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Subcellular localization is crucial to the study of virus and dis-
eases. Specifically, research on protein subcellular localization
can help identify clues between virus and host cells that can
aid in the design of targeted drugs. Research on RNA subcellu-
lar localization is significant for human diseases (such as
Alzheimer’s disease, colon cancer, etc.). To date, only reviews
addressing subcellular localization of proteins have been pub-
lished, which are outdated for reference, and reviews of RNA
subcellular localization are not comprehensive. Therefore, we
collated (the most up-to-date) literature on protein and RNA
subcellular localization to help researchers understand changes
in the field of protein and RNA subcellular localization. Exten-
sive and complete methods for constructing subcellular locali-
zation models have also been summarized, which can help
readers understand the changes in application of biotechnology
and computer science in subcellular localization research and
explore how to use biological data to construct improved sub-
cellular localization models. This paper is the first review to
cover both protein subcellular localization and RNA subcellu-
lar localization. We urge researchers from biology and compu-
tational biology to jointly pay attention to transformation pat-
terns, interrelationships, differences, and causality of protein
subcellular localization and RNA subcellular localization.
https://doi.org/10.1016/j.omtn.2023.04.015.

Correspondence: Quan Zou, Yangtze Delta Region Institute (Quzhou), University
of Electronic Science and Technology of China, 1 Chengdian Road, Quzhou,
Zhejiang 324000, China.
E-mail: zouquan@nclab.net
Correspondence: Lei Yuan, Department of Hepatobiliary Surgery, Quzhou Peo-
ple’s Hospital, 100 Minjiang Main Road, Quzhou, Zhejiang 324000, China.
E-mail: icbbsuse@sina.com
INTRODUCTION
Proteins synthesized on ribosomes must be transported to their corre-
sponding subcellular structures to performnormal biological functions.
If the proteins are not in the correct locations, serious diseasemay result
(Figure 1). For instance, protein retention in the endoplasmic reticulum
can lead to diabetes and eyelid albinism, protein accumulation in the
endoplasmic reticulum can lead to abnormal signal transduction (Alz-
heimer’s disease), and abnormal transporters can lead to delayed spinal
epiphyseal dysplasia.1 In addition, research on protein subcellular local-
ization (SCL) is beneficial for designing targeted drugs.

SCL of proteins is helpful to predict protein function, reveal molecu-
lar interaction mechanisms, and understand complex physiological
processes, which make the study of protein SCL greatly significant
to cell biology, proteomics, and drug design. Proteins are usually tran-
scribed by RNA molecules, which are distributed in different parts of
the cell. Therefore, the corresponding RNA molecules can be used to
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determine the locations of certain proteins.2 Protein SCL and RNA
SCL are closely related to human diseases. For example, microtu-
bule-associated protein tau (MAPT) is a related protein that encodes
tau. Exon 10 encodes the fourth of four microtubule-binding domains
(R), and disruption of the balance between 4R-tau and 3R-tau iso-
forms leads to the phosphorylation of tau protein, which is the
authoritative hallmark of Alzheimer’s disease.3 In addition, the trans-
location of RNA can lead to the generation of fragile X syndrome and
fragile X-associated tremor ataxia syndrome (FXTAS) (Figure 1).4

SCL is significant for the study of antiviral clues and the discovery of
targeted drugs. In the following, SARS-CoV-2 is used as an example
to explain the relationship between virus and SCL. The outbreak of
the COVID-19 pandemic in 2019 severely affected human health
and life. The novel coronavirus threatens people mainly by affecting
their respiratory system.5 In addition, the novel coronavirus may also
cause sepsis, acute heart damage, and multiple organ dysfunction in
people with poor resistance. The length of coronavirus RNA genomes
range from 26 to 32 kb.6 SARS-CoV-2 virus binds to host cell surface
receptors via the spike (S) protein during entry into host cells.7 SARS-
CoV-2 enters host cells mainly by using S protein to infect human
cells. The S protein binds to the host receptor via the receptor-binding
domain (RBD) in the S1 subunit, and subsequently, the S2 subunit
fuses with the cell membrane. The angiotensin-converting enzyme
2 (ACE2) protein of human cells binds to the S protein of SARS-
CoV-2 to complete the infection process. In other words, research
on the localization of human ACE2 protein can aid in understanding
infection of the human body by the novel coronavirus.8 Conserved
enzymes such as main protease or 3C-like protease (Mpro or
3CLpro), papain-like protease (PLpro), nonstructural protein 12
(nsp12), and RNA-dependent RNA polymerase (RdRP) can be
used as drug targets to help researchers search for anti-coronavirus
drugs.9 In other words, research on RNA SCL (genomics research)
herapy: Nucleic Acids Vol. 32 June 2023 ª 2023 The Authors. 507
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Figure 1. Research significance of subcellular localization problem

(A) Protein and RNA dislocation and disease relationship. (B) Significance of the subcellular localization of B proteins and RNA.
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can help researchers identify routes of coronavirus infection into the
human body, which can lead to the development of safer and more
effective strategies (Figure 1).10

Subcellular location errors of RNA transcripts not only limit the time
and space of translation but also lead to protein toxicity and cellular
error responses.11 In addition, the spatial distribution of RNA affects
the place of translation, leading to the differences of protein concen-
tration and location. In turn, these proteins limit cell function and
response to the environment (Figure 1).

In SCL problems, biological sequences are the main form of data. To
date, there are multiple publicly available RNA SCL databases. These
databases were filtered and integrated several times to generate a rela-
tive centralized and complete database. In contrast, there is almost no
separate database of protein SCL. Protein SCL data are included in a
comprehensive database, which can hinder data collection for study-
ing protein SCL. See supplemental information for changes in RNA
SCL database and protein SCL database (Table 1; Figure 2).

To our knowledge, there have been reviews only on protein SCL,28–33

and no literature has integrated both RNA SCL and protein SCL.
Furthermore, these reviews did not delve into the intrinsic links be-
tween proteins in biology and computational biology. The advantages
of our review are as follows:

(1) This is the first review that covers both protein SCL and RNA
SCL, including changes in protein and RNA SCL databases and
changes in computer algorithms for protein and RNA SCL prob-
lems.

(2) A general approach to protein and RNA SCL on the basis of tradi-
tional machine learning is summarized, which provides a refer-
ence for biological researchers to help them find more effective
strategies for SCL from a biological perspective.

(3) Some suggestions on the construction, verification, and mainte-
nance of SCL models are given.

(4) Future research directions are suggested (i.e., discussing protein
SCL and RNA in the mode transformation and mutual relation-
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ship between traditional biology and computational biology),
which is very important for the thorough study of SCL.

RELATED DATABASE
Protein SCL database

Proteins are an indispensable structural component of the human
body and participate in various life activities. Understanding the po-
sitions of proteins in cells is helpful for understanding the mechanism
of protein activity, which is important for the design of target protein
drugs and the study of biology.

