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Gut microbiota and atherosclerosis: role of B cell for atherosclerosis
focusing on the gut-immune-B2 cell axis
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Abstract
Atherosclerosis is the leading cause of cardiovascular mortality and morbidity worldwide and is described as a complex
disease involving several different cell types and their molecular products. Recent studies have revealed that atheroscle-
rosis arises from a systemic inflammatory process, including the accumulation and activities of various immune cells.
However, the immune system is a complicated network made up of many cell types, hundreds of bioactive cytokines, and
millions of different antigens, making it challenging to readily define the associated mechanism of atherosclerosis.
Nevertheless, we previously reported a potential persistent inflammatory process underlying atherosclerosis development,
centered on a pathological humoral immune response between commensal microbes and activated subpopulations of
substantial B cells in the vicinity of the arterial adventitia. Accumulating evidence has indicated the importance of gut
microbiota in atherosclerosis development. Commensal microbiota are considered important regulators of immunity and
metabolism and also to be possible antigenic sources for atherosclerosis development. However, the interplay between gut
microbiota and metabolism with regard to the modulation of atherosclerosis-associated immune responses remains poorly
understood. Here, we review the mechanisms by which the gut microbiota may influence atherogenesis, with particular
focus on humoral immunity and B cells, especially the gut-immune-B2 cell axis.
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Introduction

Atherosclerotic diseases comprise systemic disorders that rep-
resent a leading cause of mortality and morbidity worldwide.
Although the molecular mechanisms responsible for the de-
velopment of atherosclerosis are not completely understood,
studies over the past decade have highlighted the critical role
of the immune system in this process. In particular, cells, both
the innate (macrophages) and adaptive (T cell and B

lymphocytes) branches, of the immune system appear to play
an important role in the development of this common condi-
tion [1–3]. In addition, recent studies have revealed that the
gut microbiome exerts direct effects on the immune responses
that regulate chronic inflammatory diseases including rheu-
matoid arthritis, inflammatory bowel disease, and atheroscle-
rosis [4, 5]. Moreover, abnormal cholesterol concentrations,
an unhealthy diet, and alterations in the gut microbiota have
been linked to atherosclerosis progression [4]. Accordingly,
the intriguing relationship between commensal microbes and
atherosclerosis has received increasing attention over the past
few years. However, the specific mechanisms whereby com-
mensal microbes regulate the development of atherosclerosis
are just beginning to be elucidated [6, 7], with the role of the
immune system in commensal microbe-derived atherosclero-
sis, i.e., metabolism-independent pathways, remaining largely
unexplored. Therefore, the purpose of this review is to high-
light current knowledge regarding the complex interplay be-
tween the microbiota and atherosclerosis via the immune sys-
tem, with a particular focus on the associated roles played by
humoral immunity, including both B1 and B2 cells.
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Association of commensal microbiota
with cardiovascular diseases

Atherosclerosis constitutes the main contributor to cardiovas-
cular mortality, which is strongly associated with risk factors
such as gender, age, genetic background, unhealthy diet,
smoking, hypertension, diabetes mellitus, obesity, hyperlipid-
emia, and socioeconomic deprivation [8, 9]. However, mini-
mizing such risk factors does not altogether protect against
atherosclerosis. At least a 50% residual risk may remain, even
in conjunction with high-potency statin therapy [10, 11]. This
is because inflammation and hypercholesterolemia comprise
the two key etiological factors for atherosclerosis [2, 12],
whereas current therapeutic options for treating or preventing
atherosclerosis mainly focus on lipid control alone, rather than
resolving inflammation [13].

Bacterial infection has been proposed as a trigger of inflam-
mation in atherosclerosis [13, 14]. To date, most epidemiolog-
ical evidence has supported that a relationship between infec-
tion and atherosclerosis exists, based on associations between
circulating antibacterial antibodies and atherosclerosis. For
example, foreign antigenic stimuli, such as Porphyromonas
gingivalis, Chlamydia pneumoniae, enterovirus, and cyto-
megalovirus, have been identified as potentially causative or
bystander participants [15]. Furthermore, several studies have
found that C. pneumoniae is present in the atherosclerotic
lesions of patients with previous exposure and that infection
with this bacterium may exacerbate atherosclerosis in animals
[14, 16]. In addition to C. pneumoniae, almost 50 bacterial
species have been detected in atherosclerotic plaques, whereas
none was found in control tissues [5, 17].

