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This paper introduces a novel exoskeleton active walking assistance control framework

based on frequency adaptive dynamics movement primitives (FADMPs). The FADMPs

proposed in this paper is an online learning and prediction algorithm which is able to

online estimate the fundamental frequency of human joint trajectory, learn the shape of

joint trajectory and predict the future joint trajectory during walking. The proposed active

walking assistance control framework based on FADMPs is a model-based controller

which relies on the human joint torque estimation. The assistance torque provided by

exoskeleton is estimated by human lower limb inverse dynamics model which is sensitive

to the noise in the joint motion trajectory. To estimate a smooth joint torque profile, the

joint motion trajectory must be filtered first by a lowpass filter. However, lowpass filter

will introduce an inevitable phase delay in the filtered trajectory. Both simulations and

experiments in this paper show that the phase delay has a significant effect on the

performance of exoskeleton active assistance. The active assistant control framework

based on FADMPs aims at improving the performance of active assistance control by

compensating the phase delay. Both simulations and experiments on active walking

assistance control show that the performance of active assistance control can be further

improved when the phase delay in the filtered trajectory is compensated by FADMPs.

Keywords: exoskeleton, DMPs, active walking assistance, frequency estimation, motion learning, motion

prediction

1. INTRODUCTION

Since the 1960s, the United States General Electric Company launched the world’s first full-body
exoskeleton robot Hardiman (Mosher, 1967), exoskeleton robot has gradually became a hot
research direction of robotics. Exoskeleton robot is a typical man-machine coordinated control
system. The core of this system is the humanwho provides intelligent decision for the whole system.
Exoskeleton provides power assistance for the human body. By combining human intelligence
with the powerful assistance of the exoskeleton, the exoskeleton can accomplish some tasks
that cannot be completed by the conventional robots, such as individual combat, disaster relief,
and rehabilitation.

After entering the 20th century, the progress of science and technology has promoted
the rapid development of exoskeleton, and many research achievements have emerged
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(Kalita et al., 2020). At present, according to the different
application and users, exoskeletons can be roughly divided
into three categories: load carrying exoskeleton (Fontana et al.,
2014), motion assistance exoskeleton (Witte et al., 2020), and
rehabilitation exoskeleton (Jamwal et al., 2020). Themain control
target and strategies for the three kinds of exoskeleton are
different (Kalita et al., 2020). The control target of load carrying
exoskeleton is to offset loads and follow the human motion.
In order to achieve these goals, the dynamics of loads and
exoskeletons should be totally or partially compensated by
exoskeleton and the interaction force/torque between human
and exoskeleton should be controlled as small as possible.
Sensitivity amplification control (SAC) (Kazerooni et al., 2005;
Huang et al., 2018, 2019) is a typical control strategy for
load carrying exoskeleton. For rehabilitation exoskeleton, the
main control target is to drive the patient’s paralyzed limb
to follow a predefined trajectory for rehabilitation purpose.
Both of the dynamics of exoskeleton and patient’s limb should
be fully compensated by the exoskeleton. The predefined gait
trajectory control is a common control strategy for rehabilitation
exoskeleton (Quintero et al., 2011; Esquenazi et al., 2012;
Lu et al., 2014). Being different from the load carrying
exoskeleton and rehabilitation exoskeleton, themotion assistance
exoskeleton aims at reducing the user’s muscle activity and
metabolic cost during motion. Therefore, active assistance
control strategy should be used to completely compensate the
dynamics of exoskeleton and partially compensate the dynamics
of human limb.

The main difficulty in active assistance control is how to
provide positive work to the user while ensuring the initiative
of user. Hence, estimating the user’s motion intention is the
first important step of active assistance control. The most
direct way to detect the user’s intention is to measure the
biosignals, such as electromyogram (EMG) (Zeng et al., 2020),
electroencephalogram (EEG) (Ortiz et al., 2020), and muscle
stiffness (Chao et al., 2018). And based on these biosignals
some active assistance control strategies have been proposed
including proportional EMG based control (Young et al., 2017;
Lorenzo et al., 2018), EEG based control (Al-Quraishi et al.,
2018), and muscle stiffness control (Kim et al., 2013). However,
due to the high sensitivity of the electrode position, muscle
fatigue, sweat, and the deformation of skin, the biosignal based
active assistance control strategy is not widely used in the real
application. To avoid the above drawbacks of biosignals, some
non-biosignal based active assistance control strategies have been
proposed, such as gait phase based control (Asbeck et al., 2015),
integral admittance shaping control (Nagarajan et al., 2016),
motor primitive based control (Ruiz Garate et al., 2017), hybrid
assisted control (Oh et al., 2015), admittance control (Liang and
Hsiao, 2020), and adaptive oscillator based control (Seo et al.,
2015). Integral admittance shaping control and motor primitive
based control are model-based control strategies relying on
the human-exoskeleton interaction model and musculoskeletal
model, respectively. These two control strategies are highly
depending on the model parameters which should be precisely
estimated for the different user and exoskeleton. The complicated
parameter identification process make these control strategies

inconvenient to be used in daily life. Therefore, more and more
researches are trying to find a kind of active assistance controller
that is capable for self-adaption and self-learning (Young and
Ferris, 2017).

Adaptive oscillator (AO) based control (Ronsse et al., 2010)
is a promising active assistance control framework which can
online learn and adapt to the features (frequency components,
amplitudes and phases) of a periodic joint trajectory during
walking, and provide effective assistance torque to the user’s limb
joints without a user-specific calibration (Ronsse et al., 2011). The
basic ideal of AO is establishing a pool of adaptive oscillators
to learn the fundamental frequency of input signal and then
constructing a supervised learning problem to learn the profile
of input signal (Ronsse et al., 2011). But there are two drawbacks
existed in AO: (1) the initial frequency of each oscillator will
determine whether the AO can convergent to the fundamental
frequency of input signal (Seo et al., 2018); (2) if the amplitude
of input signal changes, AO will take a significant amount of
time to converge to the new amplitude (Chinimilli et al., 2019).
Therefore, to enhance the convergence of AO, a particularly-
shaped adaptive oscillator (PSAO) (Seo et al., 2018) was proposed
to make AO less dependent on the initial parameters. And to
make AO converge rapidly to the varying amplitude of input
signal, an amplitude omega adaptive oscillator (AωAO) was
proposed in Chinimilli et al. (2019).

In this paper, to avoid the drawbacks of AO, a novel
frequency adaptive dynamics movement primitives (FADMPs)
and an active assistance control framework based on FADMPs
are proposed. FADMPs is able to online predict a smooth joint
trajectory without phase delay, which is benefit for improving the
performance of active walking assistance of exoskeleton. There
are three advantages in the proposed control framework, which
are follows:

1. the frequency of human limb joint trajectory can be precisely
online estimated and adapted by FADMPs algorithm, the
initial parameters of FADMPs and the sudden change of
walking frequency andmotion amplitude have no effect on the
results of frequency estimation;

2. the profile of human limb joint trajectory can be online
learned and predicted. And the phase compensation has little
effect on the profile of the predicted trajectory of FADMPs;

3. the active walking assistance control framework based on
FADMPs is suitable for both stable and unstable gaits. It is
able to automatically choose active assistance mode based on
walking frequency. When human walks in a stable frequency
the exoskeleton will work in an assistance mode. And if
walking frequency is unstable exoskeleton will work in a
transparent mode.

