
Research Article
Identification of Key Genes of Prognostic Value in Clear Cell
Renal Cell Carcinoma Microenvironment and a Risk Score
Prognostic Model

Enfa Zhao 1 and Xiaofang Bai 2

1Department of Structural Heart Disease, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
2Department of Ultrasound Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China

Correspondence should be addressed to Xiaofang Bai; baixiaofang66@stu.xjtu.edu.cn

Received 2 March 2020; Revised 10 July 2020; Accepted 17 August 2020; Published 4 September 2020

Academic Editor: Stamatios E. Theocharis

Copyright © 2020 Enfa Zhao and Xiaofang Bai. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Objective. We aimed at identifying the key genes of prognostic value in clear cell renal cell carcinoma (ccRCC) microenvironment
and construct a risk score prognostic model. Materials and Methods. Immune and stromal scores were calculated using the
ESTIMATE algorithm. A total of 539 ccRCC cases were divided into high- and low-score groups. The differentially expressed
genes in immune and stromal cells for the prognosis of ccRCC were screened. The relationship between survival outcome and
gene expression was evaluated using univariate and multivariate Cox proportional hazard regression analyses. A risk score
prognostic model was constructed based on the immune/stromal scores. Results. The median survival time of the low immune
score group was longer than that of the high immune score group (p = 0:044). Ten tumor microenvironment-related genes
were selected by screening, and a predictive model was established, based on which patients were divided into high- and low-
risk groups with markedly different overall survival (p < 0:0001). Multivariate Cox analyses showed that the risk score
prognostic model was independently associated with overall survival, with a hazard ratio of 1.0437 (confidence interval:
1.0237–1.0641, p < 0:0001). Conclusions. Low immune scores were associated with extended survival time compared to high
immune scores. The novel risk predictive model based on tumor microenvironment-related genes may be an independent
prognostic biomarker in ccRCC.

1. Introduction

Renal cancer, the most common lethal genitourinary can-
cer, accounts for up to 2–3% of all adult malignancies
worldwide [1]. Clear cell renal cell carcinoma (ccRCC) is
the most common pathological subtype, accounting for
approximately 65–70% of renal neoplasms [2]. It is a rela-
tively low-grade cancer, and patients are generally asymp-
tomatic in the early stages. Symptoms are obvious when
tumor volume is large and the cancer has reached the
advanced stages [3]. With rapid advancements in clinical
diagnosis as well as treatment strategies, the overall survival
rate of ccRCC patients has increased. However, due to a delay
in diagnosis, and local or distant metastasis, the overall sur-
vival of 30% of the newly diagnosed ccRCC patients, who

present with metastasis at the time of diagnosis, is approxi-
mately 13 months [4, 5]. Currently, prognosis is based on
the pathological stage and grade of cancer in patients with
renal cancers [6]. Despite significant advances in early detec-
tion, surgery, and medical treatment, the prognosis of ccRCC
remains unsatisfactory. Therefore, more effective biomarkers
and therapeutic targets are urgently needed.

It is widely known that tumor tissues consist of tumor
cells as well as tumor-related normal epithelial, immune,
stromal cells, and vascular cells [7]. In ccRCC, cells in the
tumor microenvironment (TME) promote growth and
metastasis of tumor cells and suppress the immune system
via several elaborate mechanisms [8]. Constituents of the
TME include tumor cells, immune cells, and various types
of stromal cells; their interactions have a significant effect
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on treatment response and disease prognosis. TME also sig-
nificantly influences carcinogenesis, gene expression in the
cancer tissues, and clinical prognosis [7, 9–11]. TME cells
constitute important components of the cancer tissue. TME
is the cellular milieu where the tumor is located. Tumors
are usually formed by aggregates of various tumor cell types,
and immune and stromal cells, which constitute the two
main nontumor cell types in the TME [12, 13]. To quantify
the cellular composition of the TME, an algorithm called
ESTIMATE (Estimation of Stromal and Immune cells in
Malignant Tumor tissues using Expression data) was used
to determine the composition of immune and stromal cells
in tumor samples [7]. ESTIMATE is a tool that predicts
tumor purity and the level of infiltrating immune/stromal
cells in tumor tissues using gene expression data. ESTIMATE
scores are significantly related to tumor purity in various can-
cer samples. In this algorithm, immune and stromal cell
levels were chosen to predict the infiltration of nontumor
cells by analyzing their specific gene expression signatures.
Stromal score indicates the presence of stroma in the tumor
tissue, while the immune score indicates the infiltration of
immune cells in tumor tissue; the estimated score indicates
tumor purity. A positive correlation was reported between
immune and stromal scores, and samples with high tumor
purity showed low immune and stromal scores [7]. Previous
studies have used the ESTIMATE algorithm to evaluate the
prognostic value of immune and stromal cells in several can-
cers [14–16]. The TME is increasingly being considered to
play a vital role in tumor growth. Therefore, understanding
the components of stromal and immune microenvironments
may contribute to improve prognosis and customized thera-
pies. However, whether TME contributes to ccRCC survival
has not been well studied. In this study, we aimed at identify-
ing key TME-related genes of prognostic value in ccRCC and
generate a risk score prognostic model.