Moreover, bacteria-host interactions have been associated
with the initiation, perpetuation, and re-exacerbation of ath-
erosclerotic lesions, eventually leading to thrombus formation
and acute coronary syndromes or stroke [18–22]. Recent stud-
ies also showed that atheromas collect bacteria from the cir-
culation and microbial molecular signatures have been detect-
ed at progressively higher frequencies in advanced lesions [7,
23]. In addition, some studies showed a correlation between
aortic stiffness and blood level of soluble CD14, the main
endotoxin receptor and defense against gram-negative bacte-
ria, with high levels resulting in aortic stiffness [24, 25].

Although such evidence supports that bacterial infection
may play a role in the atherosclerotic process from initial
endothelial dysfunction to clinical manifestations, whether
an infection initiates or augments atherosclerosis development
remains uncertain. For example, only a few infectious agents
such as Aggregatibacter actinomycetemcomitans ,
C. pneumoniae, Helicobacter pylori, and P. gingivalis have
been shown to potentially contribute to atherosclerosis by in-
creasing lesion areas in animal models [26]. Furthermore, sev-
eral large, randomized clinical trials involving antibiotic ther-
apy have shown no benefit, to date, regarding cardiovascular

endpoints [27], with the recent suggestion that the organiza-
tion of bacteria in antibiotic-resistant biofilms may have con-
tributed to these negative results [28, 29]. This reflects the
view that the total pathogenic infectious burden in any indi-
vidual may be more important than any singular microbe as a
risk factor for cardiovascular disease [30]. Therefore, an im-
portant endogenous bacterial source of infection, the ability of
commensal microbes to potentially exert a substantial impact
on atherosclerosis, has been recognized [7, 31].

Consistent with this observation, numerous studies have
reported the detection of bacterial DNA in atherosclerotic le-
sions, as well as in human atherosclerotic plaques [7, 17, 32].
In particular, pyrosequencing results revealed that the bacteria
in lesions are derived from the gut and oral cavity [7], sug-
gesting the possible involvement of oral and gut microbiota in
the development of the disease.

Furthermore, fecal samples from healthy individuals and
patients with symptomatic atherosclerosis were found to differ
by several species. For example, the genus Collinsella was
enriched in patients with symptomatic atherosclerosis, where-
as Eubacterium and Roseburia were enriched in healthy con-
trols [33]. Moreover, in patients with coronary artery disease,
the number of Lactobacillales and the ratio of Firmicutes to
Bacteroidetes increased, along with the levels of Escherichia
coli, Klebsiella spp., Enterobacter aerogenes, Ruminococcus
gnavus, Eggerthella lenta, Streptococcus spp., Lactobacillus
salivarius, Solobacterium moorei, and Atopobium parvulum.
In comparison, the number of Bacteroidetes, Roseburia
intestinalis, Faecalibacterium prausnitzii, Bacteroides spp.,
Prevotella copri, and Alistipes shahii decreased [34, 35].

Accordingly, treatment with systemic antibiotics in
humans showed no reduction in cardiovascular event rates,
possibly owing to the specific eradication of gram-positive
strains by azithromycin, whereas gram-negative (LPS-
containing) intestinal bacteria remained unaffected [28].
Moreover, the approach of using broad-spectrum antibiotics
to deplete the gut microbial population also causes a reduction
in numerous beneficial products derived from commensal mi-
crobes [6, 36].

Gut dysbiosis and inflammation
in atherosclerosis

The specific mechanisms whereby commensal microbes may
regulate the development of atherosclerosis are just beginning
to be elucidated. However, numerous studies have identified
the ability of commensal microbe-derived metabolites to act
as hormones or bioactive metabolites modulating cardiovas-
cular disease risk. These have focused on metabolism-
dependent mechanisms, including the gut microbe-derived
trimethylamine N-oxide (TMAO) pathway [37], the short-
chain fatty acids (SCFA) pathway, and the primary and
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secondary bile acids pathways. In contrast, metabolism-
independent pathways, particularly the role of the immune
system in commensal microbe-derived atherosclerosis, remain
largely unexplored.