The rest of this paper is organized as follows: the related works
on human motion trajectory online learning and prediction are
discussed in section 2. The derivation FADMPs and the active
assistance control framework based on FADMPs are proposed
in section 3. The simulation results of the proposed control
framework are shown in section 4. The experiment results of
active assistance control are discussed in section 5. Section 6
concludes this paper.
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2. RELATED WORK

2.1. Adaptive Frequency Oscillator (AFO)
AFOwere invented in Righetti et al. (2006) using some oscillators
in parallel to learn the frequency component of the input
signal. The learning process of AFO is a kind of real-time
Fourier decomposition. The dynamics of AFO is given by the
following equations:











































φ̇i(t) = ωi(t)− υe(t)sinφi(t)

ω̇i(t) = −υe(t)sinφi(t)

α̇i(t) = ηcosφi(t)e(t)

e(t) = θ(t)− θ̂(t)

θ̂(t) =

K
∑

i=0

αi(t)cosφi(t)

(1)

where φi is the phase of oscillator i, ωi is the frequency of each
oscillator, K is the total number of oscillators, αi is the amplitude
of each oscillator, η is the integrator gain, υ determines the speed
of phase synchronization to the input signal θ(t), θ̂(t) is the
weighted sum of oscillators.

The basic idea of AFO is using a feedback structure to make
each oscillator converge to the frequency components of the
input signal. However, the initial frequency ωi(0), amplitude
αi(0), and phase φi(0) of each oscillator have significant effect
on the convergence of oscillator. If the initial parameters of each
oscillator are set inappropriate, the frequency of oscillator may
not converge to the frequency components of the input signal
and the frequency of oscillator may even become negative (Gams
et al., 2009).

2.2. Adaptive Oscillator (AO)
To improve the convergence of AFO, AOwas proposed in Ronsse
et al. (2011) based on the assumption that the input signal is
periodic. Hence, AO only learns the fundamental frequency of
the input signal. The dynamics of AO can be given by the
following equations:











































φ̇i(t) = iω(t)+ υe(t)cosφi(t)

ω̇(t) = υe(t)cosφ1(t)

α̇i(t) = ηsinφi(t)e(t)

e(t) = θ(t)− θ̂(t)

θ̂(t) =

K
∑

i=0

αi(t)sinφi(t)

(2)

Comparing (2) and (1) we can find that the main difference
between AO and AFO is that all oscillators share the same
fundamental frequency ω. Hence, only the initial value of the
fundamental oscillator [ω(0)] needs to be set. However, the
initial value of the phase and amplitude of each oscillator
[φi(0),αi(0)] can still affect the convergence of AO. To make AO
less depend on the initial values, a particularly-shaped adaptive
oscillator (PSAO) was proposed in Seo et al. (2018). Being
different from AO, the basic function of PSAO was established

by a nominal pattern function of input signal, therefore with
the guidance of nominal pattern function the oscillators can
converge more quickly to the fundamental frequency of input
signal. But the nominal pattern needs to be recorded by walking
experiments in advance, and PSAO needs walking pattern
classification algorithm to choose right nominal pattern function.
To improve the convergence speed of AO when the walking
amplitude suddenly changed, an amplitude omega adaptive
oscillator (AωAO) was proposed in Chinimilli et al. (2019).
AωAO algorithm firstly calculates the amplitude and frequency
of human motion, and then uses support vector machine (SVM)
and discrete hidden Markov model (DHMM) to determine
whether the movement pattern of the human body has changed.
When the change of human motion pattern is detected, the AO
algorithm can converge to the amplitude and frequency of the
new motion pattern faster by reinitializing the AO parameters.
However, the accuracy of human motion pattern recognition
based on SVM and DHMM is 95.2%, so it is still possible that the
AO parameters cannot be reinitialized correctly because of the
motion pattern recognition error. Although PSAO and AωAO
algorithm can reduce the dependence on the initial setting of the
oscillator, they still cannot completely get rid of the influence of
the initial value of the algorithm and the sudden change of human
motion pattern.

In order to avoid the problems existing in AO algorithm,
this paper proposes a frequency adaptive dynamics movement
primitive (FADMPs) algorithm. Instead of using multiple
oscillators to learn the input signal, FADMPs learns and predicts
the input signal based on dynamics movement primitives
(DMPs). FADMPs can completely avoid the convergence failure
caused by the improper setting of the initial parameters. In
addition, FADMPS algorithm can quickly converge to the new
amplitude, frequency and phase of the input signal when the
human motion changes. And FADMPS can also conveniently
change the phase of the output trajectory to realize a real-time
prediction of a smooth human motion trajectory.

3. METHODOLOGY

In this section, FADMPs is introduced in section 3.1. Then, the
control framework based on FADMPs is established for active
walking assistance in section 3.2.

3.1. Frequency Adaptive Dynamics
Movement Primitives
FADMPs is an online learning and prediction algorithm which
can be used to learn and predict periodic signal in real time.
FADMPs algorithm includes three parts: trajectory frequency
estimation, trajectory learning and prediction. In this paper, we
use zero crossing detection method to estimate the frequency
of input trajectory first, and then we use dynamics movement
primitives (DMPs) (Ijspeert et al., 2013) to learn the input
trajectory and predict the future trajectory.

Frequency estimation is the first step of FADMPs algorithm.
The human lower limb joint trajectory during stable walking is
a non-sinusoidal periodic signal. Hence, the frequency of human
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joint trajectory can be estimated by using zero crossing detection
method. In order to estimate the trajectory frequency, the time
between two zero-crossing point should be recorded. In this
paper, the zero-crossing point is defined as a time stamp [t(n)]
which should meet the condition: θ(t(n)) ≥ 0 and θ(t(n− 1)) <

0, where θ denotes the joint angle and n denotes the time step.
The time between two zero-crossing point denotes as the period
of trajectory (Tm) and the frequency of input trajectory can
be estimated by (3), where m denotes the sequence number of
zero-crossing points.

Fm = 1/Tm (3)

When the frequency of input trajectory has been estimated, the
shape of input trajectory can be online learned and predicted by
using FADMPs algorithm. The fundamental learning mechanism
of FADMPs is to use Gaussian-like kernel function as building
blocks to establish a non-linear forcing term to make the output
of a globally stable second-order linear system converge to the
input trajectory. The globally stable second-order linear system
is chosen as a damped spring model shown in (4).



















ż = �(αz(βz(g − y)− z)+ f )

ẏ = �z

ÿ = �ż

� = 2πFm

(4)

where y is the input trajectory. g is an oscillation baseline of the
learning trajectory and it is set as g = 0 in this paper. αz and βz

are positive constants, and in order to make the system stable βz

should be set as βz = αz/4. In this paper αz is set as 25. f is the
non-linear forcing term given by (6). φ is the phase of Canonical
Dynamical System which makes the model (4) depend on phase
(φ) rather than time (t) (Gams et al., 2009). � is the frequency
of Canonical Dynamical System. Fm given by (1) is the estimated
frequency of input trajectory.

φ̇ = �, φ ∈ [0, 2π] (5)

f =

∑N
i=1 9iωi

∑N
i=1 9i

(6)

Being different from the traditional DMPs algorithm (Ijspeert
et al., 2013), our FADMPs algorithm is not only able to online
learn the input trajectory, but also online predict the future
trajectory. When controlling exoskeleton, the time-delay or
phase-delay caused by the computation time, sensing time,
communication delay and filter will make exoskeleton lag behind
the human intention. To reduce the time-delay, the user’s
future motion should be predicted and the control command
of exoskeleton should be send before user’s motion (Ding et al.,
2020). In order to online predict the future trajectory, two sets of
Gaussian-like kernel functions are needed. As shown in (7), one
set (9i) is for learning and the other set (9pi) is for prediction.
Prediction also means phase lead in the future, as shown in (7)
and (8), 1φ represents a phase lead and 9pi(i = 1 · · ·N) denotes

a set of Gaussian-like kernel functions with phase lead, here N is
the total number of Gaussian-like kernel functions. In this paper
N is set as 50.