2. Materials and Methods

Level 3 raw microarray mRNA expression data pertaining to
539 ccRCC samples were downloaded from the TCGA data-
base (https://portal.gdc.cancer.gov/repository) on April 3,
2019. The clinicopathological data of 537 tumor patients,
including sex, age, clinical stage, T-stage, lymph node involve-
ment, survival outcome, and survival (duration in days) were
also downloaded and reorganized for further analysis. ESTI-
MATE is known to predict the immune and stromal scores
of cells by performing single sample Gene Set Enrichment
Analysis (ssGSEA), which forms the basis of the ESTIMATE
score [17, 18]. The scores for all TCGA tumor types are avail-
able online in the MD Anderson Cancer Center website
(https://bioinformatics.mdanderson.org/estimate/). Stromal
and immune scores of each ccRCC sample were determined
by using the ESTIMATE algorithm using the estimate pack-
age provided on R-Forge for all tumor samples [7].

2.1. Identification of Differentially Expressed Genes (DEGs).
We categorized all patients into high and low-score groups
according to their median immune/stromal scores. The
limma package in R software with multiple testing correc-

tions based on the Benjamini and Hochberg method was
employed to screen the DEGs [19]. The criteria for screening
of upregulated DEGs were defined as log2FC > 1 and
adjusted p value < 0.05, while that for downregulated DEGs
were defined as log2FC < −1 with adjusted p value < 0.05.
For comparison based on immune and stromal scores,
upregulated and downregulated genes were identified for
both. Lastly, the common upregulated and downregulated
DEGs in the stromal and immune score groups were identi-
fied using an online Venn diagram and defined as upregu-
lated and downregulated DEGs.

2.2. Overall Survival Curve. Kaplan-Meier plots, tested using
the log-rank method, were used to establish a potential rela-
tionship between prognostic values and gene expression
levels of the identified DEGs between the high and low
immune/stromal score groups in patients.

2.3. Construction of the Risk Score Prognostic Model in the
Training Cohort. The genes tested using the Kaplan-Meier
plots with a p value < 0.05 were considered for further anal-
ysis. A total of 530 patients with complete clinical informa-
tion and mRNA expression data were enrolled in the study.
We first randomly assigned 264 patients to the training
cohort, while the entire TCGA cohort was used as the valida-
tion cohort. Next, a total of 43 genes associated with overall
survival were subjected to further selection using univariate
Cox proportional hazard regression analysis in the training
cohort. Only genes with a p value < 0.05 were regarded as
possible variables and used in multivariate Cox regression
analysis to build the risk predictive model.

Risk score = ‐ Exprgene−1 × Coefgene−1
� �

+ ‐ Exprgene−2 × Coefgene−2
� �

+ ‐ Exprgene−n × Coefgene−n
� �

,

ð1Þ

where Expr is the expression level of gene and Coef is the
regression coefficient derived from the multivariate Cox
regression model.

Each patient was assigned a risk score according to the
above risk predictive model. Patients were then further
divided into high- and low-risk groups using the median
value as the cutoff point. Time-dependent receiver operating
characteristic (ROC) curve analysis was performed to deter-
mine the power of the predictive model.