It is considered possible that the intestinal microbiota can
regulate atherosclerosis development via bacterial wall com-
pounds, such as endotoxin and lipopolysaccharide (LPS), or
indirectly through the regulation of innate immunity and
chronic inflammatory tone by bacterial products [38]. For ex-
ample, in a 5-year epidemiological study of 516 middle-aged
men and women, those with plasma LPS levels over 50 pg/mL
exhibited a threefold increased risk of developing atheroscle-
rosis, whereas the subpopulation of smokers or ex-smokers
with the same LPS level evinced a 13-fold increase [39].
Nevertheless, to our knowledge, intervention studies to lower
LPS plasma levels and thereby subsequently decrease cardio-
vascular disease risk have not been conducted, even though
such results would verify the importance of LPS in the etiol-
ogy of cardiovascular disease [39]. Furthermore, microRNA
components of intestinal microbiota [40] can affect macro-
phage function and subsequent inflammatory tone. In addi-
tion, lack of microbiota reduced plasma LPS levels, along
with pro-inflammatory cytokine gene expression in macro-
phages and the aorta, during atherosclerosis development
[41].

The interaction of microbes, as well as the components of
the bacterial cell, with the immune system was previously
considered to be most active in the distal gut [42, 43].
However, recent studies have found that low levels of micro-
biota can also enter the bloodstream to cause chronic low-
grade inflammation systemically [6, 44]. The phenomenon
whereby low level of gut-derived bacteria can appear in the
circulation is commonly referred to as “metabolic
endotoxaemia” and it has been found to be prevalent in ath-
erosclerosis [44].

Generally, the gut barrier plays a critical role in preventing
the translocation of bacterial components. This barrier is effi-
cient when the microbiota is complex and stable, whereas
under some conditions, such as diets high in fat and choles-
terol or certain diseases, major changes could be induced in
the host microbiota composition, which in turn has been as-
sociated with increased intestinal permeability [45–47]. For
example, we and others have found that mice fed a high-fat
diet exhibited increased intestinal permeability and decreased
expression of genes encoding tight junction proteins, includ-
ing zonula occludens-1 (ZO-1), claudin-1, and occludin,
whereas the administration of antibiotics in conjunction with
the high-fat diet effectively ameliorated these negative effects
[48, 49]. In follow-up experiments, it was confirmed that the
obese mice exhibited the highest levels of intestinal perme-
ability; moreover, obesity-prone rats were also found to ex-
hibit increased gut permeability, plasma LPS, and inflamma-
tion, albeit with reduced epithelial barrier function as

compared with obesity-resistant rats [50–52]. In addition,
our group also found that lubiprostone attenuates the develop-
ment of atherosclerotic lesions by ameliorating leaky gut
syndrome-induced inflammation through the restoration of
the intestinal barrier [53]. Consistent with these observations,
individuals with inflammatory bowel disease were at higher
risk of developing coronary artery disease, despite having
lower rates of traditional risk factors than their age-matched
controls, in a longitudinal cohort study [39]. Targeted sam-
pling studies have shown that LPS levels are higher in blood
samples recovered from the hepatic vein as opposed to the
systemic circulation (direct sampling from the ventricles), pro-
viding direct evidence that LPS can be translocated from the
gut [54]. Therefore, owing to the compromise of the intestinal
barrier, commensal microbes or commensal microbe-derived
molecules, such as LPS or peptidoglycan, can readily enter the
bloodstream and exert systemic effects, including the induc-
tion of infection or chronic low-grade inflammation and im-
munoreaction, affecting multiple immune populations.

Furthermore, it has become clear that microbiota-derived
bioactive compounds can signal to distant organs, contribut-
ing to the development of cardiovascular disease states [55].
For example, outer membrane components of gut microbiota
such as LPS, other virulence factors, and pathogen-associated
molecular patterns (PAMPs) can be detected in human tissues
and trigger local and systemic inflammatory responses
[56–58]. In particular, increased intestinal microbiota-
derived LPS load from the colon lumen was shown to be
associated with various metabolic abnormalities, including
the induction of adipose inflammation. In addition, LPS-
induced inflammatory cytokines in perivascular adipose tissue
(PVAT), which surrounds nearly all blood vessels, can act in a
paracrine manner to exacerbate vascular inflammation and
atherosclerosis. Similarly, through the circulation, bacteria
can reach visceral fat or atheromas, directly promoting local
inflammatory cascades or eliciting a specific immune re-
sponse [59, 60], thereby indirectly influencing host metabo-
lism and systemic inflammation [15, 61].