{

9i = exp(hi(cos(φ − ci)− 1))

9pi = exp(hi(cos(φ + δφ − ci)− 1))
(7)

δ̇φ = αφ(1φ − δφ) (8)

where hi(i = 1 · · ·N) is the width of Gaussian-like kernel
function and it is set as h = 2.5N in this paper. ci(i = 1 · · ·N) is
the center of each Gaussian-like kernel function and ci is evenly
distributed over the range [0, 2π]. δφ is the state variable of 1φ .
To make the predicted trajectory smoother, the sudden change
of the phase of Canonical Dynamical System should be avoided.
Hence, a simple first-order differential equation given by (8) is
utilized in this paper to filter the discontinuous change of the goal
phase (1φ). αφ decides the phase changing speed and it is set as
αφ = αz/2 in this paper.

But before prediction the input trajectory needs to be learned
first by using 9i(i = 1 · · ·N), which is a set of Gaussian-like
kernel functions without phase lead. To determine the weight
ωi(i = 1 · · ·N) of Gaussian-like kernel functions, a recursive
least squares algorithm with a forgetting factor of λ is adopted
in this paper.

In order to explain the recursive least squares algorithm
more clearly, we firstly assume the input trajectory is
[yd(t), ẏd(t), ÿd(t)]. And then, according to (4), we can get
the target forcing term by (9).

f = ÿd/�2 − αz(βz(g − yd)− ẏd/�) (9)

And then putting (9) into (6), we can establish a supervised
learning problem to determine ωi(t) at each time step by using
recursive least squares algorithm (Gams et al., 2009):

{

ωi(t + 1) = ωi(t)+ 9iPi(t + 1)(f − ωi(t))

Pi(t + 1) = Pi(t)/(λ + Pi(t)9i)
(10)

where Pi(i = 1 · · ·N) denotes an inverse covariance matrix
(Kumar, 1985). The initial conditions of this recursion algorithm
are ωi(0) = 0 and Pi(0) = 1. The forgetting factor is chosen as
λ = 0.95 in this paper.

When ωi is determined, the input trajectory has been learned
successfully. And then the future trajectory ([ŷd(t), ˆ̇yd(t), ˆ̈yd(t)])

can be predicted by (4) with a predicted forcing term f̂ which is
given by (11).

f̂ =

∑N
i=1 9piωi

∑N
i=1 9pi

(11)

Insert (11) into (4) we can get the predicted trajectory:











ˆ̇z = �(αz(βz(g − ŷ)− ẑ)+ f̂ )

ˆ̇y = �ẑ

ˆ̈y = � ˆ̇z

(12)
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In summary, the first step of FADMPs is to estimate the frequency
(Fm) of input trajectory by using zero crossing detection
algorithm. The second step of FADMPs is to learn the shape of
input trajectory by using recursive least squares algorithm which
includes (7)–(10). The final step of FADMPs is to predict the
future trajectory by (11) and (12) according to a given phase
lead 1φ which is a positive value defined by user. And it should
be noticed that if 1φ = 0 the predicted trajectory will keep
a same phase with the input trajectory. However, if 1φ < 0
the predicted trajectory will have a phase delay compared with
the input trajectory. Hence, the most important feature of our
FADMPs algorithm is that it can online arbitrarily adjust the
phase of predicted trajectory by changing 1φ . And the shape
of predicted trajectory will remain almost the same as the input
trajectory when 1φ is changed.

3.2. Exoskeleton Active Walking Assistance
Control Framework Based on FADMPs
Active walking assistance needs exoskeleton offer assistance force
or torque on human body to reduce the metabolic cost of
human body during walking. To reach this goal, the exoskeleton
assistance torque acting on the human body must coincide with
the human walking intention. Human walking intention can be
estimated by the human joint torque (Li et al., 2018), which
shows the strength and direction of human motion. However,
the estimation result of human joint torque is sensitive to the
signal noise. Hence, in a real control system, themeasured human
joint trajectory must be filtered by a low-pass filter before it is
sent to the human inverse dynamics model to estimate joint
torque. But the filtered signal will have an unavoidable phase
delay compared with the original signal. The phase delay will
lead to the conflict between exoskeleton and human intention.
To compensate the phase delay, FADMPs algorithm is applied to
online compensate the phase delay caused by the low-pass filter.
As mentioned above, FADMPs algorithm is able to online change
the phase of the predicted trajectory by adjusting 1φ . Hence, we
can chose a proper 1φ to compensate phase delay according to
the frequency response of the low-pass filter. In this paper, an
exoskeleton active walking assistance control framework based
on FADMPs is proposed to realize a walking assistance without
phase delay.

As shown in Figure 1, there are mainly three parts in the
exoskeleton active walking assistance control framework. The
first part is the exoskeleton wearer who is the center of human-
exoskeleton system and responsible for decision making and
motion control. Under the stimulation of electroneurographic
signal generated from human central nervous system, human
muscle-skeleton system will generate limb joint actuation torque
τh to generate joint motion trajectory θh. The second part of
our control framework is human intention estimation which is
the most important part of active assistance control. FADMPs
algorithm is applied in this part to online learn the joint trajectory
and compensate the phase delay caused by low-pass filter. And
then, a torque estimator (Li et al., 2018) based on human
inverse dynamics is used to estimate the human joint torque
τ̂h during walking. The third part of our control framework

FIGURE 1 | Exoskeleton active walking assistance control framework based

on FADMPs. τh is the human joint torque generated by muscle-skeleton

system. τ is the total torque acting on the human joint. θh is the actual

measured and filtered human joint trajectory. θ̂h is the predicted trajectory

given by FADMPs algorithm. τ̂h is the estimated human joint torque. α is an

assistance ratio (AR) which determines the strength of exoskeleton assistance.

τhe is the feedback of assistance torque. θe is the output trajectory of

exoskeleton. τc is the exoskeleton dynamics compensation torque. τe is the

total input torque of exoskeleton.

is the low layer exoskeleton assistance torque feedback control
system. The input of this system is the estimated human joint
torque τ̂h multiplied by assistance ratio (AR) α. The feedback
of this system is the human-exoskeleton interaction torque τhe
measured by load cell. The input of exoskeleton actuator τe is
given by (13). The assistance torque feedback PI controller is
(14). τc is the exoskeleton dynamics compensation torque which
is used to compensate the inertial of exoskeleton. The mass and
inertial of exoskeleton are denoted as m and J, respectively.
The distance between the mass center of the output rod of
exoskeleton and it’s center of rotation is denoted as l. The above
inertial and structure parameters of exoskeleton are obtained
from SolidWorks (Dassault Systemes, USA).

τe = ατ̂h + τc + 1τ (13)







1τ = KPe(t)+ KI

∫

e(t)dt

e(t) = ατ̂h − τhe

(14)

τc = mglsin(θe)+ Jθ̈e (15)

The step frequency is not always consistent during actual
walking. It can be changed due to the environment or
disturbance. And people may adjust walking speed at any time.
In this paper, the step frequency is estimated by zero crossing
detection method which only update the frequency when the
limb joint trajectory pass through zero. Hence, there is a time-
delay in frequency estimation when step frequency suddenly
changes. As as shown in Figure 2C, the initial walking frequency
is 1.5 Hz and it begins to decrease at 1 s. And it finally goes down
to 1 Hz at 3 s. It is obvious that there is a time-delay exists in
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FIGURE 2 | Time-delay of frequency estimation and its effect on the trajectory prediction. In (A,B), black line denotes the original trajectory containing white noise.

The blue dash line denotes the filtered trajectory. The red dash dot line represents the predicted trajectory of FADMPs. The gray short dash line represents the error

between the original trajectory and the predicted trajectory. In (C), black solid line denotes the frequency of original trajectory and the red solid line represents the

estimated frequency.

the result of frequency estimation. And as shown in Figure 2A,
the time-delay in frequency estimation leads to a relatively large
prediction error (maximum absolute error is about 0.52 rad, root
mean square error (RMSE) is about 0.17 rad) of FADMPs when
the walking frequency is changing.

