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Purpose: Extracellular matrix (ECM) is a key component of the stem cell local

microenvironment. Our study aims to explore the periglandular distribution of

major components of ECM in the Meibomian gland (MG).

Methods: Human eyelids andmouse eyelids were collected and processed for

immunofluorescence staining.

Results: Human MG tissues stained positive for collagen IV α1, collagen IV α2,

collagen IV α5, and collagen IV α6 around the acini and duct, but negative for

collagen IV α3 and collagen IV α4. The mouse MG were stained positive for the

same collagen IV subunits as early as postnatal day 15. Laminin α2, laminin β1

and perlecan stained the regions surrounding the acini and the acinar/ductal

junction in the humanMG, but not the region around the duct. Tenascin-Cwas

found specifically located at the junctions between the acini and the central

ducts. Neither agrin nor endostatin was found in the human MG tissues.

Conclusion: The ECM expresses specific components in di�erent regions

around the MG, which may play a role in MG stem cell regulation, renewal,

and regeneration.
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Introduction

Meibomian glands (MG) are large holocrine glands located in the eyelids, which

play an important role in the maintenance of ocular surface health (1–3). The tissue is

composed of clusters of acini connected to a central duct via ductules, as grapes grow

on a vine (1). Because of the nature of holocrine secretion, the meibomian gland (MG)

continuously undergoes cell replacement, which relies on the dynamic activity of stem

cells. If the stem cells are exhausted, new epithelial cells cannot be generated, which

leads to gland atrophy and dropout (4). The loss of MG acini is frequently observed

in meibomian gland dysfunction (MGD), which is the major cause of the dry eye that

affects hundreds of millions of patients in the United States (1, 2, 5–7). Unfortunately,

there is no known way to regenerate MG after dropout and no cure for MGD.
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It is currently believed that the MG stem cells are located at

the junction between ductal and acinar basal epithelia, and that

they give rise to two distinct, unipotent populations of daughter

progenitor cells, which generate ductal and acinar tissues (8–

10). This hypothesis is consistent with our observation that the

epithelial cells of acini and ducts express different biomarkers,

and that the MG acinar epithelial progenitor cells can be

identified by a specific marker (11). If an individual MG stem

cell gives rise to distinct progenitors, there should be different

signals driving them to produce either ductal or acinar daughter

cells. However, the factors that regulate and determine the fate

of the MG stem cells remain unknown.

In other tissues, one of themost important regulators of stem

cell fate is the extracellular matrix (ECM) (12–14). The ECM

is a key component of the stem cell local microenvironment

(i.e., niche), and not only provides a scaffold for the tissue,

but also plays a very important role in determining stem and

progenitor cell fate (15). ECM closely regulates cell behaviors

including proliferation, differentiation, migration, and apoptosis

(16). A study found that hyaluronan, a major ECM, plays an

essential role in MG and eyelid development, which indicates

that ECMmay be a key factor in modulating the progeny of MG

stem cells, and driving them to produce either acinar or ductal

epithelial cells (17). We hypothesize that the ECM surrounding

the MG acini, ducts, and at the junctions between them are all

different. To begin to test our hypothesis, we investigated the

periglandular distribution of several major components of ECM,

including collagen IV subtypes, laminins, tenascin-C, perlecan,

agrin and endostatin (18–22).

Materials and methods

Human and mouse tissues

Discarded and deidentified human eyelid tissues were

obtained within 12 h after eyelid surgeries (five women,

three men; age range, 63–88 years). Preoperative examination,

including subjective questionnaire, slit lamp examination,

Schirmer I-test and meibomian gland expression evaluation,

confirmed normal meibomian gland structure and excluded dry

eye. The use of human tissues was approved by the Institutional

Review Board of the Massachusetts Eye and Ear Infirmary and

Schepens Eye Research Institute (SERI) and adhered to the

tenets of the Declaration of Helsinki. Eyelids from C57BL/6J

mice of different ages (postnatal day 2, postnatal day 15,

2 months and 15 months old) were obtained immediately

after sacrifice. At least five mice in each age group were

examined. All experiments with thesemice were approved by the

SERI Institutional Animal Care and Use Committee (IACUC)

and adhere to the Association for Research in Vision and

Ophthalmology Statement for the Use of Animals in Ophthalmic

and Vision Research. Tissue samples were immediately frozen

in optimal cutting temperature compound (OCT, Tissue-Tek,

Sakura USA, Torrance, CA) and later sectioned (15µm) with

a cryostat for staining procedures.

