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Abstract

Visual memory has been demonstrated to play a role in both visual search and attentional prioritization in natural scenes.
However, it has been studied predominantly in experimental paradigms using multiple two-dimensional images. Natural
experience, however, entails prolonged immersion in a limited number of three-dimensional environments. The goal of the
present experiment was to recreate circumstances comparable to natural visual experience in order to evaluate the role of
scene memory in guiding eye movements in a natural environment. Subjects performed a continuous visual-search task
within an immersive virtual-reality environment over three days. We found that, similar to two-dimensional contexts,
viewers rapidly learn the location of objects in the environment over time, and use spatial memory to guide search.
Incidental fixations did not provide obvious benefit to subsequent search, suggesting that semantic contextual cues may
often be just as efficient, or that many incidentally fixated items are not held in memory in the absence of a specific task. On
the third day of the experience in the environment, previous search items changed in color. These items were fixated upon
with increased probability relative to control objects, suggesting that memory-guided prioritization (or Surprise) may be a
robust mechanisms for attracting gaze to novel features of natural environments, in addition to task factors and simple
spatial saliency.
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Introduction

How are visual scenes represented in memory? Evidence is

accumulating that such representations are multi-faceted. There is

consensus that the ‘gist’ of a scene is rapidly perceived and

retained in memory, along with limited short term visual memory

of a few items, and other high level semantic information [1–3].

The change blindness phenomenon was initially interpreted to

mean that little else was retained beyond this (see review in [4]).

Some of the evidence was taken to indicate that coherent object

representations decayed rapidly following withdrawal of attention

from an object [5,6]. Wolfe also argued for the decay of object

representations following withdrawal of attention [7]. More recent

work, however, has suggested that there is a much more extensive

accumulation of information in memory even after relatively brief

exposures [8–12]. For example, scene context appears to facilitate

subsequent visual search for targets even after a single prior

exposure [13–15]. Thus it appears that the change blindness

phenomenon leads to an underestimate of the extent of visual

scene representations [8, 10, 13].

The nature of visual scene representations will vary with the

extent of prior visual experience. Many experiments in scene

perception, including many change blindness experiments, entail a

sequence of limited exposures to a relatively large number of

images of natural scenes. Normal visual experience, however, is

quite different, and typically involves long periods of immersion in

a relatively small number of visual environments, such as one’s

home, workplace, etc. Even though attention and working

memory may limit the information acquired in any given fixation,

after many thousands of fixations within the same scene (about

10,000 per hour), there is ample opportunity to accumulate highly

detailed statistical representations. It is well established that the

human perceptual system is highly sensitive to these statistics and

that these learnt priors about scenes play an important role in

perception [16,17]. Thus memory for the scenes that constitute a

large fraction of ordinary visual experience may function in a

somewhat different manner from memory for generic scenes

typically used in laboratory experiments on scene memory.

Another difference between the laboratory and ordinary visual

experience is that the latter often incurs physical effort (e.g.

walking towards an object of interest), a process that may affect

scene memory. Observing behavior in immersive environments is

therefore integral to furthering our understanding of the role of

memory in natural vision [18,19].

The goal of the present study was to understand the role that

scene memory might play in the allocation of attention and eye

movements in natural, ordinary vision, and appreciate how it may

PLOS ONE | www.plosone.org 1 April 2014 | Volume 9 | Issue 4 | e94362

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0094362&domain=pdf


differ from laboratory settings. The traditional solution to

understanding the control of attention and gaze has been to

assume that some ongoing ‘pre-attentive’ analysis of the visual

image takes place, and that the products of this analysis attract the

observer’s attention to important or salient aspects of the image for

further processing [7,20,21]. There has been extensive investiga-

tion of the role of stimulus salience in attracting attention (e.g.,

[22–25]). However, evidence for the role of salient stimuli in

attracting attention is mixed (see reviews [26,27]). Such mecha-

nisms are inherently brittle as they rely on the properties of the

stimulus with respect to the immediate context to attract attention.

Even if stimulus salience, defined in this way, plays some role in

attracting gaze in laboratory experiments, it is uncertain whether

these mechanisms will be very effective in natural environments,

since the experimental contexts examined may not reflect either

the sensory milieu of the natural world or the requirements of

visually guided behavior. In natural behavior, many kinds of

information need to be attended, and important information may

not be especially salient (for example, irregularities in the

sidewalk). Conversely, salience may not be especially important

and may not attract attention [28–30]. At the same time there is a

clear need for observers to detect new or unexpected aspects of

familiar scenes. There must be some mechanism for attracting

attention to aspects of the scene that are not on the current task

agenda and require a change of task priorities, such as avoiding an

unexpected obstacle. It is in this context that scene memory may

play an important role. The problem in natural vision is that a

stimulus that is salient in one context (such as peripheral motion

with a stationary observer) may not be salient in another context

(such as when the observer is moving and generating complex

motion patterns on the retina). However, if the scene is efficiently

coded in long-term memory, different mechanisms might be

available for coding new information. Subjects may compare the

current image with the stored representation, and a mis-match, or

‘‘residual’’ signal may serve as a basis for attracting attention to

changed regions of scenes [31]. This may allow subjects to be

particularly sensitive when there are deviations from familiar

scenes, and thus attention may be drawn to regions that do not

match the stored representation.