2.4. Enrichment Analysis of the DEGs. To identify the poten-
tial gene ontology (GO) categories by their biological pro-
cesses (BP), molecular functions (MF), cellular components
(CC), and to determine the Kyoto Encyclopedia of Genes
and Genomes (KEGG) signaling pathways associated with
all the upregulated and downregulated DEGs, clusterProfiler
and DOSE package in Bioconductor (https://bioconductor
.org/) were used to perform GO and KEGG pathway analy-
ses. Results of the GO and KEGG analyses were regarded as
statistically significant at p < 0:05.
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3. Results

3.1. Summary of Immune and Stromal Scores from ccRCC
Patients. A total of 539 mRNA profiles and 537 clinical infor-
mation data pertaining to ccRCC patients were downloaded
from the TCGA database. Among patients, 336 (62.57%)
patients were <65 years old and 201 (37.43%) were ≥65 years
old. A total of 191 (35.57%) patients were females and 346
(64.43%) were males. The mean follow-up time was 3.11
years. During the mean follow-up time, 82 of the total 264
patients in the training cohort and 166 of 530 patients
(TCGA entirely) in the validation cohort died. There was
no statistical difference with respect to overall survival
(p = 0:938) between cohorts. With respect to the clinical-
pathological stage, 265 patients were in stage I, 57 in stage
II, 123 in stage III, and 82 in stage IV; the staging of three
patients was unknown (Table 1). Based on the ESTIMATE
algorithm mentioned above, the immune scores ranged
between -693.95 and 3328.21 (with a median of 1604.4),
and the stromal scores ranged between -1433.77 and
1967.19 (with a median of 728.66). The 537 ccRCC patients
in the study were classified into low and high immune/stro-
mal score groups using their median immune/stromal scores
as cutoff points. Kaplan-Meier survival curve of the immune
scores revealed that the median survival time of the high-
score group was associated with shorter survival time than
that of the low-score group (p = 0:044), as evidenced by
log-rank test (Figure 1(a)). Similarly, the Kaplan-Meier sur-
vival curve of stromal scores revealed that the high-score
group was associated with shorter median survival time than
that of the low-score group (although the difference was
not statistically significant), as indicated by log-rank test
(p = 0:258; Figure 1(b)). Furthermore, the average immune
score of stage IV patients ranked highest among all stages,
followed by stages III and II. Stage I patients received the low-
est immune scores, as revealed by the Wilcoxon signed-rank
test (Figure 1(c)). Although the results were statistically sig-
nificant, there was a significant overlap in the median values
as well as the range of the immune scores among the four
groups of tumor stages. Moreover, these differences were
only marginally significant, and therefore the results must
be interpreted cautiously. However, this association was not
found in the stromal scores (Figure 1(d)).

3.2. Gene Expression Profiles in the Stromal and Immune
Score Groups of ccRCC Patients. A total of 512 upregulated
and 147 downregulated DEGs were identified in the immune
score group, while 259 upregulated and 152 downregulated
DEGs were identified in the stromal score group. Further-
more, Venn diagrams revealed that 48 upregulated genes
and 47 downregulated genes were common between the
two high-scores groups (Figures 2(a) and 2(b)). To investi-
gate the potential biological functions of the 95 identified
DEGs, KEGG pathway enrichment and GO functional anal-
yses were performed. The top GO terms identified included
humoral immune response, cell chemotaxis, chemokine
activities, cytokine-cytokine receptor interaction, and pri-
mary immunodeficiency (Figures 2(d) and 2(d)).

3.3. Identification of the Effect of the Individual DEGs on
Overall Survival. To explore the potential roles of the 95 iden-
tified DEGs in overall survival, Kaplan-Meier survival curves
were used to establish the potential relationship between the
prognostic roles and gene expression levels. Among the 95
DEGs, a total of 43 DEGs (Supplementary Table S1) were
found to be significantly related to overall survival in the
log-rank test.

3.4. Establishment of Risk Score Prognostic Model. Univariate
Cox regression analysis demonstrated that 33 DEGs were
significantly associated with overall survival (p < 0:05)
among the 43 DEGs. To construct a predictive model with
optimal efficacy and sufficient information, the 33 candidate
genes, including APCDD1L, GJB6, CASP5, SLN, HSD11B1,

Table 1: Clinical characteristics of patients in the training and
validation cohorts.