Immunofluorescence staining

Eyelid sections were fixed with cold methanol for 15minutes

at −20◦C. Following three phosphate-buffered saline (PBS)

rinses for 5min each, samples were blocked with 2% bovine

serum albumin (BSA, Sigma-Aldrich Corp., St. Louis, MO) in

PBS for 60min, and then incubated overnight at 4◦C in a moist

chamber with primary antibodies specific for cytokeratin 14

(K14, ab181595, 1:500, Abcam), cytokeratin 6 (K6, ab18586,

1:500, Abcam) and extracellular matrix components (Table 1).

Antibodies specific for collagen IV subtypes were generously

provided by Dr. Yasuko Tomono and Dr. Yoshikazu Sado from

Division of Molecular and Cell Biology, Shigei Medical Research

Institute, Japan (Table 1). Isotype antibodies were applied as

negative controls. After three additional PBS rinses, donkey

anti-rabbit (ab150075, 1:200, Abcam) or donkey anti-mouse

(2492098, 1:200, EMD Millipore, Temecula, CA) or goat anti-

rat (31629, 1:200, Thermo-fisher) secondary antibodies were

applied for 1 h at room temperature. C57BL/6J mouse kidney

sections were used as positive controls for the collagen IV

antibodies, and the mouse IgG1 control antibodies with the

same concentration were used as negative controls. The slides

were finally mounted using ProLong Gold antifade reagent with

4’,6-diamidino-2-phenylindole (DAPI; Thermo Fisher Scientific,

Waltham, MA) and observed with a confocal microscope (Leica

TCS SP8, Leica Microsystems, Wetzlar, Germany).

Results

The major components of ECM are multiple isoforms

of collagen IV and different types of glycoproteins and

proteoglycans (18). We used specific antibodies to identify these

compositions in human meibomian gland sections. We also

investigated the localization of collagen IV subtypes in the

mouse meibomian gland.

Cytokeratins

In the human tissue sections, cytokeratin 14 (K14) and

cytokeratin 6 (K6) show the morphology and structure of the

MG tissue (11). In Figure 1, K14 shows the structure of both the

acinar and the ductal epithelia, while K6 stains only the ductal

cells. The inner layer of the luminal surface of the duct shows

the most intense staining for K6.
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TABLE 1 List of primary antibodies used in immunolocalization of acinar and ductal cell markers and extracellular matrix components in human

meibomian gland.

Primary antibody Ig class Dilution Origin/vendor Secondary detection

system

CK14 IgG1 1:1,000 Abcam Cy5

CK6 IgG1 1:50 Abcam Cy3

COL4α1 IgG2a 1:5 Sado lab FITC

COL4α2 IgG2a 1:5 Sado lab FITC

COL4α3 IgG2a 1:5 Sado lab FITC

COL4α4 IgG2b 1:5 Sado lab FITC

COL4α5 IgG2a 1:5 Sado lab FITC

COL4α6 IgG2a 1:5 Sado lab FITC

SOX-9 IgG2a 1:50 Santa Cruz Cy3

Perlecan IgG2a 1:50 Santa Cruz FITC

Laminin α2 IgG1 1:50 Santa Cruz FITC

Laminin β1 IgG1 1:50 Santa Cruz FITC

Agrin IgM k 1:50 Santa Cruz Cy3

Endostatin IgG k 1:50 Santa Cruz Cy3

FIGURE 1

Identification of cytokeratin 14 (K14, green), cytokeratin 6 (K6, red), collagen IV α2 (COL4α2, blue), collagen IV α3 (COL4α3, blue) and collagen IV

α6 (COL4α6, blue) in the human Meibomian gland (MG). K14 is present in both ductal and acinar epithelial cells, whereas K6 expression is

restricted to ductal cells. Human MG tissues stain positive for COL4α2 (A) and COL4α6 (C), but negative for COL4α3 (B). Scale bar = 100µM.