This idea is similar in conception to Itti and Baldi’s [32,33]

model of ‘‘Surprise’’. Horstmann [34,35] and Becker et al. [36]

also showed that distractors that have not been previously

presented (i.e., are surprising) attract attention in a visual search

task. Itti and Baldi conjecture that the visual system learns the

statistics of images by estimating the distribution of parameters of

probability distributions that can explain recent image feature

data. Itti and Baldi’s model works on very short time scales (100’s

of msec). Thus it is unlikely to reflect the long-term memory factors

involved in natural behavior. An alternative mechanism may be

one that relies on learnt statistics of scenes, and is sensitive to scene

regions that differ significantly from these statistics. In standard

saliency models, salient stimuli are statistical outliers in space.

Surprising stimuli can be thought of as statistical outliers with

respect to learnt, expected, distributions stored in memory (cf.

[37,38]). Such a mechanism might serve as a more robust

mechanism of attentional capture than purely spatial saliency.

Evidence that memory representations facilitate detection of

novel objects in scenes was found by Brockmole and Henderson

[39,40]. When subjects were given 15 seconds pre-exposures to

images of natural scenes, new objects were able to attract gaze in a

subsequent brief exposure, even when the object was presented

during a saccade, and there was no retinal transient associated

with its appearance. The authors suggest that the pre-exposure

allowed subjects to construct a long-term memory representation

of the scene, as a basis for discriminating the new object.

Subsequent experiments revealed that inconsistent objects had

greater attentional prioritization than consistent object [41] and

that color changes were also prioritized following a preview [42].

Thus when the scene is familiar, changes may be more readily

detectable. Brockmole and colleagues refer to this as ‘‘memory-

guided prioritization’’.

Although these experiments used images of natural scenes, the

nature of the experience still differs from natural vision, as

described above, with respect to the number of scenes, and the

temporal sequence. Only a few studies have examined scene

memory or gaze allocation in realistic, immersive and complex

natural environments. Droll et al. [43] and Tatler et al. [44]

demonstrated the role of the task in gaze allocation and memory,

although there is also evidence for memory that is not obviously

related to the instructed task. Mack et al. [45] showed that

previously acquired associative knowledge influences gaze alloca-

tion and facilitates search in real world scenes. In a previous study

in an immersive virtual environment, Karacan et al. [46]

attempted to demonstrate the role of prior experience, where

observers walked around a virtual environment for several

minutes. Subjects with this experience in the environment looked

more at changed objects than those without experience. All of

these studies, however, used relatively short exposures.

The current study was designed to examine the effect of more

prolonged exposure to such an environment. Rather than a few

minutes of experience we gave subjects experience in the

environment over three sessions on separate days, adding up to

about one hour’s total experience. In addition to studying the role

of memory in guiding eye movements, we tested whether the

prolonged experience facilitated the detection of changed objects

and allocation of gaze to them. Although the experiment in [46]

was consistent with such a finding, they were not able to

demonstrate an increase in the probability of fixation on the

changed objects, but only an increase in total fixation duration on

the objects. It was not clear if the longer fixation duration was a

result of attentional capture (or gaze prioritization in the

terminology of [39,40]) or simply a consequence of longer

fixations once gaze was actually on the object. In the present

experiment, therefore, we asked whether experience in a scene

might form the basis of a mechanism that attracts gaze to regions

that differ from the memory representation. Such a mechanism

might be more robust in attracting gaze to regions that are not

currently task relevant than stimulus saliency.

In addition to the potential role of scene memory in detecting

changes, another important function is visual search. Evidence is

accumulating that pre-exposure to images of natural scenes

facilitates subsequent search [8,12–14,47,48]. However, it is not

known how much search benefits from extensive immersive

experience in a naturalistic scene. In 2D natural images, search

times for ordinary objects are typically 1–2 sec, and involved 3–5

fixations [49,50]. There is a small advantage to repeated searches

for different objects within the same scene, at least when the target

is specified by a verbal label, and a bigger advantage for repeated

searches of the same object. In an immersive environment, the

search item will typically be at a remote location in the space and

not visible to the subject at the initiation of search, so subjects need

to learn the location of the item in the larger space, and use

memory for layout in order to bring the object within view. To test

both these functions of visual memory in immersive environments,

namely search and change detection, we designed a three-room

virtual apartment, and asked subjects to search for a sequence of

targets over three sessions on subsequent days. A small number of

these objects were specified as search targets on repeated
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occasions, and this allowed us to explore the effect of repeated

searches, and the effect of scene memory on this search process. In

the final session the color of some items was changed, and we

asked whether the probability of fixation on these items increased

following the change.

Methods

Experimental Environment
Participants were asked to explore a virtual reality (VR)

apartment, created with IMSI FloorPlan 3D V11, consisting of

three rooms: bedroom, bathroom and kitchen. A top view of the

environment is shown in Figure 1A. The subjects wore a Virtual

Research V8 head mounted display (HMD). This HMD has two

6406480 pixel resolution screens and a 480x360 field of view.