Therefore, in this paper, we regulate that the phase
compensation should be executed only when the step frequency
is stable. If the step frequency error between two steps is <0.1
Hz (|Fm − Fm−1| <= 0.1Hz) the human walking is considered
to be stable and the phase compensation of FADMPs is executed
(1φ > 0). On the contrary, if human walking is unstable

FADMPs will not compensate the phase delay (1φ = 0).
Furthermore, if walking is unstable the AR will be zero (α = 0)
which means the exoskeleton is working in transparent mode
(Qiu et al., 2020). And if walking is stable the AR will be set as a
positive value (0 < α < 1) whichmeans exoskeletonwill work on
active assistancemode (Qiu et al., 2020) and provide an assistance
torque on human joint during walking. The above regulation can
be summarized as the rule (16).

|Fm − Fm−1|

{

<= 0.1 :1φ > 0, 0 < α < 1

> 0.1 :1φ = 0,α = 0
(16)
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TABLE 1 | The initial parameters of FADMPs and AO.

Algorithm Initial parameters

FADMPs N = 50, h = 2.5N, αz = 25, g = 0, ż(0) = 0,

ẏ(0) = 0, ÿ(0) = 0

AO N = 50, h = 2.5N, K = 6, υ = 6, η = 0.25,

αi (0) = 0, ω(0) = 2π , φ0(0) = 0

AO N = 50, h = 2.5N, K = 6, υ = 6, η = 0.25,

αi (0) = 0, ω(0) = π , φ0(0) = π/2

Figure 2B shows the trajectory prediction results of FADMPs
based on the rule (16). It is obvious that, compared with
Figure 2A, the prediction error is significantly reduced
(maximum absolute error is about 0.33 rad, RMSE is about
0.073 rad) when the walking frequency changes. The reason for
this phenomenon is that FADMPs no longer changes the phase
of predicted trajectory (1φ = 0) when the walking frequency
changes. And for this reason, the predicted trajectory of FADMPs
(red solid dot line) will coincide with the filtered trajectory
(blue dash line). Therefore, the trajectory error between original
trajectory and the predicted trajectory can still be reduced by
executing the regulation (16) even if the walking frequency
suddenly changes.

3.3. Comparison Between FADMPs and AO
In this part, a simulation are carried out to further investigate
the performance of FADMPs when the walking frequency and
amplitude are suddenly changed. And to show the advantages
of FADMPs, the performance of AO and FADMPs are compared
with each other. The human hip joint trajectory during walking
is generated by the DMPs algorithm proposed in Schaal (2006).
Before simulation the actual hip joint trajectory during walking
is learned by DMPs, and then DMPs was applied to generate the
periodical hip joint trajectory of any frequency and amplitude
while keeping the shape of trajectory.

The simulation protocols are set as follow. The total
simulation time is 15 s. The initial frequency of hip joint
trajectory is 2 Hz and the frequency is changing to 3 Hz at 5 s
and changing back to 2 Hz at 9 s. The initial amplitude of hip
joint trajectory is about 0.81 rad and the amplitude is changing
to 2.46 rad at 5 s and changing back to 0.81 rad at 10 s. The
initial parameters of the FADMPs and AO are shown in Table 1.
The main parameters of FADMPs include the number (N) and
width (h) of Gaussian-like kernel functions, the open-loop gain of
FADMPs (αz), the oscillation baseline of the output of FADMPs
(g = 0) and the initial state of FADMPs [ż(0), ẏ(0), ÿ(0)]. The
main parameters of AO include the number (N) and width (h)
of Gaussian-like kernel functions, the number of oscillators (K),
the integrator gain of each oscillator (υ , η), the initial frequency
of oscillator [ω(0)] and the initial phase of the basic oscillator
[φ0(0)]. To show the influence of initial parameters of AO on the
trajectory learning and prediction, as shown in Table 1, there are
two sets of initial parameters of AO used in simulation.

The simulation results are shown in Figure 3. Figure 3A

shows the hip joint trajectory online prediction results of

FADMPs and AO algorithm. The original hip joint trajectory
was filtered by a Butterworth low-pass filter (4th-order, cutoff
frequency 10 Hz). To compensate the phase delay caused by the
low-pass filter, both FADMPs and AO can use a kernel-based
non-linear filter shown in Ronsse et al. (2011) to adjust the phase
lead (1φ) of predicted trajectory. In this simulation, 1φ of AO
and FADMPs are set according to (17). To show the performance
of phase compensation, the absolute error between the original
trajectory and the predicted trajectory is calculated and shown in
Figure 3C. The frequency estimation results of FADMPs and AO
are shown in Figure 3B.

As mentioned before, FADMPs only compensate the phase
delay when the walking frequency is stable. Hence, as shown in
(C1) and (B1), the trajectory error is significantly reduced when
the frequency error between two steps satisfies the condition
shown in (16), and this phenomenon indicates that FADMPs
successfully compensates the phase delay in the filtered trajectory.
But the phase compensation performance of AO is not as good
as FADMPs. As shown in (C2), the absolute error of AO is
significantly higher than the one of FADMPs, especially after
the walking frequency and amplitude have changed. The main
reason for this phenomenon is that the fundamental frequency
estimation results of AO fluctuate around it’s true value, as shown
in (B2). And the changing of walking frequency and motion
amplitude have a great effect on the frequency estimation results
of AO. Comparing with (B1), it is obvious that the frequency
estimation result of FADMPs is more stable than AO. For this
reason, the trajectory prediction performance of FADMPs is
better than AO.

Furthermore, the results shown in (B3) and (C3) indicate that
the initial value of AO have significant effect on the performance
of frequency estimation and trajectory prediction. It is obvious
that the convergence speed of the fundamental frequency ω(t)
of AO becomes slower and ω(t) even becomes negative at about
10.7 s when the initial frequency and phase of AO are respectively
changed as ω(0) = π and φ0(t) = π/2. Due to the length
limitation of this paper, we only discussed the influence of ω(0)
and φ0(t), but the results in Chinimilli et al. (2019) have shown
that the initial amplitude of each oscillator [αi(0)] will also
has significant effect on the frequency estimation and trajectory
prediction of AO. Above simulation results show that the initial
values of AO have a significant effect on the performance of AO.
However, to the best of our knowledge, there is still no suitable
theory to guide how to choose proper initial values of AO.

On the contrary, the performance of frequency estimation
and trajectory prediction of FADMPs is barely affected by its
initial values. On one hand, the frequency estimation results
of FADMPs is more stable than AO and the performance of
trajectory prediction of FADMPs is also better than AO. On the
other hand, as shown in (D), the predicted velocity trajectory
of FADMPs is smoother than the one of AO and the velocity
oscillation of FADMPs is also smaller than AO when walking
frequency and amplitude are changing. Moreover, comparing
with (D2) and (D3), we can find that the initial value of AO
can also affect the smoothness of trajectory prediction of AO.
A smooth trajectory prediction is important for exoskeleton to
provide a stable and comfortable assistance. Therefore, the above
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FIGURE 3 | Simulation of FADMPs and AO. The black solid line, blue dash line and red solid line shown in (A) represent the original trajectory containing noise, the

low-pass filtered trajectory and the prediction trajectory of FADMPs or OA, respectively. The black line and red line shown in (B) represent the true frequency of

trajectory and the estimated frequency, respectively. The red line and blue line shown in (C) denote the prediction error of FADMPs and AO, respectively. The black line

shown in (D) denotes the predicted joint velocity.

simulation results indicate that the FADMPs algorithm proposed
in this paper can avoid the drawbacks of AO algorithm and have
a better performance on the frequency estimation and trajectory
prediction than AO algorithm.

