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Abstract

To understand why human sensitivity for complex objects is so low, we study how word identification combines eye and ear
or parts of a word (features, letters, syllables). Our observers identify printed and spoken words presented concurrently or
separately. When researchers measure threshold (energy of the faintest visible or audible signal) they may report either
sensitivity (one over the human threshold) or efficiency (ratio of the best possible threshold to the human threshold). When
the best possible algorithm identifies an object (like a word) in noise, its threshold is independent of how many parts the
object has. But, with human observers, efficiency depends on the task. In some tasks, human observers combine parts
efficiently, needing hardly more energy to identify an object with more parts. In other tasks, they combine inefficiently,
needing energy nearly proportional to the number of parts, over a 60:1 range. Whether presented to eye or ear, efficiency
for detecting a short sinusoid (tone or grating) with few features is a substantial 20%, while efficiency for identifying a word
with many features is merely 1%. Why? We show that the low human sensitivity for words is a cost of combining their many
parts. We report a dichotomy between inefficient combining of adjacent features and efficient combining across senses.
Joining our results with a survey of the cue-combination literature reveals that cues combine efficiently only if they are
perceived as aspects of the same object. Observers give different names to adjacent letters in a word, and combine them
inefficiently. Observers give the same name to a word’s image and sound, and combine them efficiently. The brain’s
machinery optimally combines only cues that are perceived as originating from the same object. Presumably such cues each
find their own way through the brain to arrive at the same object representation.
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Introduction

Object recognition is the most important perceptual task. Since

Fechner, sensitivity has been measured to characterize how people

recognize objects [1,2]. There is growing conviction that observers

recognize an object by detecting and combining its features

[3,4,5,6]. But how do we combine? Multi-sensory perception is

essential to most everyday activities [7,8,9,10,11,12], spurring

work ranging from physiology [13,14,15] to therapeutic educa-

tional interventions [16,17,18], but, once again, now across senses,

how we combine remains mysterious. Cue combination has been

studied in many tasks at various levels [19]. Here we focus on word

identification, at the levels of features, letters, syllables, and words,

within and across senses. We report a dichotomy in word

identification between inefficient combining of adjacent features

and efficient combining across senses. For example, observers

combine adjacent letters in a word inefficiently, but combine the

sound and image of a word efficiently. Joining our new results with

a survey of the cue-combination literature reveals that cues

combine efficiently if and only if they are perceived as aspects of

the same object. By an ‘‘object,’’ we mean something recognizable,

often with a name, e.g. a border, a bar, a plane, a grating, a letter,

a word, a dancer.

Physicists define the efficiency of a motor as the fraction of the

energy provided to the motor that it returns as useful work.

Psychophysicists define the efficiency of a human observer as the

fraction of the signal energy used by the observer that the optimal

algorithm (the ideal observer) would need to perform the

recognition task [20,21,22,23]. Efficiency tells us how well the

observer recognizes signals in noise. If we were more efficient, we

would be more sensitive. We could hear our friends in a noisy pub,

and we could read outdoors late into the evening.

Audio and visual efficiencies have previously been measured,

but, oddly, no one has ever compared them. We show that eye and

ear have the same efficiency, whether detecting a short sinusoid or

identifying a word. The equal efficiencies of eye and ear, noted

here for the first time, hint that object recognition may involve

similar computations in the auditory and visual systems. Is there

something general about word recognition that transcends eye and

ear? Are the computations similar? ‘‘Relative efficiency’’ [23],

introduced below, helps us move forward by allowing a piecemeal

approach, breaking up the big question into several smaller

questions. It allows us to express the overall efficiency as a product

of several factors that we can figure out one at a time.

For any given number of possible signals, if signal energy is

fixed, the optimal algorithm (ideal observer) recognizes a long
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signal just as easily as a short one. This was proven in the 1950’s

for detection [21,22], and more recently for identification [24,25].