Fixed to it were 6 LED markers, which were tracked by a

PhaseSpace motion tracking system at 480 Hz and used to

monitor head position in the environment and to update the view

of the environment at the 60 Hz refresh rate of the HMD. The

HMD display was updated based on the orientation and position

of the rigid body defined by these markers in a 4.6 m by 5.5 m

space. This information was recorded for later analysis. In

addition, each subject wore a glove with an LED marker on the

index finger, which was also tracked by the PhaseSpace System. A

view of the subject walking in the virtual environment is shown in

Figure 1B. An Applied Science Laboratory (ASL) eye tracker

recorded the position of the left eye at a sampling rate of

60 Hz and an accuracy of approximately one degree. Before the

experiment the eye tracker was calibrated using a nine point (363)

grid. The quality of the track was checked and recorded at the

middle and at the end of every session. If a drift was detected at the

middle of the experiment the eye tracker was re-calibrated to

maximize precision. Video records of the eye and scene camera

were combined in a custom QuickTime digital format, which also

allows the data from the head, eye-position, and finger position,

and the simulation (e.g., position of objects in the world) to be

saved as synchronized metadata on each video frame. To find the

3D coordinates of a fixation, as well as the identity of the fixated

objects, the recorded metadata was used to reconstruct the visual

experience of a subject offline. A rectangular window of 60660

pixels was centered about the eye position location and any objects

that projected onto this window were recorded as potential targets

of a fixation. The object with the largest number of pixels within

this window was chosen as the fixated target.

Ethics Statement. Six members participated in the experi-

ment. The experiment was approved by the University of Texas

Institutional Review Board (IRB: 2006-06-0085) and all partici-

pants gave written informed consent. All participants had 20/20

vision, either corrected or uncorrected, and were naive with

respect to the hypotheses under investigation.

Procedure. The primary task was to search for objects in the

apartment and to touch them when they had located them.

Numerous objects were placed in this environment ranging from

furniture (e.g., a desk and a bed) to appliances (e.g., blender and

refrigerator). The search target was identified by words presented

inside the HMD and subjects were required to locate and touch

the object. After contact was recorded, a new target was displayed.

Three sessions took place over three consecutive days. The

duration of each of the first two sessions (excluding set-up and

calibration) was approximately 20 minutes. The third session was

about 8 minutes long and was used to test subject’s ability to detect

changes. The subjects were told that: 1. They would spend three

sessions in the environment over three consecutive days. 2. The

goal of the experiment was to test their ability to remember visual

features of the environment. 3.There would be a test after the third

session. The instructions purposefully neglected to specify what

visual aspects of the environment the participants would be tested

on.

The primary purpose of the search task was to give subjects

experience that engaged them in exploration of the environment.

During the first session the subject searched for 75 objects, 31 of

which were used as targets on more than one occasion, and 44 of

which were targets only once. During the second session the

participants searched for 100 objects, 55 of which were targets

only once. In order to investigate the effect of experience on search

time, three objects were selected for repeated Search Episodes over

the two sessions: coffee maker, bed stand, and tea-kettle. We refer

to the 1st Search Episode as the 1st time all three objects were

searched for, the 2nd Search Episode as the 2nd time all three

objects were searched for, and so on. Within every Search Episode

the order in which the three objects were searched for could take 1

of 6 forms, and these were arbitrarily assigned to the Search

Episodes of the subjects, with little variability. Following experi-

ments would benefit from increasing this variability by random-

izing the order of search objects within and between Search

Figure 1. Subjects performed a visual search task within a virtual-reality three-room apartment. A. Subjects wore a V8 head mounted
display (HMD) equipped with an ASL eye tracker, while the head and hand were tracked using the PhaseSpace motion tracking system. The subject
touched virtual objects in the apartment using the gloved hand when they were located. B. Overhead view of the virtual apartment showing the
three rooms: bathroom, bedroom, and kitchen. The 3 objects specified for repeated search are indicated by purple circles. C. Two example views,
recorded while a human subject was exploring the apartment wearing the HMD. Targets were specified by words at the bottom of the screen (e.g.,
‘‘Coffee Maker’’) and the subject had to locate and touch that object (e.g., the orange coffee maker). Gaze position, head orientation and location
were recorded for later analysis.
doi:10.1371/journal.pone.0094362.g001

The Effect of Scene Memory on Eye Movements

PLOS ONE | www.plosone.org 3 April 2014 | Volume 9 | Issue 4 | e94362



Episodes and subjects in order to assert that any observed effect is

not a result of the particular order of particular objects. Even

though we failed to explicitly randomize the object order, this

concern is mitigated by the slight differences in sequence order

between and within subjects in our design.

Subjects were able to complete the second session in about the

same time period as on the first day, despite the greater number of

target objects. In the third session subjects continued searching for

objects, including the three repeated objects. On the 25th trial the

color of the tea kettle on the dining room table was changed. On

the 27th trial the coffee maker changed in color and finally the bed

stand changed on trial 34. These changes took place when the

subject was in a different room and the object outside the field of

view. The third session was terminated on trial 60, after which

subjects were given a questionnaire. They were asked to sketch the

environment including as many objects as they could remember.

They were also asked if they noticed any objects changing and if

so, what those changes were.