Commensal microbe–induced atherosclerosis
via immune response

It has long been understood that our immune system can sense
various types of bacterial components, such as LPS and pep-
tidoglycan, via cognate pattern receptors located on immune
cells [62], and then activate several inflammatory pathways.
In general, these pathways involve Toll-like receptors (TLRs)
and nucleotide oligomerization domain (NOD)–like receptors
(NLRs) [63]. In particular, circulating LPS, derived from dif-
ferent gut microbial species, are believed to confer their dele-
terious effects on developing atherosclerosis primarily
through the TLRs and their receptors, for example, cluster of
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differentiation 14 (CD14), with TLR receptor activation
downstream signaling cascades including nuclear factor kap-
pa B (NF-κB) and c-Jun N-terminal kinase pathways.
Activation of the NF-κB pathway promotes gene expression
that recruits and activates inflammatory cells and downstream
molecules such as cytokines, including the pro-inflammatory
factors interleukin-6 (IL-6), IL-1, IL-27, tumor necrosis factor
alpha (TNF-α), inducible nitric oxide synthase, and leukocyte
adhesion molecules [64]. Similarly, activation of the c-Jun N-
terminal kinase pathway leads to the upregulation of stress
response genes and is implicated in pathological cardiac
events [54].

For example, through the use of TLR and low-density li-
poprotein (LDL) receptor double knockout mice, several stud-
ies have demonstrated that TLRs may be contributors to ath-
erosclerosis development [65]. Indeed, Ding et al. [66] found
that a TLR deficiency reduced atherosclerosis without any
effect on inflammation. Moreover, inactivation of the TLR
pathway by deletion of TLRs or the downstream cytosolic
adaptor, myeloid differentiation factor-88 (Myd88), reduces
aortic lesions in apolipoprotein E–deficient (ApoE−/−) and
LDL receptor–deficient (Ldlr−/−) mice [67]. Notably, all
these models showed a reduction of lesion area and regional
lipid content without any significant alteration of plasma cho-
lesterol levels. Consistent with these findings, clinical inves-
tigations have revealed that the upregulation of TLRs was
associated with inflammatory activation in human atheroscle-
rosis and promoted the development of atherosclerosis
[68–70].

Additionally, another gut microbial PAMP, peptidoglycan,
was also found to be associated with atherosclerosis via
NLRs. Through peptidoglycan recognition, NLRs promote
intracellular bacteria clearance through a program involving
NF-κB and mitogen-activated protein kinase (MAPK) signal-
ing pathways [71]. Recently, knockout of NOD1 in mice was
shown to significantly reduce the development of atheroscle-
rotic lesions [63]. Moreover, some NOD2-knockout mouse
studies revealed that NOD2 represents a critical regulator of
intestinal bacterial immunity and helps to maintain the integ-
rity of the gut barrier [72]. In addition, other PAMPs have
been identified that may promote atherosclerosis development
through NLR protein 3 (NLRP3)-inflammasome-caspase-de-
pendent signaling pathways, causing the conversion of pro-
IL-1 beta and pro-IL-18 into active cytokines and subsequent
induction of inflammation [73–76].

Through these pathways, the microbiota activate the innate
and adaptive immunity via receptors on endothelial cells, in-
nate lymphoid cells (ILCs), dendritic cells (DCs), other mye-
loid cells, and lymphocytes [77–79]. In turn, this provides
stimuli for the activation of leukocytes and arterial cells within
atheromas [80].

Moreover, microbial antigens are also associated with the
molecular mechanism termed “molecular mimicry” [81], as

self-peptides such as heat shock proteins (e.g., mycobacteria,
Chlamydia) have also been found to be associated with ath-
erosclerosis [82]. For example, Binder et al. showed that pneu-
mococcal vaccination decreases atherosclerotic lesion forma-
tion through a molecular mimicry mechanism between
Streptococcus pneumoniae and oxidized LDL [83]. In addi-
tion, a recent study has reported that auto-antibodies produced
by B lymphocytes are present in plaques, which may cross-
react with outer membrane proteins of bacteria, as well as with
a cytoskeleton protein involved in atherogenesis [60]. These
findings demonstrated that, in human atherosclerotic plaques,
a local cross-reactive immune response may occur, wherein
antibodies cross-react with a bacterial antigen and a self-pro-
tein. These results also illustrated that antibodies and B lym-
phocytes could play an important role in the disease process
[60, 84].