UniProt12 (Table 1) is a comprehensive protein database containing
more than 500,000 pieces of protein information (protein SCL, pro-
tein structure, and interactions). The database incorporates 5 million
virus-related proteins. LOCATE13 is a mouse protein subcellular loca-
tion database published in 2006. LOCATE014 is a database of SCLs of
proteins for mouse and human species published in 2008. LOCATE0

absorbed data from LIFEdb,34 Mouse Genome Informatics,35

UniProt,36 and Ensembl.37 LOCATE has the advantage of containing
automatic classification calculations, experimental localization im-
ages and identification of protein sorting signals. eSLDB15 is a protein
SCL database for species including Homo sapiens, Mus musculus,
Caenorhabditis elegans, Saccharomyces cerevisiae, and Arabidopsis
thaliana. The main source of data is SwissProt. The biggest advantage
of eSLDB is that it uses a more detailed positioning method. eSLDB
uses more detailed localization methods, including experimentally
determined, homology-based, and predicted. PSORTb 3.016 is a pro-
tein SCL database for bacteria. PSORTdb16–18 is a SCL database of
bacterial and archaea proteins that provides certain clues for drug
research and development. PSORTdb is the latest version of Gram-
negative bacteria protein SCL that supports subcellular location pre-
diction simultaneously. Notably, the database that was no longer
accessible is abandoned.

RNA SCL database

With the development of technology, an increasing number of data-
bases have been constructed, which provide the data basis for compu-
tational protein SCL and RNA SCL methods (Table 1 and Figure 2).
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Table 1. Protein database and RNA database

Database Link Time Reference Size Advantage Variety

Protein database

UniProt https://www.uniprot.org 2019 UniProt Consortium12 5,000,000
focus on the improving
the number of viral
reference proteomes

–

LOCATE http://locate.imb.uq.edu.au 2006, 2008
Fink et al. and
Sprenger et al.13,14

122,765

containing automatic
calculation of classification,
experimental positioning
of image data

human and membrane.

eSLDB
http://gpcr.biocomp.unibo.it/
esldb/

2007 Pierleoni et al.15 143,222
more detailed positioning
methods

Homo sapiens, Mus musculus,
Caenorhabditis elegans,
Saccharomyces cerevisiae,
and Arabidopsis thaliana

PSORTdb http://db.psort.org 2016
Rey et al., Yu et al.,
Peabody et al. and
Gardy et al.16–19

1,443
up-to-date database of
Gram-negative bacteria

Grame-negative bacteria

RNA database

lncRNAdb http://www.lncrnadb.org 2011 Amaral et al.20 150
containing a comprehensive
list of lncRNA

–

lncRNAdb
version 2.0

http://lncrnadb.org 2011, 2015
Heinzelmann et al.
and Quek et al.21,22

283
data from 287 papers and the
database are managed manually

–

lncATLAS
https://www.encodeproject.
org

2017 Mas-Ponte et al.23 6,768 specifically for human cells –

LncSLdb
http://bioinformatics.xidian.
edu.cn/lncSLdb

2018 Wen et al.24 11,000

it was most complete at that time
the data can be searched by gene
symbol, genomic coordinates, and
sequence similarity

–

EVmiRNA
http://bioinfo.life.hust.edu.cn/
EVmiRNA

2018 Liu et al.25 1,000
the first database focusing on
miRNA expression profiles of
extracellular vesicles

–

RNALocate
version 2.0

http://www.rnalocate.org 2017, 2022
Zhang et al. and
Cui et al.26,27

213,000 with prediction tools –
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lncRNAdb version 2.021,22 and lncATLAS23 belong to the long
coding RNA database. Among these RNAs, each RNA sequence
in lncRNAdb contains structural information and SCL informa-
tion. lncATLAS contains 6,768 long noncoding RNA (lncRNA) se-
quences distributed in 15 cell sites. RNA sequences were obtained
using RNA sequencing techniques. lncSLdb24 is a lncRNA SCL
database. Specifically, the database is based on data from three spe-
cies and covers more than 11,000 transcripts. Among these tran-
scripts, subcellular sites include chromosomes, ribosomes, and
cytoplasm. lncSLdb includes entries from lncRNAdb,20

RNALocate,26 and lncATLAS, and it requires glycine lengths of
more than 200 nt. In addition, the data can be searched by gene
symbol, genomic coordinates, and sequence similarity. In biology,
micrononcoding RNAs (miRNAs) are involved in posttranscrip-
tional regulation. Research has shown that the miRNAs in normal
and diseased cells were different.21,38,39 Further understanding of
miRNAs can help scholars improve their understanding of the
pathological mechanism. EVmiRNA25 is an miRNA database
that includes the relationship between miRNA and disease, which
is the first database focusing on miRNA expression profiles of
extracellular vesicles.
RNALocate version 2.027 is an RNA SCL database developed through
manual management that includes more than 213 thousand samples
and covers 104 species and 171 SCLs. In addition, RNALocate also in-
cludes lncSLdb, lncATLAS, and EVmiRNA samples, which allows
RNALocate to cover a wider range of RNA types, species, and
SCLs. RNALocate is the primary version of RNALocate version 2.0.
To date, RNALocate version 2.0 is the latest and most comprehensive
RNA SCL database.

As we can see from Figure 2, there are references between the main-
stream RNA databases. lncRNA localization data are an important
part of RNA SCL. lncRNAdb, lncRNAdb version 2.0, lncATLAS,
and lncSLdb are all SCL databases of lncRNAs.

SCL MODELS
SCL models based on traditional machine learning

Protein SCL models based on traditional machine learning

In the past half century, breakthrough progress has been made in the
SCL of proteins on the basis of traditional machine learning (Table 2;
Figure 3). In 1994, Nakashima and Nishikawa58 first tried to distin-
guish intracellular and extracellular proteins by amino acid
Molecular Therapy: Nucleic Acids Vol. 32 June 2023 509
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Figure 2. Cross-referencing of databases
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composition (AAC) and achieved good results. Hua and Sun59 estab-
lished the first protein SCL prediction system on the basis of a support
vector machine (SVM) in 2001 and 2002 on the basis of previous
studies. Although the SCL models based on traditional machine
learning before 2017 are of great significance for research on the
SCL problem, only those after 2017 are presented because of limited
space (pre-2017 models are shown in supplemental information sec-
tion 3 and Table S1).

Models for SCL of eukaryotic proteins. In view of the special biolog-
ical functions of multilocus proteins, the gposc-ecc-mplc model and
gnegc-ecc-mploc model were constructed to generate multiple pro-
tein SCL models of Gram-negative bacteria. The pLoc_bal_mEuk
model is designed to identify the eukaryotic protein SCL, which de-
creases the prediction bias to a certain extent through data balance
processing.60

Models for SCL of bacterial proteins. PSORT, which predicts protein
SCL on the basis of amino acid sequence and source information, is
one of the early methods to use computer technology for protein
SCL. An apolar algorithmwas used to build the PSORTmodel.61 Sub-
sequently, the decision algorithm was used to improve PSORT to
generate Psort-II.62 Shen et al.29 used the multikernel SVM model
to construct a protein SCL model, which is a multilabel classification
model. The PsePSSM, DWT, and AvBlock were used to extract fea-
tures. The integrated kernel was applied to train the SVM. Experi-
mental results showed that combining features can promote the abil-
ity of the model. The pLoc_bal-mGops43 model used hypothesis
training samples IHTS to solve the data imbalance problem by adding
some hypothesis or theory samples to a smaller subset. PseAAC the-
ory was used to extract features and combined with multilabel
Gaussian regression ML-GKR to construct the classifier.