In a noisy room, a brief shout and a long whisper with equal

energy are equally detectable (by the optimal algorithm), but, as

we will see below, people are much better at hearing the briefer

one. Unlike the ideal, human observers require more energy to

recognize longer words, i.e. with more parts, because the human

observer combines inefficiently.

Combining is the integration of information from several parts to

get information about the whole. This also has been called

‘‘summation’’ or ‘‘integration.’’ The closely related terms ‘‘bind-

ing,’’ ‘‘segmentation,’’ and ‘‘grouping’’ emphasize selecting which

parts are to be combined. Combining occurs at every level of

perceptual processing. Our new approach applies Geisler’s [23]

general notion of ‘‘relative efficiency’’ (a ratio of efficiencies) to our

specific problem of assessing combining. We do this by measuring

how much more energy the observer needs to recognize a signal

with more parts (e.g. short vs. long words, with more printed letters

or spoken syllables, or 1 vs. 2 sense modalities). We define

summation efficiency as the ratio of the efficiency for a signal with

more parts to that for a signal with fewer parts. Recall that

efficiency is the ratio of ideal to human threshold energies. If the

task is appropriately designed, so that the ideal energy threshold is

independent of the number of parts, then the ideal threshold

cancels out in the ratio of efficiencies, leaving a ratio of two human

thresholds.

We measure the threshold sound energy in hearing and contrast

energy in vision. In all our experiments, the noise is independent

among all the parts. If the observer combines perfectly, and the

task is appropriately designed, then the observer will require the

same energy, independent of the number of parts. If the observer

combines inefficiently, then the observer will require more energy

for more parts [24]. We show that our new measure, summation

efficiency, is a useful assay of the cost of combining. While past

approaches have not provided much grip on this key but slippery

phenomenon, we note that our summation efficiency is very

closely related to, but easier to understand than Nandy and Tjan’s

‘‘index of integration’’ [26].

Summation Efficiency
Efficiency is the ratio of ideal and human energy thresholds,

g = Eideal/E. Let g1 be the efficiency for identifying one feature.

We do not know its value. On general grounds, one might suppose

that it is less than 100% and greater than or equal to the 20%

found for detecting a brief sinusoid (both in hearing [27] and in

vision [28]), which presumably has only a few if not just one

feature (see ‘Efficiency to detect a short sinusoid’ in Materials and

Methods). Let g be the efficiency for identifying an n-feature word.

The summation efficiency is g=g1.

Human and ideal observers differ in how well they combine

parts, but are alike in many other ways. The relation of human to

ideal sensitivity is efficiency. When human and ideal are similarly

affected, efficiency is unchanged. In fact, efficiency is independent

of overall contrast, eccentricity, and, to some extent, task (e.g.

number of response alternatives) [25]. Detection is fundamentally

easier than identification because there are fewer response

alternatives, but this is factored out in computing efficiency, so

efficiency for identification of one of many possible can equal the

efficiency for detection of one.

Summation index. A traditional formula describing psycho-

physical summation of multiple components is

Xn

i~1

e
1=k
i ~1, ð1Þ

where n is the number of components, k is the summation index, ei is

the energy of the i-th component, normalized by the threshold

Ei, alone for that component alone, ei~Ei=Ei, alone, and the

composite stimulus is at its threshold (e1, …, en). If all the

components are presented at the same multiple of threshold,

ei~e1 for all i, then Eq. 1 reduces to ne
1=k
i ~1 so

e1~n{k ð2Þ

When the limiting noise is independent and identically distributed

among the components, then summation ranges from none (k = 0)

to full (k = 1). Note that Eq. 1 and the index k apply to energy, not

amplitude. This ideal, with full summation (k = 1), is the

‘‘integrating model’’ of Green and Swets [22]. The ideal observer

summates fully (k = 1) and humans summate weakly or strongly,

depending on the task (Table 1). Suppose the task is designed so

that the ideal total energy threshold Eideal is independent of the

number of components. This is easy to do. Then the summation

efficiency is.