Crosstalk between microbiota and B cells

As an important component of the immune system, B cells
play a critical role in inflammation through their ability to
detect and process antigens, terminally differentiate into plas-
ma cells, and produce antibodies or cytokines [85]. B cells can
also affect atherosclerosis development via production of ath-
erogenic antibodies [86] and secretion of pro-inflammatory
cytokines, including TNFα, which represent T cell–
independent pathways [87]. However, in contrast to the ability
of macrophages and specific T cell subsets to promote inflam-
mation in the vessel wall during atherosclerosis [88–90], B
cells may have a more complex role in atherosclerosis devel-
opment through antibody production, which is not yet fully
elucidated [91]. For instance, B1 cell–derived natural IgM
antibodies have consistently been shown to be athero-
protective [92, 93], while B2 cell responses may promote
atherogenesis by supporting pro-atherogenic T cells [94].

In general, commensal microbes or commensal microbe-
derived LPS or peptidoglycan can be selectively recognized
by the hosts’ innate immune TLRs in B cells [95–97]. Similar
to other immune cells, B cells also exhibit variations in TLR
expression patterns; specifically, the signaling via MyD88 is
able to modify B cell responses, such as antibody production,
antigen presentation, and cytokine secretion [98–100].
Notably, recent studies have demonstrated that activation of
TLRs, via MyD88 signaling in B cells, is necessary for anti-
body responses to T cell–dependent (TD) antigens and to
influence B cell tolerance, which leads to pathogenic autoan-
tibody production [96, 97, 100]. However, the role of the TLR
signaling pathway in B2 cells during atherosclerosis develop-
ment is not fully elucidated. Nevertheless, in our previous
study, we found that under hyperlipidemic conditions, signals
driven by the microbiota via the TLR signaling pathway may
cause B2 cells to become functionally active, potentially
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leading to the generation of active antibodies, cytokines, and
chemokines, thereby providing a mechanism in which they
may be contributing to atherosclerosis development [1, 8, 53].

Extensive studies of the peripheral blood, peritoneal cavity,
and other lymphoid tissues have identified B1 and B2 cells as
the two main B cell subsets in mice, based on their develop-
mental origin [101]. In addition, the B2 cells that represent the
vast majority of B cells, including follicular (FO) as well as
marginal zone (MZ) B cells [102] respond to antigen presen-
tation in a TD manner undergoing proliferation, affinity mat-
uration, and isotype class switching to produce a large amount
of highly specific antibodies against foreign pathogens [102].

B2 cells reside mainly in the spleen, accounting for 60% of
the total number of splenic lymphocytes. Splenic B2 cells
comprise approximately 80% FO B2 cells and 10% MZ B2
cells [102]. In general, FO B2 cells predominantly participate
in TD antibody responses to highly specific determinants that
are usually associated with microbial proteins [103]. In con-
trast, as MZ B2 cells are peripheral to the FO B2 cells and
reside in the marginal sinuses of the spleen [104], the location
of the interface between the spleen and the circulation, they
are thus located at the first line of defense against blood-borne
antigens [103, 105]. MZ B2 cells predominantly give rise to
rapid T cell–independent (TI) antibody responses to highly
conserved carbohydrate and glycolipid determinants associat-
ed with microbes, producing TI antibodies such as the IgM
response that bridges the gap between infection and the pro-
duction of TD antibodies [106–114]. Moreover, the high ex-
pression of MZ B2 cells of antigen-presenting CD1d mole-
cules, which bond lipids and glycolipids, allows them to act as
antigen processing cells for the activation of natural killer T
cells (NKT cells) [115].

In parallel, commensal microbes stimulate the homing of
DCs, along with neutrophils, to the MZ of the spleen, which
has an important role in the activation ofMZB2 cells [107]. In
addition, recent findings show that neutrophils occupy peri-
MZ areas of the spleen in the absence of infection, being
recruited via a non-inflammatory pathway that originates dur-
ing fetal life and accelerates after birth, a time that coincides
with the colonization of mucosal surfaces by bacteria [114].
Moreover, serum natural IgG levels are severely reduced,
whereas serum natural IgM levels are normal in germ-free
animals [116]. These results indicate the essential role of com-
mensal microbes in the activation ofMZB2 cells and B2 cell–
mediated IgG antibody production. Additionally, unique roles
were reported forMZB2 cells in atherosclerosis development,
involving enhanced pro-atherogenic T cell responses in mice
[117].