Models for SCL of animals and plants. Although the Ploco-Manimal
model has advantages in protein prediction, the model is trained on
an extremely imbalanced dataset. Therefore, the model will inevitably
have bias.40 Ding et al.41 constructed a model for the human protein
SCL. Protein SCL is a multilabel classification problem that is trans-
formed into a binary classification for analysis. The PsePSSM, PSSM-
DWT, PSSM-AB, PsePP, PP-DWT, and PP-AB were applied for
feature extraction. Subsequently, the features were used as kernels
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and combined with a multikernel learning on the basis of kernel
target alignment (KTA-MKL). The KNB algorithm was used to train
the model. Pan et al. constructed a protein SCL model using an
embedding method. The model is based on protein-protein informa-
tion and uses minimum redundancy maximum relevance (MRMR)
for feature selection to further analyze important embedded features.
Plant-msubp is a protein SCLmodel based on ensemble learning. The
dataset was derived from the UniProt database and searched using the
keywords “SUBCELLULAR LOCATION AND Review: Yes.” Those
protein sequences marked “PROBABLE,” “POSSIBLE,” AND “BY
SIMILARITY” were removed. Three methods were used to extract
features, including AAC, DIPEP, PseAAC, and NCC AAC. Then,
these feature matrices were input into the SVM for training to
generate the classification model.48 Considering that other protein
SCL models only analyze the features of the protein, Liu et al.46 pro-
posed the embedding algorithm, which can take nodes as coding in-
formation. The embedding algorithm can link the network with the
traditional classification algorithm, which provides a new idea for
the problem of protein SCL. On the basis of this link, Mashup was
trained as a protein SCL model. Only the optimal feature subset
and classifier were applied to train the model. The synthetic minority
oversampling technique (SMOTE) was used to balance the training
dataset. The decision tree, k-nearest neighbor (KNN), random forest
(RF), and SVM were used for classification. The experimental result
found that the trained model with features after selection was better.
Therefore, feature selection is a significant step for protein SCL.47

Given the inability of neural networks to accurately interpret features
within the model, IPSORT was developed to achieve the accuracy of
TargetP using the amino acid index and alphabet indexing to concat-
enate the approximate pattern.63 The pLoc_bal-mAnimal42 and
Ploc_bal-mHum44 models were built using the same methodology
as pLoc_bal-mGops.43 In addition, there are separate SCL models
for viruses and yeasts. The pLoc_bal-mVirus45 constructed the model
in the same way that pLoc_bal-mGops43 does. Bayes was used in the
study of protein SCL. Drawid et al.64 extracted the interval probability
of proteins on the basis of 30 different features to generate a Bayesian
system, which was tested on yeast genes.

RNA SCL models based on traditional machine learning

RNA SCL models contain mainly lncRNA and mRNA models.

Models for SCL of lncRNA. lncRNAs are found in the nucleus, chro-
matin, and cytoplasm of cells. With the development of biotech-
nology and computer science, an increasing number of lncRNA se-
quences have been discovered. Because of the low conservative
nature of lncRNAs, functional annotation for lncRNAs is difficult.
Therefore, it is urgent to annotate lncRNAs with computational tech-
niques (Table 2; Figure 3).

The training and testing data for Lnlocate49 are sourced from the
RNALocate database. The dataset includes 301, 152, and 25 RNA se-
quences in the cytoplasm, nucleus, and exosome, respectively. Lnlo-
cate uses the SMOTE technique to integrate unbalanced data into
balanced data. Lnlocate first uses the k-mer to learn elementary
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Table 2. Models of protein SCL and RNA SCL based on traditional machine

learning

Model/author Species Algorithm Time Reference

Models of protein SCL

pLoc-mAnimal Animals ML-GKR 2017 Cheng et al.40

Ding human KTA-MKL 2017 Ding et al.41

pLoc_bal-
mAnimal

animal ML-GKR 2019 Cheng et al.42

pLoc_bal_
mGops

Gram-positive
bacteria

ML-GKR 2019 Xiao et al.43

Ploc_bal-
mHum

human ML-GKR 2019 Chou et al.44

pLoc_bal-
mVirus

virus ML-GKR 2019 Xiao et al.45

shen
Gram-negative
bacteria

SVM 2020 Shen et al.29

Liu

animal, plant,
fungi, GN
bacteria,
and Gram-
positive
bacteria

SVM/RF 2021 Liu et al.46

Pan human
DT, KNN,
SVM

2021 Pan et al.47

Plant-msubp plant SVM 2021 Sahu et al.48

Models of RNA SCL

lncLocator – RF, SVM 2018 Cao et al.49

iLoc-lncRNA – SVM 2018 Su et al.50

Locate-R – LD-SVM 2020 Ahmad et al.51

mRNALocater – SVM 2021 Tang et al.52

SubLocEP – LGBM 2021 Li et al.53

zhang –

LGBM,
XGBoost,
CatBoost

2022 Zhang et al.54

TACOS –
tree
stacking

2022 Jeon et al.55

RNAlight – LGBM 2023 Yuan et al.56

Shubham – XGBoost 2023 Choudhury et al.57
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features and then uses an unsupervised stack encoder AE to extract
more advanced features. Then, RF and SVM are used for the basic
classifier. Finally, the four basic classifiers are presented (including
k-mer-based RF, K-mer-based SVM, AE-based RF and AE-based
SVM). The output is fed into a three-layer neural network model.
Lnlocate is a model that combines traditional machine learning and
deep learning. ILoc-lncRNA50 integrated nucleotide characteristics
through binomial distribution and used the features for lncRNA pre-
diction. The ILoc-lncRNA dataset is from RNALocate. When pro-
cessing the data, the CD-Hit was required to be greater than 80%, re-
sulting in 655 RNA sequences (the number of cytoplasmic, ribosome,
and exosome is 426, 43, and 30, respectively). In addition, ILoc-
lncRNA performed feature analysis using principal-component anal-
ysis (PCA), ANOVA,MRMR, and diffusion graphs and combined the
retained features with SVM to construct the classifier. Locate-R51 is a
SCL model targeting long noncoding regions. The dataset is from
RNALocate. CD-Hit is required to be greater than 80%, and the final
dataset is exactly consistent with ILoc-lncRNA. Locate-R uses
SMOTE to balance the class. Locate-R extracts the features of
l-mers and n-gap l-mers and inputs the selected features into the local
depth SVM (LD-SVM) to train the model. TACOS is a novel
approach for cell-specific lncRNA SCL, which is the first application
based on tree stacking and involves SCL of 10 different cell types.
TACOS fuses 10 different feature descriptors and uses an appropriate
tree to train the model.55 RNAlight is an RNA SCL model based on
light gradient boosting machine (LGBM) for identifying nucleotide
k-aggregates that contribute to mRNA and lncRNA SCL. In addition,
RNAlight was extended to other types of RNA SCL.56