Data analysis
During the experiment a data file was generated that contained

positions of the subject’s head and eye as well as the positions of all

of the objects in the environment. By using the head orientation

and position of the subject along with the positions of all the

objects in the environment, the analysis tool created a complete

reconstruction of the experimental environment. Subjects’ eye

position data were analyzed using an automated system developed

in-house. The eye signal was preprocessed using a median filter

followed by a moving average over three frames to smooth the

signal. Eye-movement data was then segmented into fixations and

saccades. Fixations were defined by sequences of at least 150 ms in

length where the eye velocity was below an adaptive threshold of

40 deg/s plus half the moving average velocity calculated over 7

frames. Low velocity movements that are a consequence of head

motion and the vestibulo-ocular reflex were classified as fixations

[51]. After segmenting the fixations, the location of gaze was

surrounded by a 60660 pixel fixation window (approximately 262

degrees) such that for every frame, the location of gaze was

projected on a 2D space. Using this method, we polled the virtual

world and identified the objects that were fixated by the subject.

Brief track losses during a fixation were ignored when the gaze

location was on the same object before and after the track loss.

Data were then segmented into trials. A trial began when the

subject was instructed to touch a particular object indicated by the

name at the bottom of the screen (for example, Figure 1C), and

ended as soon as the subject had ‘‘touched’’ the target. Since a

substantial portion of the trial was dedicated to moving the

subject’s body from one room or location to another, each trial

was subdivided into three segments: time from trial start until the

object appeared in the subject’s field of view, the subsequent

period until the object was fixated, and the time between fixation

and touching. We restricted our analyses (unless mentioned

otherwise) to a particular epoch most relevant to the visual search

itself: from the moment a target appeared within the field of view

(FOV), to the moment the target was fixated upon, followed

immediately by a gesture to touch it. Video records were

examined frame by frame to determine the exact time of trial

end, which was defined as the first frame where the subject’s hand

began moving towards the object to ‘‘touch’’ it.

Path Length. One method to assess how well people learn spatial

layout of the environment was by quantifying the path they took to

reach a search target and comparing it to the shortest possible path

they could have taken. For each trial, tr, the length of the path (P)
taken by the subject is measured using the following formula:

Ptr~
XN

i~2

Ep(i){p(i{1)E ð1Þ

where N is the number of frames in that trial and p(i) is the head

position at frame i. This value can then be compared to the

shortest path for that trial (S),

Str~El{p(1)E ð2Þ

where l is the location of the target object. Notice that this measure

does not account for walls and other obstacles but still provides a

relative measure of performance on every trial.

To test the effect of repeated search on the number of fixations

and path length, we performed a standard repeated measures

ANOVA. Because the assumptions required for an ANOVA are

often violated, however, we also performed a bootstrap version of

the ANOVA which sidesteps most of the standard assumptions.

For the bootstrap analysis we first computed the standard F-

statistic for a repeated-measures design. Second, we generated the

distribution of this F statistic under the null hypothesis where the

repeated measures do not have an effect on the dependent

variable. To generate this null-hypothesis distribution we resam-

pled our data with replacement and ordered the data at random,

thus eliminating the repeated-measure effect and calculated F in

the standard way. We repeated this process 10000 times to

generate 10000 F-statistics, yielding the F distribution under the

null hypothesis. We then compared our F-statistic obtained in the

experiment to the bootstrapped null distribution to compute the

probability of obtaining such an F given the null hypothesis, which

is akin to the standard measure of significance (comparable to the

p-value usually reported in standard ANOVA analyses). In all of

our analyses, the results of traditional ANOVA (corrected for

sphericity using the Huynh-Feldt correction) agreed with those of

the more conservative and assumption-free bootstrap analysis. We

therefore report the ANOVA results throughout the text, as we

feel it is more familiar to most readers.

Results

Distribution of fixations in the environment
Since little is known about the characteristics of gaze

deployment in natural immersive environments we first present

summary data showing the regions fixated during exploration of

the environment. Approximately 2,000 fixations per subject were

recorded on each of the first two days. Figure 2A presents the

distribution of subjects’ gaze points within the virtual apartment in

heat map form, on the first day. Gaze points for all subjects were

included in this analysis to represent the average gaze behavior

across subjects. After collapsing gaze points over height (Y), each

point within the area of the apartment (XZ space) was replaced by

a 2D Gaussian with a standard deviation of 5 cm. The Gaussians

were then summed at each XZ location and the resulting image

normalized. The heat map reveals the structure of the room and

the location of the counters where many objects were located, and

the edges of the doorways that are presumably fixated when

moving between rooms. The wall structures that are picked out in

the heat map may reflect gaze location ‘‘en passant’’ as the subject

moved around the room. Figure 2B shows an ordered histogram of

fixation frequency in the XZ space for all subjects. Figure 2C

shows a histogram of the distribution of fixation heights (Y value)

for all subjects and shows that gaze is largely concentrated on mid-

height regions of the rooms, especially the horizontal surfaces.

The Effect of Scene Memory on Eye Movements
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Additionally, there is an increased density of fixations on the floor,

and in general the distribution is biased towards the lower part of

the room. Note that the bulk of the distribution in both XZ space

and height is contained within a small region of the 3D space.

That is, many regions have either no fixations or very few

fixations. Thus memory representations presumably will reflect

this inhomogeneous sampling of space. A substantial component

of this distribution can be attributed to the location of the search

targets in the scene, but it presumably also reflects the subjects’

priors about where everyday objects might be. Note that the

distributions will reflect the general instruction to subjects to

familiarize themselves with the environment in addition to the task

of searching for specific objects. These distributions may not be

entirely natural, of course, since the HMD restricted the vertical

field of view, and subjects may limit their vertical head movements

because of the weight of the helmet. The data are, however,

consistent with the kinds of priors observed in inspection of 2D

images of scenes [52]. In Figure 2 we present the distribution of

gaze and fixations over all subjects, but we note here that

qualitatively, the individual subject distributions were strikingly

similar between subjects and of course to the mean across them.

