontiers in Genetics

more suitable for immunotherapy, which were similar to TIDE
prediction.

Immune subtypes with distinct targeted,
and chemotherapeutic responses

Then, we analyzed the difference in targeted, and
chemotherapeutic responses between IC1 and IC2 immune
subtypes. Both in the TCGA and GSE44001 datasets, lower
IC50 values of AKT inhibitor VIII, Cisplatin, Erlotinib,
Lapatinib, Paclitaxel, and Temozolomide were observed in
IC2 compared with IC1 (Figures 7C,D). This indicated that
patients in IC2 were more likely to respond to above targeted,
and chemotherapeutic agents.

Construction of an immune subtype-
relevant recurrence model for cervical
cancer

A total of 212 DEGs between immune subtypes were
shared by the TCGA and GSE44001 datasets (Figure 8A).
Among them, 26 DEGs were remarkably linked with
which were used for

recurrence of cervical cancer,

subsequent recurrence model establishment (Supplementary
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Associations of our molecular classification with existing immune subtypes in the TCGA dataset. (A) The distribution of existing immune
subtypes (C1, C2 and C4) across our molecular classification. (B) Comparison of proportion of existing immune subtypes between IC1 and

IC2 immune subtypes. (C) Kaplan-Meier curves of DFS among existing immune subtypes (C1, C2 and C4). (D) The activity of immune signatures
between IC1 and IC2 immune subtypes (ns, no significance; **p < 0.01; ***p < 0.001; ****p < 0.0001).

Table S7). The GSE44001 dataset was randomly classified into
the training and testing sets. In the training set, we applied
LASSO algorithm to remove DEGs with regression coefficient
equal to zero (Figure 8B). Moreover, based on 10-fold cross-
validation, the optimal tuning parameter X was
0.0271963 when the partial \likelihood deviance reached
the lowest (Figure 8C). Finally, TMEM125, TFF1, DECR2,
LONRF3, DAPLI, and ANKRD35 were
establishing a multivariate cox regression model. By

included for

combining regression coefficients and expression values of
above DEGs, we computed risk score of cervical cancer cases

Frontiers in Genetics

TGF.beta.Response

09

Wound.Healing

(Table 1). With the optimal cutoff, patients were classified into
high- and low-risk subgroups. In Figure 8D, we observed that
high-risk cases exhibited worse DFS in comparison to low-risk
cases in the training set. AUROC values at 1-, 3- and 5-year
DES were all >0.60, demonstrating the excellent performance
of this model in predicting recurrence (Figure 8E). The similar
results were observed in the testing set (Figures 8F,G), the
GSE44001 (Figures 8H,I) and TCGA (Figures 8],K) datasets.
Thus, the immune subtype-relevant recurrence model
exhibited the favorable efficiency in predicting cervical

cancer recurrence.
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. (A) Waterfall diagrams of the mutational frequencies of
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The immune subtype-relevant recurrence
model independently predicts cervical
cancer recurrence

Then, we observed that concordance index (C-index) was
0.72, indicating the high prediction accuracy of the recurrence
model (Figure 9A). In the TCGA dataset, patients with <45 had
the relatively higher risk score than those with >45 (Figure 9B).
Both in the TCGA and GSE44001 datasets, IC1 exhibited the
higher risk score than IC2 (Figures 9B,C). Uni- and multivariate
analysis demonstrated that the
independently predicted cervical cancer recurrence (Figures 9D,E).

cox  regression model
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Establishment of a nomogram for cervical
cancer recurrence

To facilitate clinical application of the immune subtype-
relevant recurrence model, we established a nomogram
comprising the risk score and other clinicopathological
parameters (Figure 9F). As demonstrated by calibration
curves, the nomogram-predicted DFS exhibited the relatively
high consistency to actual outcomes (Figure 9G). The net benefits
of the nomogram were better than other clinicopathological
parameters (Figure 9H), indicating the excellent clinical
usefulness.
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A

Cc

score.

TABLE 1 Multivariate cox regression results in the training set.

Gene

TMEM125
TFF1
DECR2
LONRF3
DAPL1
ANKRD35

coef

0.26809
0.02287
0.14912
0.11064
—0.26837
—0.23696

HR

1.3075
1.0231
1.1608
1117
0.7646
0.789

HR
(lower, 0.95)

0.7677
0.7495
0.6763
0.5829
0.5736
0.4803

Abbreviations: coef, coefficient; HR, hazard ratio.
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HR P
(upper, 0.95)

2227 0.3237
1.397 0.8855
1.992 0.5885
2141 0.7388
1.019 0.0673
1.296 0.3494
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FIGURE 8

Construction and verification of an immune subtype-relevant recurrence model for cervical cancer. (A) Venn diagram of shared DEGs between
IC1and IC2 immune subtypes both in the TCGA and GSE44001 datasets. (B) Landscape of regression coefficients of 26 recurrence-related DEGs in
the training set. (C) Selection of the optimal tuning parameter A via 10-fold cross-validation. Kaplan-Meier curves of DFS and ROC curves at 1-, 3-,
and 5-year DFS in the (D,E) GSE44001 training set, (F,G) GSE44001 testing set, (H,1) GSE44001 dataset and (J,K) TCGA dataset based on the risk