Collagen IV subtypes

Type IV collagen is the most abundant component of

basement membrane (BM), which is the major component of

ECM, and comprises up to six genetically distinct α-chains,

designated α1 to α6 (19). In order to test whether there are any

differences in the expression of collagen IV subtypes around

the MG, we used specific antibodies against collagen IV α1
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TABLE 2 Expression pattern of extracellular matrix components in

human meibomian gland.

Acinar Ductal Junctional

ECM component

1.Collagens

Type IV collagen

α1(IV) chain + + +

α2(IV) chain + + +

α3(IV) chain – – –

α4(IV) chain – – –

α5(IV) chain + + +

α6(IV) chain + + +

2. Glycoproteins

Laminin α2 chain + – +

Laminin β1 chain + – +

Tenascin-C – – +

3. Proteoglycans

Perlecan + – +

Agrin – – –

Endostatin – – –

(COL4α1), collagen IV α2 (COL4α2), collagen IV α3 (COL4α3),

collagen IV α4 (COL4α4), collagen IV α5 (COL4α5), and

collagen IV α6 (COL4α6) in our study. The specificity of these

antibodies has been tested in previous publications (23–26).

These α-chains are arranged into three distinct heterotrimers:

α1α1α2, α3α4α5, and α5α5α6 (19). The human tissue sections

were stained with all six antibodies, and the results of the

staining are summarized in Table 2. Our results show that

the human MG tissues stain positive for COL4α1, COL4α2,

COL4α5, and COL4α6, but negative for COL4α3 and COL4α4.

Figure 1 shows the human tissue sections stained with COL4α2,

COL4α3, and COL4α6. These three subunits represent the

localization of the distinct heterotrimers.

Tissue sections from mice at a range of ages were also

stained with the six specific collagen IV subunit antibodies, as

well as K14 (to indicate MG epithelial cells) (11) and DAPI

(Figure 2). The results show that at postnatal day 2 (P2), when

the eyelids are still fused, there is no apparent structure of MG

acini or ducts. A solid cord of epithelial cells marked by K14

was visible in the eyelid but staining for all the collagen IV

subtypes was negative. By postnatal day 15 (P15), the mature

MG structure has developed, with morphology similar to that

of adult mice. As in the human tissue sections, four of the

six collagen IV subtypes were present around the mature MG;

both COL4α3 and COL4α4 were absent. Figure 2 shows the

results of staining tissue sections frommice of different ages with

COL4α2, COL4α3, and COL4α5. When viewed in combination,

these data represent the presence or absence of each of the

distinct heterotrimers.

FIGURE 2

Identification of cytokeratin 14 (K14, green), collagen IV α2

(COL4α2, red), collagen IV α3 (COL4α3, red) and collagen IV α5

(COL4α5, red) in the mouse Meibomian gland of di�erent

developmental stages. Nuclei were counterstained with 4’,

6-Diamidino-2-phenylindole (DAPI) in blue. (A) postnatal day 2

(P2); (B) postnatal day 15 (P15); (C) 2 months old; and (D) 15

months old. Scale bar = 50µM.

Glycoproteins

Laminins

Laminins are multidomain, heterotrimeric glycoproteins,

composed of one each of five α, four β, and three γ

chains (20). At least 16 different isoforms have been

confirmed in the human body (20). In order to most

efficiently identify multiple isoforms, we incubated human

MG sections with antibodies specific for laminin α2

and laminin β1. The results show that both the regions

surrounding the acini and the acinar/ductal junction, but

not the region around the duct, stain positive for laminins

(Figures 3A,B).

Tenascin-C

Tenascin-C is a large glycoprotein in the ECM that exhibits

a very restricted pattern of expression (21). It is an important

functional component of various stem cell niches, and plays

a major role in regulating stem cell fate (27, 28). Our results

show that, in human MGs, tenascin-C is specifically located

at the junctions between the acini and the central duct

(Figure 3C).
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FIGURE 3

Identification of K14 (green), glycoproteins (red) and proteoglycans (red) in the human Meibomian gland (MG). Nuclei were counterstained with

4’, 6-Diamidino-2-phenylindole (DAPI) in blue. Laminin α2 (A), laminin β1 (B) and perlecan (D) stained positive surrounding the acini and the

acinar/ductal junction, but not the region around the duct. Tenascin-C (C) was found specifically located at the junctions between the acini and

the central duct (white arrows). The staining was negative for both agrin (E) and endostatin (F) in the human MG tissues. Scale bar = 100µM.