4. SIMULATIONS

In this section, the exoskeleton active walking assistance control
framework based on FADMPs will be tested by simulation. The
simulation framework of active walking assistance control based
on FADMPs is shown in Figure 4A.

The simulation control system is established by using
Matlab/Simulink. A human model (height: 1.7 m, weight: 65 kg)
shown in Figure 4B is built by using Matlab/Simscape which is
a powerful multidomain physical simulation system. As shown
in Figure 4C, the motion of human model is limited in the
sagittal plane. The input of human model is the lower limb joint
trajectory (qin) and joint assistance torque (ατ̂h). qin is generated
by a DMPs based motion generator (Schaal, 2006) shown in
Figure 4A. Before simulation, the real human joint trajectory
during walking is learned by DMPs and then we can use the

DMPs to generate target joint trajectory qin of humanmodel. The
advantage of usingDMPs to generate qin is that the amplitude and
frequency of the generated trajectory can be easily adjusted only
by changing the scale parameters of DMPs (Schaal, 2006).

The hip and knee joint of the human model are assisted
by a massless ideal exoskeleton torque actuator which is
able to generate any assistance torque profile on human
joint. And the joint motion of human model will remain
the same when the joint is assisted by exoskeleton. Hence,
our active assistance control framework can prove to
be effective if the energy consumption of human joints
are reduced.

To verify the performance of our active assistance control

framework based on FADMPs, two simulation experiments are
carried out. In the first simulation experiment, the frequency

of qin will remain at 0.5, 1.0, 2.0, and 3.0 Hz, respectively.
And ten different α (0.1–1.0) will be chosen to show the
influence of AR. In the second simulation, the frequency of
qin will firstly increase from 1.0 to 3.0 Hz and then decrease
from 3.0 to 1.0 Hz. And the AR will keep at 0.3 during the
whole simulation.
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FIGURE 4 | Simulation framework of active walking assistance control based on FADMPs. qin is the target hip and knee joint trajectory of human model. qout is the

output joint trajectory of human model. qnoise is the measurement of joint trajectory. q̂h is the predicted trajectory of FADMPs. τ̂h is the estimation of human joint torque

based on the human inverse dynamics model. (A) Is the simulation framework of active assistance based on FADMPs. (B) Is the human model established by

Matlab/Simscape. (C) Shows the snapshot of active walking assistance simulation.

4.1. Active Assistance Control Simulation
on Constant Frequency Walking
The FADMPs algorithm proposed in this paper is able to online
trace the frequency and learn the shape of input trajectory.
Figure 5 shows the online learning and prediction results of the
hip and knee joint trajectory based on FADMPs.

Figures 5A,B shows the online prediction results without
phase compensation (1φ = 0). It is obvious that the red dash
line coincides with the blue solid line, which means the predicted
trajectory keeps the same phase with the filtered trajectory.
Hence, there is a phase delay exists in the predicted trajectory

compared with the original trajectory. And due to the phase
delay, as shown in Figures 5A,B, there is a large error between
the original trajectory and the predicted trajectory. The RMSE

of the predicted hip joint trajectory is about 0.16 rad and the

RMSE of the predicted knee joint trajectory is about 0.22 rad.
As mentioned before, to reduce the error caused by phase delay,

the phase delay of the predicted trajectory can be compensated
by FADMPs algorithm if we set 1φ as a positive value which is

determined by the frequency response of low-pass filter. In this

paper, 1φ is given by (17) which is a linear approximate of the
phase-frequency characteristic of the Butterworth low-pass filter
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(4th-order, cutoff frequency 10 Hz) in the range of 0–5 Hz.

1φ = 15Fmπ/180 (17)

The results of phase compensation are shown in Figures 5C,D.
According to (16), the human walking gait is considered to be
stable when the error between two adjacent steps is<0.1 Hz. And
FADMPs will execute phase compensation when human walk
in a stable gait. Therefore, as shown in Figures 5C,E, FADMPs
starts compensate the phase delay of hip joint trajectory at 1.45 s.
Similarly as shown in Figures 5D,F, FADMPs starts compensate
the phase delay of knee joint trajectory at 1.51 s. Finally when
the phase delay has been compensated, the error between the
original trajectory and the predicted trajectory of FADMPs is
significantly reduced. The RMSE of the predicted hip and knee
joint trajectory are about 0.0088 rad (reduce 94.5%) and 0.0106
rad (reduce 95.2%), respectively. Therefore, this simulation
shows that the trajectory error between the original trajectory and
predicted trajectory of FADMPs can be significantly reduced by
compensating the phase delay caused by the low-pass filter.

Figure 5 shows the influence of phase delay on the hip joint
torque and work when walking frequency is 1 Hz and AR is set
as 0.5. As we can see from Figure 5G, the phase of exoskeleton
assistance torque profile ατ̂h (T1) is not coincide with the
original human joint torque (T0) due to the phase delay in the
predicted joint trajectory q̂h. For this reason, the direction of
exoskeleton assistance torque ατ̂h is not always keep the same
with the original human joint torque. And if ατ̂h is in an opposite
direction of the original human joint torque, exoskeleton will
impede the human motion (Li et al., 2018; Qiu et al., 2020).
Hence, as shown in Figure 5G, the human joint torque (blue
dash line) becomes larger than the original hip joint torque
(black solid line) when the assistance torque (red solid line) is
in an opposite direction of original human joint torque (black
solid line). On the contrary, as shown in Figure 5H, the phase
of exoskeleton assistance torque ατ̂h is almost coincide with
the original human joint torque because the phase delay of the
predicted joint trajectory is compensated by FADMPs. Therefore,
the human joint torque (green short dash line) significantly
becomes smaller than the original human joint torque (black
solid line). Furthermore, the work of human joint torque during
40 s walking is shown in Figure 5I from which we can see
the significant difference before and after the phase delay is
compensated. The normalized work of hip joint torque after 40 s
walking without exoskeleton assistance (W0) is about 24.74 J/kg.
When the phase delay of assistance torque is not compensated,
the normalized work of hip joint torque after 40 s walking with
exoskeleton assistance (W1) is about 19.75 J/kg (reduce 20.17%).
However, when the phase delay is compensated by FADMPs, the
normalized work of hip joint torque becomes about 16.67 J/kg
(reduce 32.62%). Therefore, above simulation results indicate
that the performance of exoskeleton active assistance can be
significantly improved by compensating the phase delay of the
filtered joint trajectory.

Figure 6 shows the change of energy consumption of hip
joint after 40 s walking at different frequency (0.5, 1, 2, and
3 Hz). First of all, from Figures 6A–D, we can see that for a

same AR the hip joint can reduce more energy consumption
with a phase compensated assistance of exoskeleton. Moreover,
with the increase of walking frequency, the performance
of assistance gradually becomes worse if the phase delay
is not compensated. Hence, these simulation results further
demonstrate that compensating the phase delay is necessary
for improving the performance of exoskeleton active assistance,
especially for a high AR and high walking frequency assistance.

4.2. Active Assistance Control Simulation
on Variable Frequency Walking
Previous simulations only focus on the assistance of a constant
frequency walking. In this section, we will investigate the
assistance performance of FADMPs on the variable frequency
walking. As shown in Figure 7C, the walking frequency firstly
increases from 1.0 to 3.0 Hz and then decreases from 3.0 to 1.0
Hz. On one hand, according to (16), FADMPs compensates the
phase delay only when the walking frequency is stable. Hence, as
shown in Figures 7A,B, the prediction error will be significantly
reduced by phase compensation when walking frequency is stable
and it becomes larger when the walking frequency is changing.
On the other hand, α is simultaneously set as 0 when the walking
frequency is unstable, which means the exoskeleton is working
in transparent mode when walking frequency is unstable. And if
walking frequency is stable, α will be set as a positive value and
exoskeleton will work in active assistance mode.