Visual Search
The main task in the experiment was for the subject to find

objects in the environment. The search process first involves

getting the body to the correct room, close to the object, and then

locating it visually when it appears on screen. Rather than having

a single measure of search, we broke it down into two components.

The first was the number of fixations to locate the target once it

came on within the field of view of the subject, and the second was

a measure of how efficiently the subject moves the body into the

correct location. Measuring the total number of fixations from trial

start to trial end would be dominated by the relatively long time it

takes to transport the body from one room to the next, and not

address visual search per se. We therefore measured two aspects of

search separately.

To quantify visual search performance over time we measured

the number of fixations allocated by the subject to locate the

object, once the image of the object was in the subject’s field of

view and visible. The number of fixations was counted between

the time the target object came on screen and the time fixation

landed on that object. We treat each object independently and

consider the first time each of the 3 objects became the target of a

search as Search Episode 1. The same was done for Search

Episode 2, 3, 4, and 5. Figure 3 shows the average number of

fixations as a function of Search Episode (first, second, third, etc.),

averaged first over objects and then over subjects. The three

objects that were used as a target repeatedly were selected for this

analysis. The figure shows that by Search Episode 3 the number of

fixations has dramatically decreased from approximately 12

fixations to 5–6. The plot for the second day shows little

improvement over the first day. Thus, this measure of search

shows very rapid learning of the object’s location in the

environment. A repeated-measures ANOVA showed a significant

effect of Search Episode on Day 1, F(4,20) = 8.34, p = 0.002. In

addition to Search Episode, a significant effect was also found for

the search-object, F(2,10) = 7.101, p = 0.01. Thus, some objects

required more fixations to locate them than others. This may be a

consequence both of visual factors and also the fact that there was

an unequal amount of experience in the environment for different

objects. There was also a small Search Episode and search-object

interaction effect, F(8,25) = 2.29, p = 0.053), suggesting that the

magnitude of decrease in search fixations may be different for

different objects, albeit only marginally significant. Since the trials

for repeated objects were interspersed with searches for other

objects, subjects had the opportunity to become familiar with the

context, so contextual learning may contribute to the facilitation of

search over the 5 episodes, in addition to learning the location of

the object within the scene. As for Day 2, there were no significant

effects for either Search Episode, search-object, or interaction

(F(4,20) = 3.98, p.0.05; F(2,10) = 0.79, p.0.05; and

F(8,19) = 0.24, p.0.05, respectively).

To evaluate the more global aspects of search performance we

developed a metric for path planning efficiency by calculating the

ratio between the shortest path between subject and object at the

beginning of a trial, and the path the subject actually traveled

(detailed in the Methods). A value of 1 is the shortest possible path,

and small values indicate a circuitous route (by definition, an

efficiency of 1 is never possible as it ignores walls.) Path efficiency is

plotted in Figure 4 as a function of Search Episode. Similarly to

Figure 3, path efficiency was first averaged over the three objects

that were repeatedly searched for, followed by averaging over the

subjects. Figure 4 demonstrates a fairly gradual increase in path

planning efficiency over Search Episodes. By the end of the second

day the mean path planning efficiency increased to about 0.75,

equivalent to a 35% decrease in path length to the search target.

Figure 2. The distribution of gaze locations in the apartment on Day 1 reflect an inhomogeneous sampling of space. A. Heat map of
gaze locations in the XZ plane, collapsed over vertical height, Y, within the apartment. B. Distribution of fixations in the XZ plane, ordered by
frequency and normalized. C. Histogram of gaze locations on the Y axis, vertical height, normalized. Presented data are grouped over all six subjects
for Day 1.
doi:10.1371/journal.pone.0094362.g002
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However, the apparent increase was not statistically significant

in a repeated-measures ANOVA for either Search Episode,

search object or interaction for Day 1 (F(4,20) = 1.85, p.0.05;

F(2,10) = 1.98, p.0.05; and F(8,33) = 0.4, p.0.05, respectively) or

for Day 2 (F(4,20) = 2.69, p.0.05; F(2,10) = 0.47, p.0.05; and

F(8,30) = 2.35, p.0.05, respectively). Note that even for the first

Search Episode, the subject had been in the environment for

several minutes searching for other targets, and so had multiple

opportunities to learn the general arrangement of the apartment

within that period and presumably could select the correct room

on the basis of semantic information.