Proteoglycans

Proteoglycans are a group of heavily glycosylated molecules

found at the periphery of cells. In the BM, these proteoglycans

include perlecan, agrin and endostatin (22). In human MG

tissue, we observed perlecan around the acini, including at

the junction with the duct (Figure 3D). We were unable to

identify agrin or endostatin staining in the human tissue sections

(Figures 3E,F).

Discussion

In this study, our data support our hypothesis that the

components of ECM are different surrounding the MG acini,

ducts and the junctions between them. We have shown that

tenascin-C is junction-specific, and that the laminin α2 and β1

chains, as well as perlecan, are located around the acini and

junctions. The same collagen IV subtypes are expressed around

the entire MG.

A better understanding of the distribution of different ECM

components throughout the MG is very important for MG stem

cell research. Currently, no specific marker for MG stem cells

has been identified. We have previously located MG progenitor

cells at the basal layer of the acini (11). Compared to stem cells,

progenitors are often unipotent and more specific (29). It is

believed that the acinar and the ductal epithelia have distinct

progenitor cells. The differences in ECM protein distribution

may play a very important role in controlling the activation

of MG stem cells to produce more specific progenitor cells.

Within the epithelial stem cell niche, stem cells come into direct

contact with the ECM, which plays an important role in their

maintenance (16). Thus, identifying the major components of

the ECM, and drawing a map of their distribution, will increase

our understanding of MG physiology and function and, perhaps

ultimately, allow us to localize the MG stem cells. Because

the MG is a modified sebaceous gland, and there are many

similarities between MGs and the sebaceous glands within the

pilosebaceous unit (1), we chose to investigate some typical

markers surrounding both the sebaceous gland and the hair

follicle bulge.

The expression of tenascin-C at the junctions between the

MG acini and ducts is very interesting, because it is consistent

with the belief that the MG stem cells are located in this

region. Our findings are consistent with Milz et al.’s results,

which revealed that tenascin was unevenly distributed within

the tarsal plate and periglandular areas were often weakly

stained (30). The tenascin family is a group of glycoproteins in

the ECM (31). While tenascin-C is widespread in embryonic

tissues, its expression in adult tissues is restricted to specific

sites (31), primarily within stem cell niches (e.g., in the corneal
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limbus) (28, 32). Tenascin-C has been shown to regulate

stem/progenitor cell proliferation and differentiation during

organ morphogenesis, turnover and regeneration (28, 33). As

the interaction between ECM and stem cells is bidirectional, the

splicing, glycosylation and assembly of tenascin-C are regulated

by stem cells in the stem cell niche (21). Our observation

of tenascin-C differs from findings in other sebaceous glands,

possibly due to morphological differences between MGs and

hair–associated skin sebaceous glands (28, 34). However, the

staining we observed is similar to the localization of tenascin-

C within the bulge region of hair follicles, in which the stem cells

locate, increasing the likelihood that the MG stem cells will be

found at the junctional sites between acini and ducts (34). This

situation is also very similar to that of the salivary gland, in which

the stem cells are located at the intercalated duct that connects

the acinus with the proximal duct (35).

Another major difference in the composition of ECM

around MGs is that the laminin α2 and β1 chains and perlecan

are only found surrounding the acini and the junctional site.