Models for SCL of mRNA. MRNALocator is an mRNA SCL model.
The electron-ion interaction pseudopotential (PseEIIP) values of tri-
nucleotides and the pseudo-k-tuple nucleotide composition
(PseKNC) were applied to extract features from RNA sequences. Sub-
sequently, the nonfeature selection scheme is used to select features.
The selected features are combined with LGBM, XGBoost, and
CatBoost to train the mRNALocator.52 SubLocEP53 is a two-layer in-
tegrated model on the basis of machine learning, and the base classi-
fiers are trained by LGBM. SubCLocEP is a SCL classification model
for predicting prokaryotic mRNAs that uses both opportunistic
sequence characteristics and physicochemical properties. To address
human mRNA SCL, Zhang et al.54 constructed a model based on
traditional machine learning. MRNA subcellular location data was
obtained from the RNALocate database. To achieve low data redun-
dancy, CD-HIT-EST was applied to cluster the data with an 80% cut-
off value. K-tuple (k-mer) nucleotide composition, pseudo-k-tuple
nucleotide composition, position correlation scoring function and bi-
nary coding were utilized for feature extraction. To reduce the influ-
ence of noise, incremental feature selection was used to determine the
optimal feature sets. The selected features are input into the SVM to
generate the predictor. Choudhury et al.57 evaluated both models on
the basis of machine learning and deep learning, and finally deter-
mined on a hybrid technique that combines the XGBoost model
and subject search. Short time is one of the main characteristics of
this model.

Construction of SCL model based on traditional machine

learning

After further insight into the protein SCL model and the RNA SCL
model, we summarized the traditional machine learning method-
based modeling for SCL. We expect to provide a clear research direc-
tion for biomedical researchers (Figure 4).

Data pretreatment

To date, the data types for SCL problems have been sequences
(including protein sequences and RNA sequences). Raw data gener-
ally contain missing values, NAN values, and unreasonable values.
Therefore, data cleaning is needed to improve data quality and the
possibility of data mining. SCL is generally a multiclassification
Molecular Therapy: Nucleic Acids Vol. 32 June 2023 511
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Figure 3. Published timeline of protein and RNA subcellular localization models

(DL RNA models (deep learning RNA models), ML RNA models (machine learning RNA models), ML protein models (machine learning protein models), DL protein models

(deep learning protein models)).
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problem, where the data imbalance problem will lead to serious bias
of the model. In the training set, the data imbalance will cause the
computer to focus on the data of rich classes. At this point, the model
will be biased. Therefore, reducing the impact of data imbalance be-
comes critical.

Undersampling and oversampling are common approaches. Under-
sampling achieves data balance by reducing the number of samples
of rich classes. The balanced data are constructed by saving all the
rare samples and randomly selecting the same number of rare sam-
ples in the rich category. This approach is more reasonable when
the amount of data is large enough. Obviously, the disadvantage of
undersampling is that large amounts of data will be lost, even if the
model learns only part of the overall pattern.65 The principle of
Easy-Ensemble is to undersample the original data many times,
generate multiple different balanced training sets, and then train mul-
tiple different classification sets. The result can be obtained by
combining the output of multiple classification sets.66 Near-Miss
uses KNN to select the most representative sample. In essence,
Near-Miss is a prototype selection method, which means that the
most representative samples are selected from rich classes for
training, and it requires considerable computation.67 In addition,
clustering is also one of the directions. The majority class is clustered
(the number of targets in the cluster is the same as the number of sam-
ples in the rare class). The center point of each cluster is taken as the
new sample of rich classes, and all the samples of rare classes are com-
bined to generate a balanced training set.68

Accordingly, oversampling is a more appropriate method when the
amount of data is insufficient. The principle of oversampling is to
balance the dataset by adding the rare samples. Rare samples are gener-
ated by using repetition, bootstrapping, or syntheticminority oversam-
pling. In essence, neither undersampling nor oversampling has abso-
512 Molecular Therapy: Nucleic Acids Vol. 32 June 2023
lute advantages. The application of oversampling and undersampling
depends on the target and the dataset. The combination of oversam-
pling and undersampling is also one of the feasible directions. The
Monte Carlo sample expansion method is a computational method
whose principle is to identify the system through many random sam-
ples and then obtain the value to be calculated. The advantages of the
Monte Carlo sample extensionmethod are that it is simple, easy to un-
derstand and flexible.69 SMOTE70 is an improved scheme based on a
random oversampling algorithm, which is usual to solve imbalanced
data problems and has been widely accepted. The principle of the
SMOTE algorithm is to analyze and simulate rare class samples and
add artificial simulated new samples to the dataset to solve the imbal-
ance problem in the original data. KNN technology is used in the simu-
lation process of the SMOTE algorithm. The steps of generating new
samples are as follows: (1) select n rare samples randomly, (2) find
the rare samples of the initial expansion, (3) find the m rare samples
closest to the initial sample above, and (4) select anypoint in the nearest
m rare samples. The point is the newly added sample data.

The trait of adaptive synthetic sampling (ADASYN)71 is to automat-
ically conform the number of synthetic samples on the basis of the
distribution of data. Instead of SMOTE, which roughly synthesizes
the same number of rare class samples. The steps are as follows: (1)
calculate the total number of samples G to be synthesized; (2) for
each minority sample xi, determine its k-neighbor points and calcu-
late the distribution proportion G; (3) and calculate the number of
samples gi to be synthesized for each rare sample xi. Then, the
SMOTE algorithm is used to synthesize new samples.

Feature extraction

Feature extraction is the process of converting raw data that cannot be
recognized by traditional machine learning algorithms into numerical
features that can be recognized by the algorithm. In traditional
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Figure 4. Flowchart of the protein and RNA subcellular localization model

(A) Data progress; (B) feature extraction; (C) feature selection; (D) machine learning algorithm (amino acid composition (AAC), Enhanced amino acid composition (EAAC), The

composition of the k-spaced amino acid pair (CKSAAP), Composition of k-Spaced Amino Acid Group Pairs (CKSAAGP), tripeptide composition (TPC), dipeptide composition

(DPC), Grouped dipeptide composition (GDPC), Grouped Tripeptide Composition (GTPC), conjoint triad (CTriad), Grouped amino acid composition (GAAC), Enhanced

GAAC (EGAAC), The principle of nucleic acid composition (NAC), Dinucleotide Composition (DNC), Trinucleotide Composition (TNC), Enhanced nucleic acid composition

(ENAC), The composition of k-spaced nucleic acid pairs (CKSNAP) accumulated nucleotide frequency (ANF), Electron-ion interaction pseudopotentials of trinucleotide (EIIP),

Electron-ion interaction pseudopotentials of trinucleotide (PseEIIP), Nucleotide chemical property (NCP), Dinucleotide-based autocovariance (DAC), trinucleotide-based

auto covariance (TAC), Dinucleotide-based Cross Covariance (DCC), Trinucleotide-based Cross Covariance (TCC), dinucleotide-based autocross covariance (DACC),

Trinucleotide-based AutoCross Covariance (TACC). Pseudonucleic acid composition (PseNAC), pseudo-k-tuple nucleotide composition (PseKNC), parallel correlation

pseudodinucleotide composition (PC-PseDNC), parallel correlation pseudotrinucleotide composition (PC-PseTNC), series correlation pseudodinucleotide composition (SC-

PseDNC), and series correlation pseudotrinucleotide composition (SC-PseTNC). For more details, please check the section of feature extraction based on protein sequence

and feature extraction methods for RNA.
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machine learning, effective features are significant and are tightly
connected with the performance of models.