Effect of task irrelevant fixations on subsequent search
Subjects clearly learn the location of objects in the environment

very rapidly. However, is this a consequence of the fact that they

have been explicitly attended, or incidentally attended to? In the

course of a session, subjects make thousands of fixations. Do

incidental fixations also lead to an accumulation of memory

representation? To examine this question we measured the

number of incidental fixations on objects that had not yet been

explicitly searched for. We then measured the number of fixations

allocated by subjects to locate the object on the first occasion that

it became a search target (i.e. Search Episode 1). If subjects

Figure 3. The number of fixations required to locate a search target decreases over repeated Search Episodes. Visual search
performance is quantified as the number of fixations allocated in space between when the search target appeared in subject’s field of view to the
time the target was fixated upon. Data are for the three objects that were repeatedly searched for, averaged first over objects and then subjects, for
day 1 and day 2. Error bars represent 95% confidence intervals, bootstrapped, between subjects. The curves show an exponential fit over the two
days.
doi:10.1371/journal.pone.0094362.g003

Figure 4. The efficiency with which subjects plan their path to search targets modestly increases over repeated Search Episodes.
Path efficiency (the shortest possible path between subject and search target divided by the actual path taken by the subject to search target, see
methods) is plotted as a function of Search Episode. The path is calculated between trial start to the time the target was fixated upon. Data are for the
three objects that were repeatedly searched for, averaged over objects and subjects, for day 1 and day 2. Error bars represent 95% confidence
intervals, bootstrapped, between subjects. The curves show an exponential fit over the two days.
doi:10.1371/journal.pone.0094362.g004
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accumulate memory from the incidental fixations we would expect

to see more rapid or facilitated search as a consequence. Figure 5

presents the relationship between incidental fixations to objects

before they have ever been considered search items and the

number of fixations required to locate the same object on the 1st

Search Episode. For this analysis the entire dataset was used for all

objects. There does not appear to be any trend in the data for

increased numbers of incidental fixations to lead to more rapid

search. A regression line fitted to the data (not shown) has a slope

close to zero, and the correlation coefficient of r = 0.09 was not

significant (p = 0.175). Although there was no trend in the

regression, it is hard to make the case that search does not benefit

either from incidental fixations or from experience in the

environment. On the whole, performance is very variable. Thus

many objects were found rapidly, with 5 or fewer fixations, even if

they had not fixated the object previously, whereas others required

20 or more fixations to be located, despite having ten or more

previous incidental fixations. It appears that some targets may be

remembered from prior fixations whereas others do not reveal a

search benefit. Thus the number of incidental fixations alone does

not seem to be a primary causal factor in memory in this task.

Change Detection
One of the main goals of the experiment was to test whether

experience in the apartment increased the probability that subjects

would fixate the changed region. On the third day of the

experiment, subjects continued to search for objects, but a change

was introduced. The three objects that were chosen for repeated

searches (coffee maker, kettle, bed stand) were each searched for

once, and then changed color (at different times, see Methods for

details). The changes are shown in Figure 6. Day 3 was terminated

on the 60th trial, and subjects then filled out the questionnaire. To

quantify whether the change drew attention we calculated the

probability of fixating each of the three objects during the periods

when that object was in the subject’s field of view, but was not the

target of a search. This probability was calculated both before and

after the change. A value of 0 means that even though the object

was on screen it was never fixated, while a value of 1 implies that it

was fixated at least once during each episode when the object was

on screen. Figure 7A summarizes these fixation probabilities,

together with the fixation probability for the first two sessions (day

1 and 2). Over the first three sessions, a steady (but non-significant)

decrease in fixation probability is observed. Once the change was

introduced, there was an increase in the probability of fixating the

changed object, from 0.31 to 0.49. A one-way repeated-measures

ANOVA showed there to be a significant effect of search epoch

(day 1, day 2, day 3 before and day 3 after change) on the

probability of fixating on an object given that the object has

entered the field of view,F(3,51) = 9.29, p,0.001, corrected. A

posthoc repeated-measures ANOVA revealed significant differ-

ences between the probability of fixation on day 2 compared to

day 3 after (p,0.05) and between day 3 before and day 3 after (p,

0.001), corrected for multiple comparisons. Figure 7B shows the

same computation for 17 control objects that were not changed,

and were comparable to the three repeated objects in size,

location, and in probability of entering the field of view. A similar

modest decrease in of fixation probability is observed between day

1 and day 3, but in contrast to the objects that changed color,

there is no substantial increase in probability after the change. A

one-way repeated ANOVA found no significant effect of time on

the probability of fixating an object given that the objects has

entered the field of view,F(3,303) = 1.43, p.0.05. A similar non-

significant result was found regardless to whether this analysis

included the 17 ‘‘comparable’’ objects or the full array of objects.

It is possible, of course, that the color changes that were

introduced increased the bottom up salience of the targets. To

evaluate this, we used the code provided by Itti et al. [22] at

http://ilab.usc.edu/toolkit/downloads.shtml to calculate the sa-

lience maps before and after the color change. A virtual camera

was placed at a location where the desired object was fully in view.

The world was rendered twice. Once with the original appearance

of the object and once with the color changed. The ezvision

executable with default parameters was executed separately

against both scenarios. A bounding box was placed over the

object in the saliency map and the pixel values (ranging from 0 to

255) were summed up to calculate the final saliency score. The

Figure 5. The number of incidental fixations to objects that have yet to be searched for does not correlate with number of fixations
required to locate the object on 1st Search Episode. Incidental fixations (x-axis) are considered incidental if the fixation was made to a non-
target object before that object has ever been identified as a search target. The number of fixations required to locate the object once it has become
a search target for the first time (1st Search Episode) are presented on the y-axis. Each object contributes 1 data point, and identical points are not
obvious on the scatterplot. Marginal histograms are therefore presented to the right and above the scatterplot, and distribution means are indicated
by the thin lines. SE = Search Episode.
doi:10.1371/journal.pone.0094362.g005
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scene and the corresponding saliency maps for an example object,

the coffee maker, are shown in Figure 8. The saliency value for the

kettle and the bed stand decreased after the color change, and

saliency for the coffee maker increased by only 3%. Thus the

increase in fixation probabilities are unlikely to be the result of an

increase in bottom up salience.