Laminins are the defining component for BM (36). In the

epithelial niche, stem cells contact the BM directly, and laminins

play a very important role in their maintenance. There are

currently 16 different isoforms of laminin identified in the

human body: laminins 111 (i.e. α1β1γ1), 121, 211, 213, 221,

311, 312, 321, 332, 411, 421, 422, 423, 511, 521, and 523

(20). Our result shows that at least eight different kinds of

laminin may be present in the ECM around MG acini and

junctional sites, including laminins 111, 211, 213, 221, 311,

312, 411, and 511. Among these isoforms, laminin 511 has

been reported to play a very important role in hair follicle

morphogenesis (37). It has also been reported that laminin 511

promotes self-renewal in mouse embryonic stem cells in vitro

(38). Perlecan is a multifunctional heparan sulfate proteoglycan

in the BM. Perlecan participates in a variety of biological

activities, including modulating epithelial cell behavior, tissue

morphogenesis and metabolism (39–41). It has been reported

that perlecan is required for fibroblast growth factor receptor 2

signaling in the neural stem cell niche (42), which is important

for meibomian gland homeostasis in the adult mouse (43). Both

laminins and perlecan are associated with the regulation of cell

quiescence (44, 45). Thus, the distribution of laminin α2 and

β1 chains and perlecan may specify the localization of stem and

progenitor cells. Combined with the tenascin-C results, we think

the location of these markers indicates that the stem cells are

located at the junction, while the basal acinar region is likely to

be the location of acinar progenitor cells in the MG (8–11).

We did not identify a specific ECM marker located only

around the duct. Interestingly, the luminal surface of the duct

shows higher staining for K6 than any other part of the duct.

In our previous study, we identified K6 as a specific marker for

MG ducts (11). K6 has been found in some populations of the

luminal ductal cells in other glands (46). A population of K6-

positive cells in the prostate gland, which has a high potential for

proliferation and differentiation, is a possible candidate for stem

cells (47). The pronounced K6 staining in the MG may indicate

that this subpopulation of cells comprises the progenitor ductal

cells. Because of the similarities between stem and progenitor

cells, this may indicate that the previously-suggested “stem cells”

at the center of the duct are actually ductal progenitor cells

(48, 49).

Collagen IV, a major ECM component, regulates stem cell

renewal and tissue regeneration in vivo (50). We found that the

ECM around the human MG expresses four of the six collagen

IV α-chains. Because there are three distinct heterotrimers

(α1α1α2, α3α4α5, and α5α5α6), our results indicate that

collagen IV in human MG exists in the forms of α1α1α2 and

α5α5α6 (19). This result is consistent with observations in the

epidermis and sebaceous glands, in which the α3α4α5 chain is

also absent (25). We did not observe significant differences in

the distribution of the collagen IV subtypes around theMG. This

result is similar to previous studies in the salivary gland (51).

According to other researchers, the distribution of collagen IV

subtypes could change in labial salivary glands under diseased

conditions, such as Sjögren Syndrome (35). Because Sjögren

Syndrome also impacts MGs and causes MGD (52), it is possible

that similar changes could be observed in the MG in Sjögren

Syndrome patients. Further studies in this area may help better

understand the pathophysiology of MGD.

The results of the mouse tissue samples are also very

interesting. The mice at P2 did not have any MG acini or

ducts in their fused eyelids; by P15, they showed mature

MG morphology. This morphological development process

of mice in our study is consistent with the observations

of other researchers (53). The mouse samples with mature

MG morphology showed collagen IV subtype distribution

similar to humans. It appears that the collagen IV does

not deposit before the mature MG is formed. Because of

the origins of the antibodies, the mouse samples showed

high background staining with laminin, tenascin-C, perlecan,

agrin and Endostatin antibodies. Thus, we did not draw any

conclusion from those data. Future studies with mouse samples

are needed. Besides ECM scaffold component, ECM-bound

biomolecules are also key component responsible for regulating

cells fate (54). Studies in hematopoietic stem cells reported

signals from ECM, ECM-bound or diffusible biomolecules could

trigger stem cell fate specification events (55, 56). While our

study had focused on the scaffold component of ECM, such

ECM-bound biomolecules may need future research to identify

in the human MG.

In conclusion, our study draws a primary map for the

distribution of different components of the ECM around MGs.

The discovery of the differences in the ECM surrounding MG

structures sheds light on locating the MG stem cells. Because

of the close relationship between the ECM and cell fate and

function, the identification of the key components in the MG

ECM could help us understand the biology and pathophysiology
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of the tissue. It will also help us to develop in vitro culture

conditions more closely linked to the in vivo state.
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