Figure 6E shows the energy consumption of hip joint after 40
s variable frequency walking with the assistance of exoskeleton
(α = 0.3). It is obvious that, comparing with W0, the
performance of active assistance with phase compensation
(173.07 J/kg, reduce 19.41%) is much better than the one without
phase compensation (206.42 J/kg, reduce 3.91%). Figure 6F

shows the influence of AR on the performance of active assistance
of variable frequency walking. After the phase compensation,
the hip joint work decreases linearly with the increase of AR.
However, if the phase delay is not compensated, the reduction
rate of hip joint work is much lower and when AR exceeds 0.5
the hip joint work even surpasses the hip joint work (214.83 J/kg)
without the assistance of exoskeleton.

Above simulation results show that compensating the phase
delay can significantly improve the performance of active
assistance of exoskeleton when the walking frequency is variable.
Therefore, the simulation results shown in Figure 6 demonstrate
that the active assistance control based on FADMPs is able
to significantly improve the performance of active assistance
of exoskeleton by online compensating the phase delay of the
filtered joint trajectory. Especially for a high walking frequency
and high AR assistance, FADMPs can significantly improve the
assistance performance of exoskeleton.

5. EXPERIMENTS

5.1. Participants
Nine healthy volunteers (age: 32 ± 3.61, weight: 66.89 ± 7.03
kg, height: 1.70 ± 0.03 m) participated in the active walking
assistance experiments shown in Figure 8. All participants
have no musculoskeletal injuries or cardiovascular disease and
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FIGURE 5 | Simulation results of FADMPs. In (A–D), the black solid line represents the original input joint trajectory containing measurement noise. The blue solid line

represents the filtered trajectory (Butterworth low-pass, 4th order, cutoff frequency 10 Hz). The red short dash line represents the prediction results of FADMPs. The

gray dash line represents the error between the original trajectory and the prediction trajectory. In (E,F), the black solid line denotes the frequency of original trajectory

and the red dash line denotes the results of frequency estimation of FADMPs. The profile of active assistance torque (1 Hz, α = 0.5) and the work of hip joint torque

are shown in (G–I). In (G,H), the black solid line T0 is the human joint torque during walking without exoskeleton assistance. The red solid line T1 is the assistance

torque profile of exoskeleton (α = 0.5). T2 is the human joint torque during walking with the assistance of exoskeleton. In (I), the black line W0 is the work of human

joint torque during 40 s walking without the exoskeleton assistance. The blue dash line W1 is the work of human joint torque with a phase delay assistance of

exoskeleton (1φ = 0). The green short dash line W2 is the work of human joint torque with a phase compensated assistance of exoskeleton (1φ > 0).

they gave their informed consent before participating in the
experiments which were approved by the local ethical committee.

5.2. Hip Exoskeleton System
The hip exoskeleton system used in this paper is shown in
Figure 8. The hip exoskeleton designed by our team contains
two motor-driven joints which are made up of a 24 V brushless
DC motor and a planetary gearbox (i = 8). There are two load
cells embedded in the output shafts of exoskeleton to measure
the human-exoskeleton interaction force. The human lower limb
joints’ motion trajectories are measured by five 9-axis inertial
measurement unit (IMU) which are placed on the waist (IMU ×

1), thigh (IMU× 2) and shank (IMU× 2), respectively. The feet
ground reaction forces are measured by two pressure insoles. The
total mass of the hip exoskeleton is about 11 kg and the output
rated torque of actuator is 40 Nm.

5.3. Experimental Protocol
In the active walking assistance experiments, as shown in
Figure 8, all of the participants were wearing Metabolic system,
EMG sensors and IMU while walking on a treadmill. Four
walking conditions were evaluated in our experiments: Free,OFF,
TRA, and ASS. In the Free condition, as shown in Figure 8A,
participants were walking on the treadmill without wearing
exoskeleton. But it should be noticed that in order to compare
the difference of human metabolic cost before and after wearing

exoskeleton the weight of exoskeleton should be considered in
the Free condition. Hence, a heavy load (11 kg) which has an
equivalent weight of the hip exoskeleton should be carrying
during the free walking experiment. In the OFF condition,
participants were wearing the hip exoskeleton and walking on the
treadmill. But the exoskeleton was power off in this condition.
Hence, exoskeleton was passively moving with human body. In
the TRA condition, exoskeleton was working in a transparent
mode which was neither impeding nor assisting human walking.
On the contrary, in the ASS condition, exoskeleton was working
in active assisting mode to assist human walking. The active
control framework shown in Figure 1 was applied in the active
assisting mode.

There are two walking speed modes in active walking
assistance experiments: constant speed walking and variable
speed walking. In the constant speed walking experiments,
as shown in Figure 9A, participants were walking on the
treadmill and the velocity of treadmill was respectively set as
2, 4, and 6 km/h. In the variable speed walking experiments,
as shown in Figure 9B, the target velocity of the treadmill
was firstly increasing from 2 to 6 km/h and then decreasing
from 6 to 2 km/h.

The experiment process for each participant is shown in
Figure 9C. At the beginning of experiment, participants were
walking in the Free condition for 11 min. And then participants
had a 10 min rest. Next, participants put on the hip exoskeleton
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FIGURE 6 | The performance of active assistance on the hip joint work (after 40 s walking) under different walking frequency and AR. The black dot line W0 is the hip

joint work without the assistance of exoskeleton. The blue dot line W1 is the hip joint work with a phase delay assistance of exoskeleton (1φ = 0). The red dot lineW2

(Continued)
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FIGURE 6 | is the hip joint work with a phase compensated assistance of exoskeleton (1φ > 0). (A–D) Show normalized hip joint work with the active assistance of

exoskeleton after 40 s constant frequency walking. In this paper, the hip joint work is normalized by the weight of each subject. (E,F) Show the performance of active

assistance on the 40 s variable frequency walking. (E) Shows the normalized hip joint work with the active assistance of exoskeleton (α = 0.3). (F) Shows the

influence of different AR on the performance of active assistance during variable frequency walking.

FIGURE 7 | Simulation of online variable frequency hip joint trajectory learning and prediction based on FADMPs. (A) Is the human hip joint angle during variable

frequency walking. (B) Shows the error between the original trajectory and the predicted trajectory of FADMPs. (C) Shows the frequency of original trajectory (black

solid line) and estimated frequency (red solid line).

FIGURE 8 | Experimental method. (A) The front and side view of an instrumented participant. The participant’s motion is measured by the IMU wearing on the limb.

The muscle activity during walking is record by surface electrodes (Delsys Trigno Avanti, USA). The participant’s metabolic cost during walking is measured by a

wearable metabolic system (K5, COSMED, Italy). (B) Placement of surface electrodes: iliopsoas (IL), rectus femoris (RF), tibialis anterior (TA), gluteus maximus (GM),

and medial gastrocnemius (MG). (C,D) Show the active walking assistance experiments. (C) Participant walking with a heavy load on back. The weight of the load is

equal to the hip exoskeleton. (D) Participant walking with the hip exoskeleton.
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FIGURE 9 | Experiment protocol of active walking assistance control. (A) The target velocity of treadmill during constant speed walking experiments. (B) The target

velocity of treadmill during variable speed walking experiments. (C) The process of walking assistance experiments. The number in each block denotes the duration

time (units: min) of each walking mode: free walking (Free), exoskeleton working in power-off mode (OFF), exoskeleton working in transparent mode (TRA), and

exoskeleton working in active assistance mode (ASS).

and walked in the OFF condition for 11 min. After that,
participants rested for 10 min and then continued to walk
in TRA condition for 11 min. And finally, after 10 min rest,
participants were walking in ASS condition for the last 11 min.
The experiment data, including joint trajectory, EMG signal
and metabolic cost, were only recorded when participants were
walking in the Free, OFF, TRA, and ASS conditions.