Intestinal commensal microbes have come to be accepted
as an important antigen source for the activation of specific
splenic B2 cells in association with arteriosclerosis. The main
pathways by which host and commensal microbiota interact
are when commensal microbiota or their metabolites enter the

hosts’ circulation. As with other infection antigens, the innate
immune system is capable of sensing various types of com-
mensal microbiota components via TLRs, which then signal
via MyD88-dependent pathways to activate NF-κB-driven
pro-inflammatory signaling, subsequently leading to an adap-
tive immune response [100, 118]. For example, the results of
our recent study collectively demonstrated that under hyper-
lipidemic conditions, signals driven by the intestinal microbi-
ota, via the TLR signaling pathway, cause B2 cells in the
spleen to become functionally active. Subsequently, the acti-
vated B2 cells then modify responses such as antigen presen-
tation and antibody production, thereby potentially contribut-
ing to the development of atherosclerosis [1].

In addition, Hamze et al. [119] used laser capture micro-
dissection to analyze individual lymphocytes in dissected cor-
onary arteries, finding that the majority of B cells were present
in the adventitia of these arteries and that they primarily
expressed markers associated with the activated plasmoblast
phenotype, suggesting the cells were active at the sites of
disease. Moreover, the presence of B cells in the aortic adven-
titia has been supported by considerable evidence in human
and murine models of atherosclerosis, configuring artery ter-
tiary lymphoid organs (ATLO) in blood vessels [120, 121].
Recent studies further support that B cell activation in the
adventitia is important for regulating atherosclerosis [119,
122]. In comparison, the PVAT, which is intimately associat-
ed with the adventitial layer of the vessel wall, has been im-
plicated, through paracrine effects on the vasculature, to play a
pivotal role in the pathogenesis of atherosclerosis [123].
PVAT constitutes a complex mixture of various cell types
including immune cells, such as macrophages, T cells, and
B cells [124, 125] that histologically form fat-associated lym-
phoid clusters (FALCs) [126]. Due to the close interaction
between PVAT and adventitia, immune cells in the PVAT
likely contribute to the development of atherosclerosis.
Consistent with this conjecture, we have demonstrated that,
under hyperlipidemic conditions, intestinal microbiota may
enter the blood owing to the reduced intestinal mucosal barrier
capacity. This may then result in the recruitment and ectopic
activation of B2 cells, especially FO B2 cells, via the TLR
signaling pathway in PVAT, and, subsequently, in an increase
in circulating IgG and IgG3, ultimately leading to enhanced
disease development [1].

Conclusions and outstanding questions

New insights regarding how atherosclerosis can be affected by
commensal microbiota have been provided over the past de-
cade; however, the underlying molecular and cellular mecha-
nisms remain largely unexplored. In this review, we have
provided an overview of the metabolism-independent path-
ways in atherosclerosis development and discussed the
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possible mechanisms involving splenic B2-B cell activation
following commensal microbe dysbiosis and translocation in-
to the bloodstream. As inflammation constitutes a key etiolog-
ical factor for atherosclerosis, future research must seek to
pinpoint the specific immune response mediated by microbi-
ota. In particular, the impact of the microbiota on immune
cells and its consequences for atherogenesis await further
elucidation.

Finally, various studies have revealed the roles of athero-
protective B1 cells and athero-promoting B2 cells, and the
disruption of the balance between B1 cells and B2 cells may
lead to the progression of atherosclerosis. Therefore, targeting
activated B2 cells or induced athero-protective B1 cells might
be one of the therapeutic procedures for the subjects with ath-
erosclerosis. Furthermore, a potential translational extension of
the current research would be to better characterize the specific
humoral immunity in individuals with atherosclerosis. We
sought to confirm the existence of antibodies specific for anti-
gens derived against commensal microbes and to develop
in vitro diagnostic procedures for assessing the current immu-
nological status of atherosclerosis patients. For instance, we
found an IgG3 class of antibodies specific for bacterial antigens
in these patients that may prove useful as a translation tool in
clinical settings (unpublished observation). Also of clinical rel-
evance, probiotics, and not antibiotics, may effectively alter the
state of dysbiosis in subjects with atherosclerosis, while also
reducing the specific effect of commensal microbes in the de-
velopment of atherosclerosis. Additionally, interventional ap-
proaches can also be applied to enhance the intestinal function
of subjects with atherosclerosis. For instance, patients with cor-
onary heart disease and constipation might present interven-
tional opportunities involving the use of laxative agents for
improving intestinal commensal microbiota [53, 127, 128].
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