Protein feature extraction methods

Feature extraction based on protein sequence

The protein sequence is mainly composed of 20 common amino
acids, and the differences in different types of proteins can be directly
reflected in the sequence.

The main purpose of AAC is to calculate the frequency of amino
acid types in peptide sequences or proteins, and the feature dimen-
sion is 20 (because there are 20 amino acids). Enhanced AAC
(EAAC) was developed on the basis of AAC, whose principle is
to calculate AAC on the basis of a sequence window of fixed length
(sequence sliding continuously from the N terminus to the C termi-
nus). The composition of the k-spaced amino acid pair (CKSAAP)
coding principle calculates the frequency residual of any split pair of
residues (the maximum spacing is 5). Composition of k-spaced
amino acid group pairs (CKSAAGP) is an advanced version of
CKSAAP (maximum disability separation increased to 25). The
purpose of tripeptide composition (TPC) and dipeptide composi-
tion (DPC) is to calculate tripeptide and dipeptide components,
which have dimensions of 8,000 and 400, respectively. Grouped
DPC (GDPC) is an advanced version of DPC that consists of 25 de-
scriptors and calculates the ratio of amino acid type groups to the
number of dipeptides. Accordingly, grouped TPC (GTPC) is an
advanced version of TPC that outputs 125 descriptors that calculate
the ratio of amino acid type groups to the number of tripeptides.
Dipeptide deviation from expected mean (DDE) is based on the
dipeptide layer, theoretical mean, and theoretical variance to extract
features. BINARY uses a binary code to represent each amino acid,
which is typically used to encode peptides of equal length. The cod-
ing principle of the conjoint triad (CTriad) is carried out by treating
three consecutive amino acids as a single unit, considering the prop-
erties of amino acids and their neighbors. k-spaced conjoint triad
(KSCTriad), a variant of CTriad, counts not only three consecutive
amino acids but also consecutive amino acids separated by any
number of residues.72,73

Feature extraction based on the physical and chemical

properties of proteins

Grouped AAC (GAAC) is a feature extractionmethod based on phys-
ical and chemical properties, whose purpose is to calculate the fre-
quency of each amino acid group. Enhanced GAAC (EGAAC) is an
enhanced version of GAAC that adds fixed-length windows. In other
words, EGAAC calculates the GAAC based on windows of fixed
length. CTDC calculates the proportion of polar, neutral, and hydro-
phobic residues in a protein. CTDT calculates the percentage fre-
quency of the neutral residue after the polar residue or in reverse.
CTDD calculates the frequency over the entire sequence from the
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location of the first residue of a given group to the location of the res-
idue occurring at a given frequency.

Feature extraction methods for RNA

Feature extraction based on RNA sequence

The principle of nucleic acid composition (NAC) is to calculate the
frequency of each type of nucleic acid in the sequence. Dinucleotide
composition (DNC) and trinucleotide composition (TNC) count di-
nucleotides and trinucleotides, whose dimensions are 16 and 64,
respectively.

Enhanced NAC (ENAC), a variant of NAC, calculates NAC on the
basis of a sequence window of fixed length (sequence slides contin-
uously from the 50 end to the 30 end). Binary is a binary code for
each nucleotide (A = 1000, C = 0100, G = 0010, T[U] = 0001),
which is usually used to encode nucleotide sequences of equal
length. The composition of k-spaced nucleic acid pairs (CKSNAP)
calculates the frequency of nucleic acid pairs isolated from any nu-
cleic acid. The principle of accumulated nucleotide frequency (ANF)
is to calculate the nucleotide frequency information and the density
of any nucleotide in the RNA sequence. Electron-ion interaction
pseudopotentials of trinucleotide (EIIP) computes the electron-ion
interaction pseudopotentials of trinucleotides in RNA sequences.
Electron-ion interaction pseudopotentials of trinucleotide
(PseEIIP) use the EIIP average of trinucleotides in each sample to
construct the feature vector.

Feature extraction method based on the physical and chemical

properties of RNA

Nucleotide chemical property (NCP) is determined according to
the chemical structure and chemical properties of the nucleotides
encoding (A = [1,1,1], C = [0, 0], G = [0, 1], U = [0, 1]). Dinucle-
otide-based autocovariance (DAC) and trinucleotide-based auto-
covariance (TAC) are calculated as the correlation of the same
physicochemical indices between dinucleotides or trinucleotides
separated by subsequent nucleic acids along the sequence. Dinu-
cleotide-based cross-covariance (DCC), and trinucleotide-based
cross-covariance (TCC) calculate the correlation of the same phys-
icochemical index between two dinucleotides (trinucleotides) sepa-
rated by a lag distance along the sequence. DAC and DCC are
combined to generate the dinucleotide-based autocross covariance
(DACC) code. Accordingly, TAC and TCC combine to form trinu-
cleotide-based auto-Cross-covariance (TACC). Pseudo-NAC
(PseNAC) is obtained on the basis of local sequence order infor-
mation and remote sequence effects, whose derived feature extrac-
tion methods include pseudo-k-tuple nucleotide composition
(PseKNC), parallel correlation pseudo-DNC (PC-PseDNC), paral-
lel correlation pseudo-TNC (PC-PseTNC), series correlation
pseudo-DNC (SC-PseDNC), and series correlation pseudo-TNC
(SC-PseTNC). PseDNC is obtained by combining continuous local
sequence order information and global sequence order informa-
tion. PC-PseDNC is a variant of PseDNC that uses 38 default
physicochemical indices, and PseDNC uses 6 default physico-
chemical indices.72,73
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Feature selection

Feature selection is the process of selecting a subset of available fea-
tures that are useful to the model (the useless features are eliminated).
Feature selection can improve the performance of the model and help
researchers understand the characteristics and underlying structure
of the data, which plays an important role in further improving the
model and algorithm.