5.4. Results
To further investigate the performance of the active walking
assistance control method proposed in this paper, the active
walking assistance experiments shown in Figures 8C,D were
carried out. And this paper will evaluate the performance of
the active walking assistance control from the following three
aspects: joint trajectory, muscle activity and human metabolic
cost. There are three situations in which exoskeleton can be
considered to provide effective active assistance on human body
(Nagarajan et al., 2016). First, the amplitude of human motion
increases while the muscle activity remains the same. Second, the
muscle activity decreases while the amplitude of human motion

keeps the same. Third, not only the amplitude of human motion
increases, but also the muscle activity decreases.

5.4.1. Effect of Active Assistance on the Limb Joint

Trajectory
Figure 10 shows the online learning and prediction results
of FADMPs algorithm. In Figures 10A,B, the black solid line
denotes the original measured joint trajectory which is recorded
by the IMU system shown in Figure 8B. The original trajectory
is not smooth enough because the update rate of IMU is 100
Hz which is less than the sample rate of the exoskeleton control
system (1 kHz). Hence, the original trajectory must be filtered
by a low pass filter (4th-order, Butterworth, cut-off frequency
10 Hz). However, as shown in Figure 10, the filtered trajectory
(blue solid line) has a phase delay compared with the original
trajectory. To compensate the phase delay, a FADMPs algorithm
is proposed in this paper to online compensate the phase delay
in the filtered trajectory. As shown in Figure 10, the phase of the
trajectory predicted by FADMPs (red line) is almost coincide with
the phase of original trajectory. The RMSE between the original
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FIGURE 10 | The results of active walking assistance experiments. The online learning and prediction results of hip and knee trajectory during active walking

assistance experiments with a constant walking speed of 4 km/h are shown in (A,B), respectively. (C) Shows the frequency estimation result of hip and knee joint

trajectory, respectively. The changing of the hip joint trajectory during active walking assistance is shown in (D–I). The braces with ∗∗ denote statistical significant

difference between two condition (p < 0.01). And ∗ represents a significant difference among trials (p < 0.05). OFF represents exoskeleton is working in power-off

mode. TRA represents exoskeleton is working in transparent mode. ASS0.2 denotes exoskeleton is working in active assistance mode with α = 0.2. Similarly, ASS0.3

and ASS0.4 represent active assistance mode with α = 0.3 and α = 0.4, respectively.

TABLE 2 | The RMSE between the original trajectory and the prediction trajectory of FADMPs.

Speed
RMES of left hip trajectory RMES of left knee trajectory

Filtered FADMPs Rate (%) Filtered FADMPs Rate (%)

2 km/h 2.99◦ 1.63◦ 45.48 5.27◦ 2.57◦ 51.23

4 km/h 4.49◦ 2.76◦ 38.53 6.93◦ 3.42◦ 50.65

6 km/h 6.37◦ 4.58◦ 28.10 8.42◦ 4.90◦ 41.81

Speed
RMES of right hip trajectory RMES of right knee trajectory

Filtered FADMPs Rate (%) Filtered FADMPs Rate (%)

2 km/h 2.92◦ 1.64◦ 43.84 5.57◦ 3.14◦ 43.63

4 km/h 4.66◦ 2.85◦ 38.84 7.73◦ 4.42◦ 42.82

6 km/h 6.27◦ 4.31◦ 31.26 8.95◦ 4.36◦ 51.28

trajectory and the prediction trajectory of FADMPs is calculated
in this paper. As shown in Table 2, the RMSE between the
original trajectory and the prediction trajectory is significantly
reduced when the phase delay is compensated by FADMPs. The
Rate in Table 2 means the reduction rate of RMSE of the phase
compensated trajectory (1φ > 0) comparing with the RMSE
of the filtered trajectory. It is obvious that the reduction rate of
RMSE is relatively high, which demonstrates that the phase delay
is successfully compensated by FADMPs.

Statistical significance of the changing of hip joint trajectory
was evaluated by using one-way repeated measures analysis

of variance (ANOVA). The changing of hip joint trajectory
in different walking conditions and speeds are shown in
Figures 10D–I, which show that there is no significant different
in hip joint trajectory when participants walking in Free,
OFF, and TRA mode. This phenomenon means that the hip
exoskeleton has no effects on the human motion when it
offers no assistance on human body. But when hip exoskeleton
is walking on ASS mode, the hip joint trajectory has a
significant changing and the maximum hip joint angle increases
with the rising of the AR. These results indicate that the
motion range of human hip joint during walking can be
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FIGURE 11 | Normalized average muscle EMG envelope of all participants during the active walking assistance experiments. The normalized EMG envelope as a

percent of gait cycle (heel-strike to heel-strike) for the five muscles investigated.

significantly improved by exoskeleton when it working in
ASSmode.

5.4.2. Effect of Active Assistance on the Lower Limb

Muscle Activity
As mentioned before, in order to evaluate the performance of
active walking assistance control, we need to further investigate
the muscle activity of the participant during walking. According
to the experiment protocol proposed in section 5.3, EMG signals
from five lower limb muscles were simultaneously record by
a wireless EMG measurement system shown in Figure 8. The
lower limb muscles investigated in this paper were: illiopsoas
(IL), rectus femoris (RF), tibialis anterior (TA), gluteus maximus
(GM), and medial gastrocnemius (MG). The EMG signals were
band-pass filtered (2th order Butterworth, cut-off 100–400 Hz).
And the EMG linear envelope was estimated by using a moving
RMS window (window length: 0.125 s, window overlap: 0.0625
s). To compare the muscle activity of different walking modes,
for each participant and for each muscle, the EMG linear
envelope was normalized to the average peak value (averaged
from 2 to 10 min) measured during the Free mode. Figure 11
shows the normalized average muscle EMG linear envelope of
all participants during experiments at different walking speeds
and modes.

Figure 11 shows that not only the amplitude of the lower
limb muscle EMG envelope are significantly affected by the hip
exoskeleton. Comparing with the EMG envelope during OFF
mode, the amplitude of average EMG envelope is reduced when
the hip exoskeleton is working on ASS mode (1φ > 0). And
the shape of average EMG envelope changes obviously with the
assistance of hip exoskeleton. In order to further quantify the
changes in muscle activity, the integral of the normalized average
EMG envelope (iEMG) is given by:

iEMG = 1t ·

N
∑

n=1

Yn (18)

where Yn is the nth sample of the normalized average EMG
envelope, N is the total number of EMG samples and 1t is the
integration step time.

As shown in Figure 12, iEMG is computed to quantitatively
evaluate the effect of the active assistance of hip exoskeleton
on the lower limb muscle activity. In this paper, one-way
ANOVA is used for evaluating the significant changing of the
iEMG. As shown in Figure 12, iEMG of five muscle groups
significantly increase from the Free to the OFF condition. This
phenomenon indicates that human muscle activity is enlarged
when exoskeleton is working on power-off mode. The main
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FIGURE 12 | The integral of the EMG activity of all participants at different walking conditions and speeds. The braces with ∗∗ denote statistical significant difference

between two condition (p < 0.01). And ∗ represents a significant difference among trials (p < 0.05).

reason for this phenomenon is that the inertia of exoskeleton are
completely compensated by human body. When exoskeleton is
working on TRAmode, exoskeleton compensates most part of it’s
inertial. Hence, comparing with OFF mode, iEMG in TRAmode
is significantly reduced. When hip exoskeleton is working on ASS
mode iEMG is further reduced, especially for the IL, GM, and RF.
This phenomenon indicates that hip exoskeleton has a greater
influence on the IL, GM, and RF. Furthermore, the reduction rate
of iEMG of IL, GM, and RF are rising with the increase of AR.
But for the iEMG of TA and MG, their reduction rate is smaller
than IL, GM, and RF. And TA is not significantly affected by the
rising of AR.