g
g1

~
Eideal= ne1E1, alone

� �
Eideal=E1, alone

~ 1
ne1
: ð3Þ

Using Eq. 2 to replace e1, we get

g
g1

~nk{1: ð4Þ

We can solve this for k, the summation index,

k~1z
log

g
g1

log n
ð5Þ

Factoring efficiency. The efficiencies are nonzero, so we can

write

g~g1
g

g1
: ð6Þ

This is the product of identification efficiency for one feature,

g1, and summation efficiency for n features, g/g1. We noted that a

summation index k implies a summation efficiency g/g1 = nk21.

Thus

g~g1nk{1 ð7Þ

where 0:2ƒg1ƒ1. Eq. 7 is a key prediction. Previous observations

that this is a power law did not mention that the proportionality

constant is the efficiency for one feature [24,25]. Eq. 7 says that

the highest efficiency g1 is attained when detecting just one feature

(n = 1). We will see in Results and Discussion that summation is

strong (k near 1) only for combining components that are

perceived as coming from the same object. Efficiency is low when

many features are summed weakly (n ..1 and k ,,1).

Combining Features
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Our derivation began with an empirical law (Eq. 1). However,

that law, for detection or identification, can be derived by

supposing that objects consist of features that are detected

independently; that detecting the object merely requires detecting

a feature; and that identifying the object requires detecting several

(perhaps 7) features [25].

Summation Models
Components can be closely related (e.g. adjacent pixels) or

disparate (e.g. auditory and visual). Adjacent pixels are highly

correlated in most environments, as are successive sounds, whereas

audio is correlated to visual only in particular situations. Given

multiple sources of information with independent noise, how do

we combine them to arrive at a single decision? From a

computational perspective, there is a range of possibilities, but

two cases stand out.

Firstly, in ‘probability summation’, the cues are processed

independently and then combined logically, e.g. detecting an

object by any of several independent cues to its presence (Fig. 1B).

This preserves success: if either component would have been

successfully detected or identified independently, then the

combination is detected or identified. Probability summation

provides weak summation [29]. The strength of summation

depends on the steepness of the psychometric function, which

differs between hearing and vision, so the summation index of

probability summation for detection is k = 0.57 in vision and

k = 0.80 in hearing. (See ‘Probability summation and psychometric

steepness’ in Materials and Methods.).

Probability summation had its heyday between 1920–1990. In

hearing [30], it was worked out in 1921 (though not published

until 1950). In vision [29], it was worked out in the 1960’s and

709s. Probability summation remains the best account in hearing

and vision for sensitivity to combinations of features [31]. It

stipulates that a target can be detected or identified in any of

several independent ways, so the probability of overall failure is the

product of the separate probabilities (Fig. 1B). In hearing, this

underlies Fletcher’s widely used articulation index [30,32]. In

particular, consider detecting a visual pattern composed of two

spatial frequencies, low (L) and high (H), or identifying a spoken

syllable whose waveform is filtered into two sound-frequency

bands, low (L) and high (H). The probability p of detecting or

identifying the whole is predicted by the measured probabilities of

detecting or identifying the parts, 12p = (1–pL)(1–pH) [30,33,34].

(Readers interested in false alarms should see ‘correction for

guessing’ in Materials and Methods.).

The main alternative to probability summation is linear

summation, which conserves energy, yielding strong summation

[22]. Signal detection theory shows that the optimal detector of

a known signal in white noise bases its decision on a cross

correlation of the stimulus with the known signal [21]. This linear-

summation strategy corresponds precisely to the popular model of

a neuronal receptive field [37], which does not care how many

cues or synapses there are, and treats the lot as one signal (Fig. 1C).