PANoptosis features of immune subtypes

and immune subtype-relevant recurrence
model
Accumulated evidence demonstrates that pyroptosis,
apoptosis and necroptosis (PANoptosis) participate in cancer
immunity (Pan et al., 2022). Most of PANoptosis genes were
significantly linked to cervical cancer prognosis (Figures 10A,B).
In addition, there were notable interactions between PANoptosis
genes. Both in TCGA and GSE44001 datasets, most pyroptosis,

apoptosis and necroptosis genes displayed notable differential
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expression between immune subtypes (Figures 10C,D). In

addition, the immune subtype-relevant recurrence model-

derived risk score was significantly correlated to PANoptosis

genes in two datasets (Figures 10E,F).
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Discussion

Cervical cancer remains a major gynecological issue globally

(Mittal et al., 2022). Despite major advances in early detection
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PANoptosis genes (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).
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and treatment modalities, some patients still relapse. Clinical
management of recurrent cervical cancer depends upon
treatment history, location as well as degree of recurrence
(Zhang et al., 2022). Recurrent cervical cancer usually exhibits
challenges for clinicians due to undesirable survival outcomes
and limited therapeutic options (Grau et al., 2020). Here, cervical
cancer samples were categorized as two immune subtypes with
distinct recurrence risk. The novel immune molecular
classification was different from existing immune subtypes
(Ceccarelli et al., 2016).

Immunoregulators experience immune editing when tumor
cells enable to escape immunological surveillance, permit
unchecked growth as well as spread (O'Donnell et al., 2019).
Also, apply
immunoregulators to escape immune surveillance as well as

tumor cells usually naturally  occurring
construct an immunosuppressive microenvironment, whereas
lowering anti-tumor activity via effector T cells. The results
from five algorithms revealed that IC2 exhibited the higher
abundance levels of immune cells within the immune
microenvironment than ICI. Immune checkpoints can be
regulated via agonist or antagonist monoclonal antibodies for
enhancing T cell activation as well as eliminating suppression of
T cell activation, thereby reactivating T cells to attack tumor cells
(van der Leun et al., 2020). Recent clinical trials showed that
survival outcomes were remarkably longer with cemiplimab,
anti-PD-1 with

chemotherapy for patients with recurrent cervical cancer

inhibitor,  compared single-agent
following the first-line platinum treatment (Tewari et al.,
2022). dual PD-1 and CTLA-4 blockage

combination displayed durable clinical activity and favorable

Moreover,

tolerability as the second-line therapeutic regimen for advanced
cervical cancer (O’Malley et al, 2022). However, how to
predetermine which patients will respond to immunotherapy
remains an issue. Here, we observed that IC2 exhibited higher
expression of immune checkpoints (BTLA, CD244, CD274,
CD28, CD40, CTLA4, ICOS, PDCD1, PDCDI1LG2,
TIGIT) and higher activity of immune-relevant pathways
(APC
promoting, MHC class I, IFN response, leukocyte and stromal

and

co-inhibition and co-stimulation, inflammation-
fractions, macrophage regulation, and TCR Shannon). Evidence
indicates that PANoptosis may open an additional avenue for
GC

immunotherapy. Herein, two immune subtypes exhibited

developing  promising novel strategies  cancer
distinct PANoptosis features, and immune subtype-relevant
recurrence model-derived risk score correlated to PANoptosis.
In accordance with higher TMB, lower TIDE and higher
similarity to the expression profiling of patients who well
responded to immunotherapy, patients in IC2 were more
suitable for immune checkpoint blockade.

Concurrent chemoradiotherapy remains the standard of care
for patients with FIGO stage IB 2 or higher (Mittal et al., 2022).
Among them, cisplatin is the best-studied and most active single

chemotherapeutic drug. Additionally, targeted therapy (anti-

Frontiers in Genetics

15

10.3389/fgene.2022.1007108

angiogenic agent) as well as tyrosine kinase inhibitors have
been applied for treating recurrent or metastatic patients.
IC2 patients were more likely to respond to targeted, and
chemotherapeutic agents (comprising AKT inhibitor VIII,
Cisplatin, Erlotinib, Lapatinib, Paclitaxel, and
Temozolomide). Currently, CEA, CA125 and SCC remain
three major biomarkers of cervical cancer for -early
screening, treatment monitoring as well as prognostic
evaluation (Cao et al., 2022). However, because they exhibit
low sensitivity and specificity as expected, novel biomarkers
with high reliability, sensitivity and specificity are needed. In
the present study, the immune subtype-relevant signature
(covering TMEM125, TFF1, DECR2, LONRF3, DAPLI1, and
ANKRD35) was quantified, which predicted cervical cancer
recurrence accurately and independently. Nonetheless, no
studies have reported the roles of the genes derived from
the signature in cervical cancer. Also, to facilitate clinical
practice, we established a nomogram that comprising the
immune  subtype-relevant  signature = and  known
clinicopathological parameters. Despite this, this is a
retrospective analysis based on two large cohorts. We will
verify above findings in a prospective, and larger cohort in our

future research.

Conclusion

Collectively, our findings proposed a novel immune
molecular classification for cervical cancer, which classified
cervical cancer patients into two immune subtypes with
distinct  recurrence risk, immune microenvironment,
PANoptosis features as well as immuno-, targeted- and
chemotherapeutic responses. Altogether, our findings might
aid clinicians to make clinical therapeutic regimens for
cervical cancer patients and facilitate personalized precision

medicine.
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