Discussion

The goal of this experiment was to study the role of scene

memory in visual search and change detection in an immersive

environment. The experiment required subjects to spend a

prolonged period of time in the environment in order to provide

an exposure more comparable to natural experience than standard

experimental paradigms. Time in the environment was necessarily

limited, and amounted to a little more than an hour over three

days. However, within that period subjects each made over 10,000

fixations within the virtual apartment. Consequently the visual

experience parallels at least a subset of ordinary experience. We

found that subjects in such environments confine their gaze almost

exclusively to mid-heights, with almost no fixations on high regions

in the environment. Part of the predominance of mid-height

fixations is explained by the location of the search targets, but the

absence of high or low fixations (except for the floor) indicates that

subjects typically do not explore such regions, and suggests the

existence of strong priors for where the search targets are likely to

be located. This is consistent with the finding of such priors in 2D

natural scene images by Torralba et al. [52]. We were not able to

discern any obvious changes in the spread of fixations within the

environment with experience.

In an attempt to separate the global and local aspects of search

we looked at two components of the search epoch separately. The

global component was assessed by measuring the efficiently by

which subjects approached the search target over the course of a

trial. We found that path efficiency had measured the length of the

path taken until the object appeared on screen, relative to the

shortest direct distance from the start of the trial to the object. Path

efficiency gradually improved only a modest amount over repeated

searches during the first session. Thus, finding the approximate

global location did not change very much over repeated searches.

However, the subject had been in the environment for several

minutes searching for other targets, and so had multiple

opportunities to learn the general arrangement of the apartment

(kitchen and dining area, bedroom, bathroom), and may have

moved to the approximate location on the basis of semantic cues,

such as moving to the kitchen for the coffee maker. Once in the

correct room the subject need only orient the head in the correct

direction in order to bring the target on screen.

The local component of search was assessed by measuring the

number of fixations made by the subject from the moment the

search target had entered subject’s field of view and until successful

location of the target. This local aspect of search improved rapidly

with repeated search, falling from about 12 to 5 fixations and

stabilizing after 3–5 episodes, with most of the improvement

occurring between the first and third Search Episodes. This

suggests that memory for spatial location is an important factor in

locating targets in natural circumstances. It is also possible that

memory for visual features linked with the verbal description

facilitated search. This memory persisted when subjects repeated

search on the next day, with little if any detectable memory loss. It

Figure 6. The three objects that were searched for repeatedly
and their color change on day 3 of the experiment. From left to
right: the coffeemaker, bedstand, and kettle. Top row presents the
object as it was on day 1, day 2 and day 3 before change, bottom row
presents the objects after the day 3 change.
doi:10.1371/journal.pone.0094362.g006

Figure 7. The probability of fixating an object increases for objects that have changed color, but not for those that have remained
unchanged. Both panels present p(fixation|inFOV), the probability of fixating an object given that it is in the field of view and not a current target of
a search, for Day 1, Day 2, Day 3 before the color change and Day 3 after the color change, averaged over objects and subjects. A. Mean
p(fixation|inFOV) for the three objects that changed color. B. Mean p(fixation|inFOV) for the remaining unchanged objects. Error bars are standard
error between subjects. FOV = field of view. * p.0.05, ** p.0.001, corrected for multiple comparisons.
doi:10.1371/journal.pone.0094362.g007
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is hard to make precise comparisons with other work in the

literature, given the very different experimental context. However,

the finding of rapid improvement in performance with repeated

search is consistent with the findings of Võ et al. [53], Holling-

worth [50] and others, although the number of fixations to locate

the object once on-screen is somewhat greater in our task (five

fixations versus 1 or 2). Once the target is on screen, the primary

difference in the conditions is that in the immersive case the scene

varies with head and body movements, whereas there is a single

fixed image in the standard 2D case. Additionally, the subject may

need to devote some attentional resources to locomoting in the

environment [54].

In the context of the repeated searches, we assessed memory for

items that had been explicitly attended. However, to understand

the development of scene memory we need, in addition, to know

whether subjects encode the locations that they fixate in the

context of other searches as well, when they are not explicitly

relevant. Do incidental fixations contribute to future searches for

other objects? To investigate this we looked at the number of

fixations required to locate an object when it first became a search

target, as a function of the number of prior incidental fixations on

the object during the preceding period. We found no relation

between first search time and number of incidental fixations. Thus

incidental fixations are neither necessary nor sufficient. This result

is similar to that observed by Võ et al. [53] and may reflect a

variety of factors. First, the presentation of search target in verbal

form doubtless works against an effect of prior fixations, as subjects

may not connect the visual and verbal representations [49].