(Of course, you might be surprised to be supposing a receptive

field that spans vision and hearing.) This detector is ideal in that,

on average, it performs as well or better than any other algorithm

processing such stimuli. Signal detection theory shows that, for a

given noise level, performance of the ideal is limited solely by

signal energy [21,22]. The ideal detector for a signal known

exactly in white noise has 100% summation efficiency and a

summation index k = 1. It performs a linear summation. It conserves

energy, in the sense that the total threshold energy for detecting the

combination of two components is fixed, E1+E2 = c, if the two

signals are limited by independent noises at the same noise level.
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Hearing and Seeing a Word
This paper is about the cost of combining: why we need more

energy to perceive objects with more features. We focus on word

identification, considering combining at high and low levels, e.g.

between eye and ear, and between parts of a word.

We begin with the high-level combining of eye and ear before

turning to the low-level combining of letters and syllables within a

sense. For an evolutionarily established process, such as audiovi-

sual localization [8] or recognizing the correspondence between

facial and vocal expressions [39], one might expect performance

close to the ideal of linear summation. Seeing the speaker’s lips

move helps us understand spoken words [40] and sentences [41].

In contrast, for a more artificial perceptual task, such as reading

and hearing a story, eye and ear might not integrate so well, and

might even interfere. For example, while watching a foreign

movie, native-language subtitles impair comprehension of the

foreign speech [42].

We investigate the integration of concurrent speech and text,

which is often seen in opera, television, movies, and the internet,

especially when captioned for the hard of hearing. Concurrent

speech and text is important in learning to read [18]. Our

observers perform an intelligibility task on words and sentences

presented through ear and eye (Fig. 1A). In Experiment 1, each

trial presents, for 350 ms, a single word randomly selected from a

set of 10 possible words. In Experiment 2, a trial consists of a

sentence (average length 11 words), randomly selected from a set

of 120 possible sentences, presented one word at a time, at a fixed

rate (one word per 350 ms, i.e. 2.86 word/s). Observers verbally

report the perceived words, taking as long as they like.

In both experiments, the audio and visual signals are presented

in audio and visual white noise (Fig. 1A). Characterizing listeners’

Figure 1. Method and models. (A) A sentence (or a word) is presented as two concurrent streams: text and speech in visual and audio white
noise. The observer identifies the words. In Experiments 1, 3, and 4, the visual stream includes only one word. In Experiment 2, the visual stream is a
rapid serial visual presentation [35] of a sentence, presented one word at a time. The audio stream presents the same words as the visual stream. (B &
C) The critical difference between models B and C is whether the two streams converge before or after detecting the signal. This dichotomy has been
called ‘‘pre- and post-labelling’’ in speech recognition [36]. A neural receptive field computes a weighted average of the stimulus, i.e. the cross
correlation of the stimulus and the receptive field’s weighting function [37]. In fact, if the noise is white, taking the weighting function to be a known
signal, the receptive field is computing the log likelihood ratio of the presence of that signal in the stimulus, relative to zero signal. When the possible
signals are equally probable, the best performance is attained by the maximum likelihood choice. (B) In probability summation, there is a receptive
field for each possible signal. Detection occurs independently in each stream and the detections are combined logically to yield the overt decision.
This is practically optimal when there is uncertainty among the known signals [38]. (C) In linear summation there is just one receptive field. The
signals are linearly combined by a single audio-visual receptive field, followed by a single detector, which emits the final decision [22]. This is optimal
for a known audiovisual signal.
doi:10.1371/journal.pone.0064803.g001
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comprehension of speech in noise is a classic problem in auditory

research [43], and speech-in-noise exams are used extensively in

clinical investigations [44]. Try our audiovisual demo (Fig. S1).

The critical experimental manipulation is as follows: We

characterize how well the observer combines by presenting stimuli

with a total signal energy allocated in various proportions between

the audio and visual modalities. We measure recognition threshold

for six different audio:visual ratios. The extremes, with zero audio

or zero visual signal energy, are unimodal. All allocation propor-

tions, including the unimodal, are randomly interleaved (with one

exception, described at the end of the caption to Fig. 2). From trial

to trial, we adaptively adjust signal energy to estimate the energy

required by the observer to correctly identify a word 50% of the

time.