Variables
Train cohort
(N = 264)

Validation cohort
(N = 530)

p
value

Age (years) 60:19 ± 11:83 60:56 ± 12:14 0.6834

Gender
(female vs. male)

0.6476

Female 97 186

Male 167 344

Grade 0.9749

I 9 14

II 110 227

III 105 206

IV 36 75

Unknown 4 8

Stage 0.9768

I 132 265

II 25 57

III 62 123

IV 43 82

Unknown 2 3

T classification 0.9619

T1 136 271

T2 31 69

T3 91 179

T4 6 11

M classification 0.8932

M0 206 420

M1 40 78

Unknown 18 32

N classification 0.6492

N0 111 239

N1 10 16

Unknown 143 275

Survival status 0.9383

Dead 82 166

Alive 182 364
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PPARGC1A, ZPLD1, SLC22A12, SLC22A6, HMGCS2,
CPA4, ADGRV1, GPAT3, PAEP, MZB1, RORB, IGLL5,
OGDHL, AQP9, LDHD, FDCSP, HSD11B2, TNFSF13B,
FREM1, FCRL5, POU2AF1, MUC20, VSIG4, RAP1GAP,
MIXL1, GREM1, PAH, and SLC22A8, were fitted into a mul-
tivariable Cox proportional hazards regression analysis in the
training cohort. Ten survival-related genes displayed a signif-
icant prognostic value for ccRCC. We then constructed a
prognostic signature based on the expression levels of these
ten genes and their coefficients derived from the multivari-
able Cox model. The risk score prognostic model was com-
puted as follows: Risk score = (−3.1648∗ expression value
of ADGRV1)+ (0.2204∗ expression value of APCDD1L)+
(0.3514×∗ expression value of GREM1)+ (0.5583∗ expres-
sion value of GJB6) + (0.4944∗ expression value of MZB1)
+ (−1.1655∗ expression value of POU2AF1) + (0.2392∗ ex-
pression value of RAP1GAP) + (0.1515∗ expression value of
PAEP)+ (1.2305∗ expression value of MIXL1) + (−0.3431∗
expression value of PPARGC1A). This equation clearly dem-
onstrated that APCDD1L, GREM1, GJB6, MZB1, RAP1-
GAP, PAEP, and MIXL1 constituted risk factors for ccRCC
prognosis (coefficient > 0), while ADGRV1, POU2AF1, and
PPARGC1A constituted protective factors (coefficient < 0).

The value of their respective coefficients indicated the extent
of their impact on survival prediction. MIXL1 presented the
highest risk, while ADGRV1 had the most protective effect.
Patients with a ten-gene signature risk score higher than
the median risk score were classified as high-risk, while those
with a risk score lower than the median risk score were clas-
sified as low-risk. The Kaplan-Meier overall survival curve of
the high-risk group was significantly lower than that of the
low-risk group (log-rank p < 0:0001; Figure 3(a)). Univariate
analysis revealed that the ten-gene signature correlated sig-
nificantly with poor overall survival (hazard ratio [HR]:
1.0509; 95% confidence interval [CI]: 1.0283–1.0740; p <
0:0001). Multivariate Cox analyses showed that the ten-
gene signature remained independently associated with over-
all survival, with an HR of 1.0437 (CI: 1.0237–1.0641, p <
0:0001), along with age, grade, and stage (Table 2), revealing
that the risk score prognostic model may be an independent
predictor of overall survival. Furthermore, to estimate the
prognostic risk score model for 3 and 5 years, the area under
the receiver operating characteristic (ROC) curve (AUC) was
calculated. As shown in Figure 3(b), the AUC of the ten-gene
model for survival prediction was 0.748 at 3 years of overall
survival and 0.756 at 5 years of overall survival. The
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Figure 1: Immune and stromal scores, and their relationship with overall survival. (a) Patients were divided into two groups based on their
immune scores: 267 cases presented high immune scores and 263 presented low immune scores; (b) Patients were divided into two groups
based on their stromal scores: 264 cases presented high stromal scores and 266 presented low stromal scores. (c) Distribution of immune
scores in patients in stages I, II, III, and IV of clear cell renal cell carcinoma. (d) Distribution of stromal scores in patients in stages I, II,
III, and IV of clear cell renal cell carcinoma.
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Figure 2: Gene expression profile with stromal and immune scores patients with clear cell renal cell carcinoma. (a) Venn diagrams indicating
the number of upregulated DEGs in the stromal and immune score groups; (b) Venn diagrams revealing the number of downregulated DEGs
in the stromal and immune score groups; (c) Top ten gene ontology terms of the 95 differentially expressed genes; (d) KEGG analysis of the 95
differentially expressed genes.
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Figure 3: Prognostic value of the ten gene signature in the training cohort of patients with clear cell renal cell carcinoma patients. (a) Kaplan-
Meier risk survival curve of high- and low-risk patients grouped according to median risk score; (b) Receiver operating characteristic curve
analysis of 3-year and 5-year overall survival of the ten-gene signature; (c) Distribution of survival status, risk score, and gene expression level
in patients with clear cell renal cell carcinoma. Patient subgroups with high and low-risk scores were classified using the optimal cutoff value.
Dotted line indicates the cutoff point of the median risk score used to categorize patients into low- and high-risk groups.