The principle of the filtering method is to calculate the information
S(i) of each feature Xi relative to the label y and obtain n results.
Then, sort the n S(i) in descending order and output the top k fea-
tures. Generally, the Pearson correlation coefficient, chi-square test,
mutual information, and maximum information coefficient, distance
correlation coefficient and variance selectionmethod are used tomea-
sure S(i). Minimum redundancy maximum correlation is a filtering
feature selection method whose goal is to maximize the correlation
between features and categorical variables. MRMR considers not
only the correlation between features and labels but also the correla-
tion between features. The wrapping method is based on the hold-out
method. Specifically, for each feature subset to be selected, the model
is trained on the training set, and then the feature subset is selected on
the test set according to the error. Greedy search, which is locally
optimal, needs to be combined. Greedy algorithms can reduce the
computational complexity.74

The embedding method is a feature selection method based on the
penalty term, which selects features through the L1 regularization
term. The L1 regularization method has the characteristic of a sparse
solution, so it can be used for feature selection. The absence of features
in L1 does not mean the features are unimportant. Because only one
of two highly correlated features may be retained, the L2 regulariza-
tion method can be used to determine which feature is crucial.
MRMD2.0 (Max-Relevance-Max-Distance) achieves a balance be-
tween feature ordering, prediction accuracy, and stability by sorting
high-dimensional features to get rid of important information.
Compared with other feature selection algorithms, the biggest advan-
tage of MRMD2.0 is stability, which can ensure that the feature vector
with reduced dimensions can obtain excellent performance.75

The low variance feature extraction method drops the features with
very low variance. In the multicollinearity feature extraction method,
when there is correlation between any two features, multicollinearity
will occur. Traditional machine learning expects that each feature
should be independent of the others, which means low collinearity.
The objective is to select features with low collinearity.

Feature selection on the basis of feature importance is also an impor-
tant strategy. Decision tree, RF, LGBM, and XGBoost split the data
using a feature that minimizes impurities. Finding the optimal fea-
tures is a pivotal part of classification. The goal of PCA is to decrease
the dimensionality of the high-dimensional feature space. The orig-
inal features are reprojected into new dimensions (principal compo-
nents). The goal is to find the number of features that explain the vari-
ance in the data.76
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Traditional machine learning algorithm

Traditional machine learning is the study of a particular algorithm
(rather than a specific algorithm) that allows a computer to learn in
a training set to predict the new samples. Supervised learning algo-
rithms are dominant in protein SCL and RNA SCL. On the basis of
the understanding and summary of the protein SCL model and
RNA SCL model, SVM is recognized as the commonly used tradi-
tional machine learning algorithm.

SVM is a classification algorithm. SVM presents sample features as
points in space and uses functions to segment sample points. SVM
is only suitable for binary classification problems. In the multiclas-
sification problem, the multiclassification problem needs to be
transformed into multiple binary classification problems to use
SVM.77 In addition, in the protein SCL and RNA SCL problems,
the tree model is one of the methods. The tree model includes
RF,78 boosting,79 XGBoost,80 and LGBM.81 The tree model is the in-
ternal node of tree mode signal generated by the learning of the da-
taset. The internal node represents the judgment of an attribute. In-
formation entropy is used to measure uncertainty. The stronger the
uncertainty, the greater the information entropy. The weaker the
uncertainty, the lower the information entropy. In the feature selec-
tion of the tree model, the feature with maximum information gain
is selected. After building the first layer of the tree for the feature
with the greatest gain, recursion is continued to find the feature
with the greatest gain in addition to the previous feature with the
greatest gain. By that analog, until all the leaf nodes are output,
the sample can be traversed.

In traditional machine learning, appropriate algorithms need to be
selected according to the training set. In addition, ensemble
learning is often used to construct models. Ensemble learning
generally consists of two stages. The first stage uses a separate
method whose aim is to obtain a base classifier by training sam-
ples. In the second stage, the voting method is used for ensemble
learning (combining different base classifiers). When the differ-
ence between base classifiers is large, the effect of the integration
model is more obvious.82

Model evaluation

The evaluation index is the standard to measure the performance of
the model. Reasonable use of evaluation indicators is the basis of
training excellent performance model. ACC (Equation 3) is a com-
mon indicator of evaluation, showing the accuracy of model predic-
tion. However, ACC cannot evaluate the performance of models on
unbalanced test sets. At this time, more comprehensive evaluation in-
dicators were introduced, including F-score83 and Matthews’ correla-
tion coefficient (MCC) (Equation 5). F-score (Equation 4) is a
comprehensive evaluation indicator of precision (Equation 1) and
recall (Equation 2). MCC84 is designed to measure the correlation be-
tween actual and predicted labels, and it is a widely accepted compre-
hensive performance evaluation indicator. FP means that the actual
sample is negative, but the predicted sample is positive. FN represents
that the actual sample is negative, and the actual sample is also nega-
tive. TN means that the actual sample is positive, but the predicted
sample is negative.85

precision =
TP

TP + FN
(Equation 1)

recall =
TN

TN + FP
(Equation 2)

ACC =
TP +TN

TP +TN + FP + FN
(Equation 3)

F � score =
2TP

2TP + FP + FN
(Equation 4)

MCC =
TP � TN � FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP + FPÞ � ðTP + FNÞ � ðTN + FPÞ � ðTN + FNÞp

(Equation 5)

RNA SCL modeling based on deep learning

Protein SCL models based on deep learning

To study the SCL of proteins frommultiple aspects, SCLmodels based
on deep learning have been widely discussed (Table 3; Figure 3).

The image-based method can be used to analyze the spatial distri-
bution and location changes of proteins in normal and cancerous
tissues. Newberg and Murphy proposed a framework for analyzing
protein spatial distribution, in which SCL features were used to
identify protein subcellular patterns in images. NNPSL is a protein
SCL model based on an artificial neural network (ANN). NNPSL
constructs two kinds of neural networks for the SCL of prokaryotic
and eukaryotic protein sequences: one network with a simple full-
link layer and the other with a hidden layer. Among these networks,
the subcellular sites of prokaryotes include not only the cytoplasm,
extracellular space, mitochondria, and nucleus of eukaryotes but
also the cytoplasm, extracellular space, and periplasmic space of
prokaryotes.106 The dataset proposed by Hubbard uses a self-orga-
nizing model to construct the SCL model (the self-organizing model
is a typical neural network).86 TargetP developed a neural network-
based model using N-terminal amino acid sequences, whose target
was to distinguish between mitochondria and chloroplasts.87 Given
the inability of neural networks to accurately interpret features
within the model, IPSORT was developed to achieve the accuracy
of TargetP using the amino acid index, and alphabet indexing
concatenated the approximate pattern.63 Bodén and Hawkins88

used the targetP dataset to train the biased cyclic network model
based on sequence. PredSL uses neural networks, Markov chains,
contour-hidden Markov models and scoring matrices to construct
protein SCL models based on N-terminal sequences, with subcellu-
lar locations including chloroplasts, thylakoids, mitochondria, secre-
tory pathways, and others.88 DeepYeast is trained to study protein
SCL problems, considering the limitations of protein sequences. A
convolutional neural network (CNN) is used for model training.89

Kumar et al.107 suggested that cancer markers could be identified
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Table 3. Models of protein SCL based on deep learning

Model/author Algorithm Time Reference

Models of protein SCL

Hubbard NN 2000 Cai et al.86

TargetP NN 2002 Emanuelsson et al.87

PredSL cyclic network 2005 Bodén et al.88

DeepYeast CNN 2017
Pärnamaa
and Parts89

MIC_Locator CNN 2019 Yang et al.90

ImPLoc CNN 2020 Long et al.91

zhang CNN 2022 Zhang et al.92

Cytoself
self-supervised deep
learning encodes

2022 Kobayashi et al.93

Aggarwal et al.
artificial intelligence
stack ensemble
approach

2023 Aggarwal et al.94

PScL-2LSAESM
two-level stacked
autoencoder network

2023 Ullah et al.95

Ding et al.

multi-scale and multi-
model deep neural
network through an
ensemble strategy

2023 Ding et al.96

Models of RNA SCL

DeepLncRNA NN 2018
Gudenas
and Wang97

RNATracker CNN 2019 Yan et al.98

LncRRIsearch NN 2019 Fukunaga et al.99

LncLocator2.0 NLP 2021 Lin et al.100

DM3Loc CNN 2021 Wang et al.101

DeepLncLoc text CNN 2022 Zeng et al.102

GraphLncLoc GCN 2023 Li et al.103

DeepmRNALoc DNN 2023 Wang et al.104

GM-LncLoc GCN 2023 Cai et al.105
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by measuring changes in protein expression levels and SCL between
normal tissues and cancerous tissues.