Results and Discussion

Asking observers to integrate concurrent audio speech and

visual text, three outcomes are particularly plausible. First, in

switching, observers could attend to one stream and ignore the

other (as some of our observers reported). Second, in probability

summation, the observer might benefit from both channels merely

because they provide two statistically independent ways to succeed

(Fig. 1B). Third (and contrary to our observers’ impressions), in

linear summation, the two streams could be treated as one combined

stimulus (Fig. 1C).

To assess the cost of combining, we compare observer

thresholds for the bimodal signals with those for unimodal signals.

This paradigm allows us to distinguish between various proposals

for how they are combined (e.g. Figs. 1B and 1C) by measuring the

degree of summation, from none (k = 0) to complete (k = 1). Fig. 2A

shows predicted curves for several values of k. Each threshold is

plotted as a point in the two-dimensional space. The visual and

audio components v and a of the plotted points are each

normalized by the corresponding unimodal threshold energy [33].

We characterize summation by fitting a curve with an

adjustable summation exponent 1/k,

v1=kza1=k~1, ð8Þ

where k is the summation index, v = V/Vuni and a = A/Auni are the

normalized visual and audio energy components of the threshold

for a bimodal stimulus (V, A), and Vuni and Auni are the unimodal

visual and audio thresholds (Vuni, 0) and (0, Auni). Some of the

papers on summation talk about the just noticeable difference

using just vision sV, just hearing sH, or both sVH (e.g. [45]). The

optimal combiner conserves squared precision, s{2
VH~s{2

V zs{2
H .

This is equivalent to our Eq. 8, with k = 1. (k is 1, not 2, because v

and a are energies, like s2.)

We fit Eq. 8 to the six threshold points in each experiment. We

are interested in the degree of summation, especially in the range

from none to complete (i.e. 0 to 1). Those two cases are illustrated

in Fig. 2A. For k = 1, energy sums linearly and the predicted

thresholds lie along the negative diagonal. In the limit as k

approaches zero, Eq. 8 becomes max(v,a) = 1, so the threshold for

Figure 2. Predictions and Results. (A) Audio-visual summation is summarized by the summation index k of a smooth curve (Eq. 8) fitted to the
threshold energies. The horizontal and vertical scales represent the normalized visual and audio energy components v = V/Vuni and a = A/Auni of the
bimodal signal at threshold. Each audio:visual ratio – including the two unimodal conditions (Vuni, 0) and (0, Auni) – is a condition. All conditions are
randomly interleaved, trial by trial (with one exception, described at the end of this caption). The noise is always present in both streams. For a given
audio:visual ratio A/V, we measure the threshold (V, A) radially, along a line from the origin (0, 0). The curves represent degrees of summation ranging
from none (k = 0) to complete (k = 1). The special case of k = 0 is to be understood as the limit as k approaches 0, which is max(v,a) = 1. (B) Averaging k
over our ten observers, we find the same summation for reporting either a single word (k = 0.75, red, Experiment 1) or a sentence (k = 0.76, blue,
Experiment 2). The error bars indicate mean 6 standard error. The curves obtained for each individual observer are shown in Figure S2. The virtue of
randomly interleaving conditions (a:v ratios) is that the observer begins every trial in the same state, which enhances the comparability of the
conditions plotted above. However, one might wonder how much better the observer would perform when the whole block is devoted to one
condition. Random interleaving produces uncertainty; blocking each condition does not. Testing one observer (MD) on three conditions (audio,
visual, and audiovisual signal; noise always present in both streams) we find insignificant difference in thresholds measured with and without
uncertainty (i.e. interleaved vs. blocked conditions). Furthermore, ideal observer thresholds for the same conditions are negligibly different with and
without uncertainty. This indicates that the results presented in this figure, found with uncertainty, also apply to performance without uncertainty.
doi:10.1371/journal.pone.0064803.g002
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the bimodal stimulus is completely determined by whichever cue

the observer is more sensitive to. Probability summation corre-

sponds to intermediate values of k, around 0.6.