6 Disease Markers



distribution of risk score, survival status, and ten-gene signa-
ture expression of individual patients was further analyzed.
Patient subgroups with high and low-risk scores were classi-
fied using the optimal cut-off. An increased risk score was
associated with higher patient death rate (Figure 3(c)).

3.5. Validation of the Risk Score Prognostic Model in TCGA
Cohort. To test the robustness of the prediction power of
the ten-gene signature, we extended the testing to the TCGA
validation cohort entirely. The risk score of each patient in
the validation cohort was calculated based on the expression
value of the ten-gene signature and was divided into the high-
or low-risk groups according to the cutoff point of the
median risk score (0.8768) derived from the training cohort.
Using the same risk score model and cutoff point, 230
patients were classified into the low-risk group and 300
patients were classified into the high-risk group. Kaplan-
Meier survival curves of the two groups based on the ten-
gene signature were notably different in the validation
cohort. Patients in the high-risk group had obviously shorter
overall than those in the low-risk group (p < 0:0001,
Figure 4(a)). By calculating the AUC of the ROC curve of
the risk score, we could predict the 3-year and 5-year survival
rates of patients with ccRCC (0.666 for 3 years and 0.658 for 5
years; Figure 4(b)). Distribution of the ten-gene signature
risk scores, expression pattern of prognostic signature, and
survival status are shown in Figure 4(c) and are consistent
with findings in the training cohort. Combining the results
of the training and total cohorts, the ten-gene signature was
demonstrated to be an effective independent prognostic bio-
marker in patients with ccRCC.

4. Discussion

Increasing evidence has revealed a close interplay between
the tumor and nontumor components that contribute to
increased angiogenesis, invasion, progression, and metastasis
in several tumors, such as pancreatic, breast, and lung can-
cers, and glioblastoma [20–23]. Stromal and immune micro-
environments suppress the tumor and prevent the metastasis
as well as permeability of several drugs into the tumor [24].
The tumor microenvironment can stimulate angiogenesis
and tumor cell survival, resulting in poor prognosis [25,

26]. Our study results were consistent with previous findings
and revealed an association between immune and stromal
microenvironments and tumor progression. These mecha-
nisms have not been completely explored and warrant future
investigations.

In this study, we aimed at determining the role of TME-
related genes in the overall survival in ccRCC based on the
TCGA database. We classified all patients with ccRCC into
low and high immune score groups based on their median
immune scores. The Kaplan-Meier survival analysis revealed
that the median survival time of the high immune score
group was shorter than that of the low-score group, indicat-
ing that TME-related immune cells can be used to catego-
rized patients into high and low-score groups with notably
different overall survival. This finding was inconsistent with
the previous view that tumor immunity suppresses tumor
cells. The TME is a mixture of fluids, stromal cells, immune
cells, extracellular matrix molecules, and numerous cytokines
and chemokines, coupled with their significant interactions.
However, cells and molecules in this environment are in a
dynamic state and contribute to tumor immune evasion,
tumor growth, and metastasis, thereby showing the evolu-
tionary nature of tumors [8]. TME-induced metabolic stress
on infiltrating immune cells can result in local immunosup-
pression and limited reinvigoration of antitumor immunity
and lead to impaired antitumor immune responses [27].

TME is a factor that drives the carcinogenesis of various
cancers. In pancreatic adenocarcinoma (PAAD), high- and
low-immune score groups were identified using the ESTI-
MATE score. Kaplan-Meier curves revealed significantly
worse survival of patients with high-risk scores in both the
training and validation groups [15]. Higher scores were asso-
ciated with worse survival outcomes for immune scores
(p = 0:0167), stromal scores (p = 0:0035), and ESTIMATE
scores (p = 0:0190) in lower-grade glioma [14]. The potential
prognostic value of immune and stromal scores in stomach
adenocarcinoma has been confirmed. High stromal and
immune scores were reported to be associated with poor
overall survival (p = 0:0032 and p = 0:05, respectively). The
estimated score was also related to overall survival
(p = 0:0359) [16]. In ccRCC, a higher immune score was
associated with shorter overall survival (p = 0:04), and a close
association was reported between immune scores, clinical

Table 2: Univariate andmultivariate analysis of the correlation of the ten-gene signature with overall survival in clear cell renal cell carcinoma
patients.