MIC_Locator is a protein SCL model that converts immunohisto-
chemical images into the frequency domain to capture local features
and achieves better performance on a multilabel classification
model.90 Zhang et al.92 trained a protein SCL model on the basis of
microscopic images. IF images were obtained from the HPA database,
and different sizes were contained. The selective line search algorithm
was used to crop the original image and obtain an image with a uni-
form size of 512 � 512. DenseNet was applied as the backbone
network, which is an extension of ResNet. Meanwhile, multitask
learning strategies and generating image masks were applied to
improve the performance. In addition, the experiment found that
the feature fusion method based on a CNN has better performance
than the limit-based model. ImPLoc is a deep learning model for pro-
tein SCL based on immunohistochemical (IHC) images. The tissue
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map of the Human Protein Atlas (HPA) contains the IHC image,
which allows the distribution of proteins at both the tissue and
cellular levels to be visualized. The feature extraction method of
deep CNN extracts the features of the image. The autoattention
encoder was used to fuse multiple features to construct the model.91

Cytoself is an image-based protein SCL model, which use self-super-
vised deep learning encodings. Cytoself is a rare model that applies
self-supervised learning in SCL.93 Aggarwal et al.94 developed a model
for targeting protein SCL inmicroscopy images on the basis of an arti-
ficial intelligence stack ensemble approach (by using 231,072 sam-
ples). Each sample consists of four images. Aggarwal et al.94 use three
of the four images to train the model, and the model involves 28 sub-
cellular locations. PScL-2LSAESM is a model for protein SCL based
on biological images, which is a novel two-level stacked autoencoder
network (2L-SAE-SM) that aims to improve performance by inte-
grating heterogeneous features. In the 2L-SAE-SM first level, each
optimal heterogeneous feature set is incorporated to train the model.
The outputs of the first level are defined as intermediate decision sets,
which are averagely integrated to generate the second-level SAE-
SM.95 Ding et al.96 proposed a multi-scale and multi-model deep neu-
ral network through an ensemble strategy. The model uses protein
SCL on single-cell high-throughput images to train the model, which
provides a foundation for the study of protein and gene functions.

From the perspective of protein SCL models based on deep learning,
the CNN model is widely accepted. CNN is an effective approach for
graph classification, which mainly includes convolution, pooling
layer, and full connection layer. Themain objective of the convolution
layer is to retain the features of the image. The main function of the
pooling layer is to limit reduction of the data, which can effectively
avoid overfitting. Fully connected layer is used to output the classifi-
cation results. The convolution layer can be used separately for
feature extraction, which can effectively combine deep learning and
traditional machine learning. In addition, self-supervised learning
has also been introduced to the SCL, which may present new oppor-
tunities for SCL.

RNA SCL models based on deep learning

Considering the size of the RNA SCL training dataset, there are rela-
tively few RNA SCL models based on deep learning so far (Table 3;
Figure 3). Coincidentally, the current mainstream RNA SCL models
based on deep learning focus on lncRNAs rather than mRNAs. The
reason for this coincidence may be the limitation of the data.

DeepLncRNA97 is a feedforward multilayer neural network model for
SCLbased on lncRNAs. The size of the training setwas 93 SCL samples
of human RNA, 48 belonging to the nucleus and 45 belonging to the
cytoplasm. K-mer is used for feature extraction. k is set in the range
of 2–5 to calculate the nucleic acid frequency. DeepLncRNAuses three
rectified linear unit activation functions as the three hiding layers and
softmax as the output layer. For overfitting problems, DeepLncRNA
reduces the impact by randomly partitioning the connecting half of
each layer. In addition, DeepLncRNA makes the dropout randomly
block some hidden units in each layer, which improves the
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generalization ability of the model. The backpropagation algorithm is
used to adjust the weights of the DeepLncRNA networks. A new deep
neural network, known as RNATracker,98 was used to predict the dis-
tribution of RNA transcripts in the subcellular compartment. The
model uses CNN technology to construct the network, utilizing
sequence information and secondary structure to train themodel. Hu-
man and mouse lncRNA-lncRNA and lncRNA-RNA interactions are
applied to train LncRRIsearch,99 which can be used to predict syn-
thetic interaction, tissue specific, and subcellular interaction patterns.

LncLocator2.0100 is a CNN model targeting lncRNAs, whose data
type is RNA sequence. LncLocator2.0 uses CNRCI values (the loga-
rithmic ratio of the concentration of two samples) and sequence
length (the sequence length of the samples is required to be less
than 1,000) to filter the data. First, natural language processing
(NLP) was used to analyze RNA sequences, and the results were con-
nected to a CNN to predict location. The classification result contains
the CNRCI value for each location, which can be considered to
confirm the sublocation. DM3Loc is an mRNA SCL model based
on deep learning, which is encoded by one-hot, where T and U share
the same coding. Sequences are filled or truncated to fix the sequence
length at 8,000 nt. A CNN is applied to train the model. At the same
time, different attention weights were set to optimize the model.101

Like the protein SCL models based on deep learning, the effective al-
gorithm of deep learning for RNA SCLmodel is also a CNN. Notably,
NLP has also been used for SCL. Different from CNN, the train data
type of NLP is sequence, not image. Notably, given the limitations of
k-mer, DeepLncLoc combines a new subsequence embedding
method to extract features and uses text CNN for model construction,
which takes the advantage of opportunities for SCL.102 GraphLncLoc
is a model based on graph CNN, which uses sequence to graph trans-
formation to train the model. The research object is lncRNA SCL
data. Considering that k-mer can lose sequence information and
ignore sequence patterns and motifs without length, Li et al.103 trans-
formed the sequence classification into a graph classification to
extract high-level features and used graph CNNs to train the model.
DeepmRNALoc is a deep neural network model based on eukaryotic
mRNA, which includes five subcellular locations (cytoplasm, endo-
plasmic reticulum, extracellular region, mitochondria, and nu-
cleus).104 Given that previous models are based on low-level informa-
tion and learn from a small data size, GM-lncLnc extracted the
advanced features of lncRNA on the basis of the sequence informa-
tion and combined with the graph structure. The introduction of
meta-learning accelerates the progress of learning, which to some
extent solves the problem of data size.105

To date, deep learning studies on RNA SCL have been limited by the
size of RNA datasets. Over time, more RNA SCL entries will accumu-
late, and RNA SCL models based on deep learning with better perfor-
mance can be expected. More data and more reasonable classification
algorithms are expected to train better protein SCL and RNA SCL
models by using deep learning. Traditional machine learning is
more interpretable than deep learning. Traditional machine learning
can help discover and track biological pathways, but deep learning
may be more expressive. The combination of deep learning and tradi-
tional machine learning could also be an interesting direction. In
addition, the effectiveness and ineffectiveness of the model require
consideration. Researchers in computational biology may only focus
on the performance of the model, whose goal is to discover the better
performing models. Biologists may focus on other aspects, who may
be interested in the inside of the model. The contrast between model
effectiveness and ineffectiveness is also important to biologists. In
other words, biologists prefer to know why models work in some
cases but in other cases do not. For traditional machine learning,
this process is visible and explainable. But the deep learning model
will lack explanatory power.