Zero (k = 0) and weak (k < 0.6) summation represent distinct

notions of ‘independence’. Zero k represents the case of

independence of the two component values of the threshold.

The stimulus is above threshold if and only if at least one of its

components is above the corresponding unimodal threshold. This

independence of threshold components corresponds to horizontal

and vertical lines in our a-v plots. Probability summation (k < 0.6)

represents statistically independent success through either cue.

Experiment 3 measures the unimodal audio and visual psycho-

metric functions of three observers for the single-word task,

calculates the bimodal thresholds predicted by probability

summation, and fits Eq. 8 (see Materials and Methods). Probability

summation predicts a k of 0.65, much less than 1, and is rejected

by the human data.

Average results are shown in Fig. 2B. They demonstrate fairly

strong summation of speech and text for single words (Exp. 1) and

sentences (Exp. 2). On average, the summation index k is

0.7660.13 for sentences and 0.7560.03 for single words (mean

6 s.e., ten observers). These values are significantly better than

probability summation. The data from each observer are shown in

Fig. S2.

Summation efficiency is the ratio of bimodal and unimodal

thresholds. We find this ratio to be the same for single words and

words in sentences. Sentence context typically improves perfor-

mance in intelligibility tasks [46,47]. Here, the introduction of

sentence context is accompanied by an increase in the number of

possible words from 10 to 404, which makes it harder to identify

the word, and the net effect is to increase threshold (increasing log

energy by 0.3360.02, across all audio-visual ratios). However, as

noted above, this change affects unimodal and bimodal thresholds

equally, so their ratio, the summation efficiency, is unaffected (i.e.

the effect of the different audio-visual ratios on the threshold

difference between sentences and word presentation fails to reach

significance: ANOVA with the audio-visual ratio as within-subject

factor: F(5, 45) = 1.17, p = 0.34).

The efficient high-level combination of streams found here

stands in sharp contrast to the inefficient low-level combination of

features in recognizing words in either text or speech. As noted

above, signal detection theory shows that, for a given level of white

noise, the detectability of a known signal is wholly determined by

its energy E. This ideal is plotted as the negative diagonal in Fig. 2:

constant total energy, no matter how it is distributed between the

two cues (with the proviso that we normalized each modality by its

own threshold).

In identifying a word, each letter or syllable is a cue, and one

can measure the threshold energy for the word as a function of

word length. Perfect combination predicts a fixed total energy,

independent of word length (this would be a horizontal line in

Fig. 3), but it is found, instead, that the threshold energy rises with

a log-log slope of 0.9 (printed letters, Fig. 3A) or about 0.4 (spoken

syllables, Fig. 3B), which corresponds to a summation index of

k = 0.1 (printed) or k = 0.6 (spoken). This is inefficient combining,

much worse than the ideal log-log slope of zero [24,48,49] and

summation index k = 1.

Efficiencies of Eye and Ear
Our theory, expressed in Eqs. 6 and 7, is about the overall

efficiency to identify an object, g. Hearing and vision scientists

have asked how well people recognize a spoken or printed word in

noise. However, the audio and visual results were expressed

differently, and have never been compared. (Comparing audio

detection with visual contrast discrimination is apples and oranges,

inconclusive [50].) Both fields measured the threshold (e.g. 50%

correct) strength for identification of a word in white noise. Since

Fletcher [32], hearing scientists have reported the signal-to-noise

ratio in dB; this is (ten times the log of) the ratio of threshold signal

power to noise power. Vision scientists, coming after signal

detection theory, report threshold E/N, the ratio of signal energy

to noise power spectral density.