Univariate analysis Multivariate analysis
Parameter HR 95% CI p value HR 95% CI p value

Age 1.0328 1.0191-1.0468 2.29E-06 1.0344 1.0190-1.0501 1.02E-05

Gender 0.9311 0.6754-1.2836 0.6629 0.9577 0.6893-1.3305 0.796641

Grade 2.2931 1.8541-2.8360 1.94E-14 1.4751 1.1610-1.8743 0.001465

Stage 1.8888 1.64882.1637 4.67E-20 1.7651 1.1269-2.7646 0.013065

T 1.9414 1.6393-2.2991 1.50E-14 0.8648 0.5744-1.3022 0.486758

M 4.2835 3.10575.9080 7.45E-19 1.2009 0.6127-2.3538 0.593805

Ten-gene signature 1.0509 1.0283-1.0740 7.71E-06 1.0437 1.0237-1.0641 1.48E-05

Bold values indicate p < 0:05; HR: hazard ratio; CI: confidence interval.
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Figure 4: Prognostic value of the risk score prognostic model based on ten immune-related genes in the entire TCGA cohort of patients with
clear cell renal cell carcinoma. (a) Kaplan-Meier risk survival curve of high- and low-risk patients grouped according to median risk score; (b)
Receiver operating characteristic curve analysis of 3-year and 5-year overall survival of the ten-gene signature; (c) Distribution of survival
status, risk score, and gene expression level in patients with clear cell renal cell carcinoma. Patient subgroups with high- and low-risk
scores were classified by the optimal cutoff value. The dotted line indicates the cutoff point of the median risk score used to categorize
patients into low- and high-risk groups.
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characteristics, as well as prognosis in ccRCC [28]. These
data indicate that TME plays an important role in tumori-
genesis and prognosis.

KEGG pathway enrichment and GO functional analyses
of these genes revealed that they were mainly involved in
humoral immune response, cell chemotaxis, chemokine
activities, cytokine-cytokine receptor interaction, and pri-
mary immunodeficiency. We also performed a Kaplan-
Meier analysis of these genes and identified 33 immune-
related genes that were associated with different outcomes
in patients with ccRCC. Of these, several genes including
CASP5, RAP1GAP, and GREM1 have been reported to be
involved in the pathogenesis of renal cancer or significant
in predicting overall survival, suggesting that the present
analysis using the TCGA database has potential prognos-
tic value [29–32]. Further, using univariate and multivar-
iate Cox proportional hazard regression analysis, a ten
immune-related gene risk score prognostic model was estab-
lished. The Kaplan-Meier overall survival of the risk score
prognostic model in the high-risk group was significantly
shorter than that in the low-risk group, revealing that the risk
score prognostic model based on immune-related genes may
be an independent predictor of overall survival. The prognos-
tic power of the risk score model was evaluated by calculating
the AUC of the ROC curve. Higher AUC demonstrates good
model performance. The AUC for the ten-gene model for
survival prediction was 0.703 at 3 years of overall survival
and 0.715 at 5 years of overall survival. The performance of
the prognostic model was further confirmed in the entire
cohort, revealing its superior performance in predicting
ccRCC patient survival.

Several limitations of the study need to be noted. First,
the TME signature was analyzed and validated only in the
TCGA data set, and no other ccRCC-related expression pro-
files including prognostic clinical information were available
for further validation. Second, no experimental data were
obtained. Further experimental studies are needed to improve
our understanding of the functional role of immune-related
genes in ccRCC.

5. Conclusion

Based on a comprehensive analysis of TME-related genes,
our results indicate that the assessment of the immune and
stromal status using the TME signature is an optimal predic-
tor of survival in ccRCC patients. The novel risk predictive
model proposed in this study constitutes an effective inde-
pendent prognostic biomarker in patients with ccRCC. These
findings have promising clinical implications for improving
the outcome prediction for ccRCC patients contingent upon
future validation.
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