Second, there is a lot of intrinsic variability. Some targets are

found easily with few or no prior fixations, and others are difficult

to locate even with 10–20 prior fixations. It seems clear that

number of prior fixations is not the most important variable. It

may be the case that some items are fixated and remembered, and

others forgotten. Whether an item is remembered or not may

depend on the subjects’ knowledge of whether the item needs to be

remembered or is task relevant. This possibility is supported by

observations made by Tatler et al. [44] in a real world setting:

subjects instructed to look for items related to tea making

remembered those items, but with only a general instruction to

remember the objects, subjects remembered those items less well,

even when they had fixated them an equal number of times. Thus

a critical factor might be some knowledge of the probability that

the information will be needed in the future, rather than the

fixation event itself. Another important factor is the existence of

strong semantic guidance which may make the search easy for

some objects [49], such that memory-based search is not the

limiting factor. Thus although scene previews undoubtedly lead to

the development of memory representations (e.g., [47,50,55]),

semantic context effects may be of greater benefit in many

circumstances, as are explicit task relevant fixations.

A final goal of this investigation was to study whether the

development of memory representations might form the basis of

an exogenous attention mechanism. While endogenous mecha-

nisms can account for much gaze behavior, any account of gaze

control will be incomplete without some mechanism to attract

gaze to unexpected stimuli. We therefore made color changes in a

small number of objects after extensive experience in the

environment, and measured whether the unexpected change had

increased the probability of attracting gaze. We found a significant

increase in fixation probability that was not observed in control

objects. Given the kinds of prominent changes in scenes that

frequently go undetected (e.g., [4]), we might expect that changing

the color of a single object in a complex immersive scene would be

a very weak stimulus for attracting gaze, so this result provides

some evidence for the hypothesis that more extensive memory

representations enhance the detectability of changes. As discussed

in the introduction, other lines of evidence also indicates that more

elaborate memory representations increase the probability that

subjects will fixate changed regions [39–42]. The present results

extend those findings to the kinds of situation that the visual system

Figure 8. Bottom up saliency does not change as a result of object color change. Left: Image of the coffee maker and corresponding
saliency map per code by Itti and Koch [22]. Right: Image of the coffee maker after the color change, and the corresponding saliency map. Saliency
values were computed within the red rectangle.
doi:10.1371/journal.pone.0094362.g008
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typically needs to cope with, where experience is built up over

extended periods in the same environment. They also extend the

results of Karacan et al. [46] by showing an influence on fixation

probability, not just fixation duration. The data provided in this

experiment are necessarily sparse, since we are looking for a single

event: does a change in the environment evoke a fixation in an

uncontrolled situation where many factors might be controlling

the subjects’ attention. This is the kind of situation the visual

system must deal with. There is typically only a limited time

window when gaze needs to be attracted to some event of

importance such as an unexpected step or a crack in the

pavement, so the question is intrinsically difficult to resolve. In

addition, only three objects were changed, there were only six

subjects, and the increment in fixation probability was only about

0.2. Therefore the result is not a very strong one, but on the whole

supports the suggestion that memory based expectations may be a

factor in detecting environmental irregularities. This extends Itti’s

et al. idea of Surprise to contexts where the comparison base is a

long-term memory representation.

One of the motivations for investigating change detection in

immersive environments is to study the nature of memory

representations that develop during natural experience. Detecting

changes in video streams has been an active area of study in

computer vision in the context of surveillance (e.g. [56–58]) but

most of these efforts have been on stationary cameras, where the

solutions are relatively straightforward. For mobile cameras that

have no constraints in the way they move through the

environment, these techniques do not work. This is more like

the situation humans face when moving through an environment.

Without a more complex memory model, changes that happen

between visits cannot be detected by these models. The Itti and

Baldi [33] model discussed in the introduction is one such attempt.

Another attempt makes use of the color signature of the scene,

which is tolerant to moderate viewpoint changes [59]. In this

model RGB color histograms provide scene specific signatures that

are largely view and resolution independent [60] at least in indoor

environments that are potentially suitable for change detection in

natural vision. The Kit et al. [59] model is trained on histograms

of image sequences generated by subjects as they explore

environments. This data is then mapped onto a much smaller

number of memory units using an unsupervised clustering

algorithm. This model was able to detect the changes in colors

of the objects in the scenes used in the current experiment [61]. It

is clear that human scene representations are much more complex

than color histograms, so this is not necessarily an indication

of the representations humans use. However, the success of this

simple model in detecting changes in dynamically varying views

demonstrates that humans may be able to develop robust change

detection mechanisms from quite simple memory representations.

Conclusion

In summary, we found that in a naturalistic immersive

environment, scene memory plays an important role in visual

search and may serve to facilitate change detection. Subjects

distributed gaze over a restricted portion of the 3D space, perhaps

reflecting priors from previous experience. In agreement with

previous evidence form standard 2D paradigms, subjects quickly

learn the location of objects in space. Both global and local

measures of search suggest that experience in the environment

better guides search, and improvements are observed already after

one or two Search Episodes. When search targets are specified by

verbal labels, incidental fixations do not appear to be a primary

determinant in facilitating subsequent search. Other factors such

as semantic information about the environment may guide search

more efficiently as suggested by Võ et al. [49] or memory may

decay rapidly when the need for the information is not clearly

specified. We also found reliable evidence that after 3 days of

experience, modest changes in the scene such as changing the

color of an object was able to attract gaze, supporting previous

evidence for memory-guided prioritization. Thus an important

function for visual memory is to serve as a basis for a robust

Surprise mechanism, and to increase the probability that novel or

unusual features of a scene will attract gaze. Such a mechanism is a

necessary adjunct to both task-guided gaze allocation and simple

feature-based saliency.
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