Combining above experiment results shown in Figures 10,
11, we can see that the motion amplitude of hip joint
is increased and the muscle activity of the main extensor
(GM and RF) and main flexor (IL) of the hip joint are
simultaneously reduced while exoskeleton is working on ASS
mode. And with the rising of AR, the motion amplitude of
hip joint will also increase and the muscle activity of the
main muscle groups of hip joint will reduce too. Therefore,
these results demonstrate that the participants’ hip joints are
successfully assisted when hip exoskeleton is working on ASS
mode (1φ > 0).

5.4.3. Effect of Active Assistance on the Metabolic

Cost
Muscle activity only reflects the energy change of the local muscle
of the human body, but not the energy consumption of the whole
body. Hence, the next part of this section will focus on how
hip exoskeleton affects the human metabolic cost during active
walking assistance experiments.

The human metabolic cost during constant speed walking
and variable speed walking are recorded by a wearable metabolic
system (K5, COSMED, Italy) shown in Figure 8. According to
the experiment process shown in Figure 10C, the metabolic cost
is only recorded in the following experiment process: Free, OFF,
TRA, and ASS. And for each process, the human metabolic
cost, including carbon dioxide rate and oxygen rate, is measured
for 11 min by using breath-by-breath method. The wearable
metabolic system used in our walking experiments is able to
automatically calculate the metabolic power. To compare the
differences in energy power between different participants, the
metabolic power is normalized by the wight of each participant.
And the normalized metabolic power is averaged from the 2
to 10 min of each experiment process. The normalized average
metabolic power of all participants during the active walking
experiment is shown in Figure 13.
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FIGURE 13 | The normalized average metabolic power of all participants during active walking experiments. (A) The normalized average metabolic power during

constant speed walking assistant experiments. (B) The normalized average metabolic power during variable speed walking assistance experiments. The braces with

∗∗ denote statistical significant difference between two condition (p < 0.01). And ∗ represents a significant difference among trials (p < 0.05).

The averaged metabolic power in constant speed walking
experiment is shown in Figure 13A, from which we can find
that the hip exoskeleton is able to significantly affect the human
metabolic power. The statistical significance difference between
each walking mode is evaluated by using one-way ANOVA. First
of all, comparing the averaged metabolic cost in Free walking
mode at 2, 4, and 6 km/h (5.11 ± 0.34, 6.89 ± 0.28, 10.95 ± 0.26
W/kg), the human metabolic power is significantly increased
(p < 0.01) when exoskeleton is working on OFF mode (5.93 ±

0.21, 7.90 ± 0.30, 11.99 ± 0.23 W/kg). And comparing with
OFF mode, the human averaged metabolic power is significantly
reduced (p < 0.01) when exoskeleton is working on TRA
mode (5.41 ± 0.22, 7.13 ± 0.26, 11.21 ± 0.31 W/kg). The main
reason for this phenomenon is that exoskeleton compensates
most of it’s inertial while working on TRA mode. Therefore,
the impedance between human and exoskeleton is reduced.
When exoskeleton is working on ASS mode and the phase
delay is compensated by FADMPs (1φ > 0), the averaged
metabolic power is further reduced and the reduction rate of
the averaged metabolic power is increased with the rising of
AR. The above experiment results demonstrate that the active
walking assistance control method based on FADMPs (1φ > 0)

is able to reduce the human metabolic power during constant
speed walking.

To further investigate the performance of our active assistant
control method during variable speed walking and investigate
the effect of phase compensation on the performance of active
assistance, the variable speed walking assistance experiment is
carried out according to the experiment protocol in section 5.3.
The target velocity of treadmill during variable speed walking
assistance experiment is set as the value shown in Figure 10B.
The normalized average metabolic power in variable speed
walking is shown in Figure 13B. Comparing with the averaged
metabolic power in TRAmode (9.20± 0.22W/kg), the metabolic
power in ASS mode is significantly reduced when 1φ = 0
and 1φ > 0. However, when 1φ = 0, with the rising of
AR, there is no significant changing in the reduction rate of the
averaged metabolic power and the averaged metabolic powers
in ASS0.2, ASS0.3, and ASS0.4 walking modes (8.81 ± 0.25,
8.69 ± 0.21, 8.66 ± 0.26 W/kg) are higher than the averaged
metabolic power in Free condition (8.57± 0.26 W/kg). But when
1φ > 0, on the contrary, the averaged metabolic power is
significantly reduced with the rising of the AR and all of the
averaged metabolic powers in ASS walking mode (8.49 ± 0.20,
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8.31 ± 0.22, 8.07 ± 0.21 W/kg) are lower than the one in Free
walking mode (8.57± 0.26W/kg). Hence, the above experiments
results indicate that the active walking assistance control method
proposed in this paper is effective for both constant speedwalking
and variable speed walking assistance, and the performance of
active assistance becomes better when the phase delay in the
filtered joint trajectory is compensated by the FADMPs algorithm
proposed in this paper.

6. CONCLUSIONS

This paper introduces an exoskeleton active walking assistance
control framework based on FADMPs. FADMPs is an online
learning algorithmwhich is able to online learning and prediction
the human joint trajectory during walking. Comparing with AO
algorithm, FADMPs has three main advantages: (1) The initial
parameters of FADMPs have almost no effect on the performance
of frequency estimation and trajectory prediction. (2) The sudden
change of walking frequency and motion amplitude have no
effect on the performance of frequency estimation and trajectory
prediction. (3) FADMPs can online predict a smoother motion
trajectory by only adjust the phase lead 1φ . Based on these
advantages, the inevitable phase delay in the lowpass filtered joint
trajectory can be online compensated by FADMPs. Therefore, the
active walking assistance control framework based on FADMPs
is able to provide a no-phase-delay assistance to the human joint
during walking.

The active walking assistance control framework proposed
in this paper is suitable for both constant speed walking
assistance and variable speed walking assistance. The simulation
results of active walking assistance indicate that the phase
delay existed in the filtered trajectory is not beneficial to
improve the performance of active assistance. The phase
delay of the filtered trajectory will make the performance of
active assistance become worse with the increase of walking
frequency and AR. The performance of active assistance will be
significantly improved when the phase delay is compensated by
FADMPs, especially for the variable speed walking assistance. The
effectiveness of the proposed active walking assistance control
framework based on FADMPs is further demonstrated by the
active walking assistance experiments. The experiment results
show that the proposed control framework can improve the
range of joint motion, reduce the related low limb muscle
activity and cut down the metabolic cost during walking.
And the reduction rate of human metabolic cost during
variable speed walking is significantly increased when the
phase delay is compensated by the FADMPs. Hence, both
simulation and experiment results show that the active walking
assistance control framework based on FADMPs is benefit
for improving the performance of active walking assistance,
especially for a high speed or variable speed walking assistance
with a high AR.

The main limitation of the active walking assistance control
framework based on FADMPs is that the control frame provide
assistance to human body only when walking frequency is stable.

However, in daily life, walking frequency may change due to
environmental changes or external interference. When human
suffers from an unexpected external inference, human may lose
balance or even fall (Guo et al., 2019). To improve the stability
of human walking, it is necessary for exoskeleton to active assist
human motion when walking frequency is unstable to make
human regain balance faster. Hence, in the future research, we
will investigate an active control framework that can provide
active assistance in both stable and unstable gaits. And we will
try to develop a robot learning system (Bing et al., 2018; Yang
et al., 2018) which enables the exoskeleton to recognize the type of
environment and to choose the optimal assist strategy according
to the different environment (Krausz and Hargrove, 2019).
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