In the protein SCL model, Shen et al. combined multiple features
(including PsePSSM, DWT, AvBlock) to extract comprehensive in-
formation. It can comprehensively consider various features/infor-
mation to increase the possibility of accurate predicting unknown
samples. The model trained by Liu et al. based on multiple species,
which is recommended for readers whose data covers multiple spe-
cies. TACOS fuses 10 feature descriptors for lncRNA SCL, which is
the first model based on tree stacking. SubLocEP extracts mRNA
sequence information from multiple levels, including sequence infor-
mation and physicochemical properties features. Integrated informa-
tion helps TACOS and SubLocEP perform stably when making pre-
diction on unknown samples. RNAlight has been extended to other
types of RNA SCL, which is unique advantage. The machine learning
models are usually trained using traditional algorithm, including
SVM/RF/KNN/GKR. The models performance of SVM/RF are rela-
tively stable on the small size training set. Therefore, Liu model (for
protein), LncRNA (for lncRNA), and SubLocEP (mRNA) are recom-
mended. RNAlight is recommended for those who need to study
other types of RNA SCL.

Zhang et al. used HPA data to train the model, multitask learning,
generate image masks, and feature fusion and CNN were combined
to improve the performance of the model. Combining sequence fea-
tures and graph structure help GM-lncLnc capture more information
to improve the performance. DM3Loc is a CNN model for mRNA.
One-hot encoding and weight setting help stabilize DM3Loc. Among
SCL models based on deep learning, CNNs are widely considered to
be expressive. This is confirmed by the performance of both Zhang
model and DM3Loc. Aggarwal is competitive for readers who cover
multiple subcellular location (28 SCLs). Compared with analyzing se-
quences or images, GM-lncLnc combining sequence information and
graph structure is expected to have excellent performance.

GENERAL PROBLEMS AND FUTURE DIRECTIONS
Data description

The data in biology are complex and heavy. There are a lot of public
data in different forms and species. In papers on SCL models, the
description of datasets is often inadequate. In fact, data are the
most important part of traditional machine learning. A clear descrip-
tion of the data is essential for the reader. When the amount of data is
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small, biocomputing researchers tend to use traditional machine
learning because traditional machine learning methods are more
likely to perform reliably. As more samples are discovered, re-
searchers prefer to use deep learning.

The selection of learning methods

While reading SCL articles, we found that the authors rarely
mentioned why the approach was chosen for traditional machine
learning or deep learning. At the end of the articles, there is no expla-
nation about why the model works well (or better than other main-
stream tools). The researchers only use indicators to show the perfor-
mance of model without in-depth analysis, which will hinder
understanding of the paper. Biocomputing researchers should select
the reasonable algorithm to train model, not the popular algorithm
(or for any other reason).

The construction of models

When proving the high performance of models, researchers often use
their own test sets. There is no baseline data to help themprove the per-
formance of the model. Even if there is a public website with a bench-
mark, researchers will adjust the model to fit the benchmark. So far,
there is no accurate way for researchers to verify the ultimate perfor-
mance of the models. In addition, it is very difficult to reproduce a
model that has been published. Some models fail to get the same re-
sults, which is a fatal blow to the validity of the study. In addition,
data leakage during the training of the model is also very deadly.
When computer researchers write code, some researchers are not
comfortable with the complete separation of the training set and the
test set. On the surface, the code looks reasonable, but in fact there is
a data leak problem. For computer researchers, this is a fatal mistake.

The sharing of code and data

In the process of sorting out the SCL databases and models, we found
that the online access tools of the databases and models in many pub-
lished papers had been stopped, which affected the progress of other
researchers and hindered the development of the SCL. It is important
to share resources on more authoritative and stable servers. For
instance, researchers can upload code to GitHub (https://github.
com) and data resources to the more spacious Google Drive
(https://accounts.google.com).

Future directions

Currently algorithms from other fields such as computer vision and
NLP have been applied directly to biomedical problems, but there
is a lack of biomedical-specific algorithms. In other words, researchers
could develop algorithms on the basis of biology in the future.

To explore the relationship between protein SCL and RNA SCL,
interdisciplinary collaboration between traditional and computa-
tional biology is vital. Through this collaboration, researchers can
develop more effective algorithms and models to gain new insights
into complex biological processes. Such a partnership is essential
for advancing our understanding of these fundamental molecular
components and ultimately improving human health.
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CONCLUSION
Compared with traditional electron microscopy, fluorescence micro-
scopy, and other traditional methods for SCL, the computational
method can shorten the research time, save manpower and material
resources, and reduce the possibility of experimental error. This paper
reviews and discusses the current mainstream protein SCL and RNA
SCL databases and prediction models, hoping to help readers under-
stand the development process of SCL problems and the development
of computer technology in biology. It is also expected to help biolog-
ical researchers understand computer technology to further promote
the development of SCL problems. The transcriptional dependence
between RNA and protein may be an important research direction
on the relationship between RNA SCL and protein SCL. The previous
papers have treated protein SCL and RNA SCL as separate problems;
this review is the first to cover both protein SCL and RNA SCL. In
computational biology, different models use different benchmark da-
tasets to evaluate the performance of the models. Strictly speaking, it
is very difficult to compare different models without authoritative
benchmark data. So far, the analysis of model strengths has been
based on computer technology. In fact, authoritative benchmark
data should be established, and the performance of the mentioned
models on specific benchmark dataset should be presented. The dif-
ficulty collecting authoritative datasets and conducting rigorous tests
on the proposed models are the limitations of this review.

In the future, we will collect the latest published protein and RNA SCL
data and evaluate the models we mentioned. This will help the reader
intuitively understand the advantages of the models. To the best of
our knowledge, the research literature does not involve research on
the relationship between protein SCL and RNA SCL. Relevant papers
only discuss protein SCL and RNA SCL as independent issues. Given
the predictive value to human disease, importance of finding target
drugs, understanding viral mechanisms, and the significance of
discovering antiviral drug clues, we call for multidisciplinary efforts
between biology and computational biology fields to work together
to solve the problem of protein and RNA SCL.
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