The efficiency for detection of an optimized short sinusoid in

white noise is about 20%, both in hearing [27] and in vision [28]

(see ‘The efficiency for detecting a short sinusoid’ in Materials and

Methods). Experiment 4 measures the efficiency of identifying one

word, embedded in noise, presented either visually or auditorily.

Efficiency was maximized by optimizing the voice and font of a

four-letter one-syllable word. Remember that efficiency is the ratio

of ideal and human threshold energies. Paralleling the similarity

between eye and ear for detecting a short sinusoid, we find a low,

Figure 3. Assessing efficiency for combining the parts of a word: energy threshold as a function of word length. The summation index
k is 1 minus the slope. Ideal thresholds, not shown, are independent of word length, with slope zero. (A) For a written word [24], the summation
index is k = 0.1. (B) For a spoken word [48,49], the summation index is k = 0.5 or 0.7. See Methods for details.
doi:10.1371/journal.pone.0064803.g003
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roughly 1%, efficiency, at best, for identification of a spoken or

printed word. This is for ten 4-letter one-syllable words, using the

most-efficient voice and proportionally-spaced font (see ‘Experi-

ment 4: Comparing the efficiency of eye and ear’ in Materials and

Methods).

Thus, whether detecting a sinusoid or identifying a word, eye

and ear are equally efficient. Efficiency for detecting the auditory

or visual sinusoid is 20%, nearly as high as possible, and efficiency

for identifying the word is roughly 1%.

Summation Efficiency
Our low overall efficiency limits our lives. Identifying short

words at roughly 1% efficiency, we need 20 dB more sound and

ten times more visual contrast than the optimal algorithm. Eq. 6

allows us to express overall efficiency as a product,

1%~g~g1|(g=g1). Note that the first factor, the one-feature

identification efficiency, is greater than 20%, so the second factor,

the summation efficiency, must be less than 5%. Thus, most of the

cost in this word identification lies in combining the many features

of the word.

This object recognition theory (Eq. 7) may seem too simple,

even ridiculously so. One might expect observers to benefit from

template-matching recognition of word shape, which would

outperform our model. However, word shape contributes very

little to reading speed, and, presumably, word recognition [46].

We presented Eq. 7 as a theory for efficiency (i.e. sensitivity in

noise) for word identification, because that is what we have data

for, but we see no reason why it should not apply to all objects. Yet

our theory does not care about signal shape at all, beyond the

feature count n. What about letters? Letters vary greatly in shape,

and human efficiency for letter identification varies greatly among

fonts and alphabets. Can our theory explain that? Yes. In Fig. 3,

we supposed that the number of features is proportional to the

word length, but we don’t know how many features per letter.

Perimetric complexity (perimeter squared divided by ink area) is a

plausible estimate of the number of features in a letter, to within a

constant of proportionality [25]. This makes it very interesting to

plot efficiencies for a letter (of any of several fonts) and for words

(of several lengths) as a function of complexity (Fig. 4). This has a

log-log slope of 20.92 and R2 = 0.995.

Supposing that the number of features in an object is

proportional to its perimetric complexity, we write n = K/K1,

where K1 is the (unknown) complexity of a feature. Then our

prediction, Eq. 7, becomes g~g1nk{1~g1 K=K1ð Þk{1
~

g1=Kk{1
1

� �
Kk{1, which is identical to the regression line,

g~6:6 K{0:92, where the summation index k is 0.08 and the

proportionality constant g1=Kk{1
1 is 6.6. We have not been able to

think of a way to factor g1=Kk{1
1 , to separately measure the

constants g1 and K1, but the data are well accounted for without

knowing that extra fact.

Strong vs. Weak Summation
We report a dichotomy between the efficient high-level multi-

sensory summation of text and speech and the inefficient low-level

summation of word features within a sense. So, what make us

summate efficiently or inefficiently? To achieve a broad perspec-

tive, Table 1 surveys the summation efficiencies from 23 papers: 7

cross-modal (including this one) and 15 uni-modal. Computed

summation efficiencies are plotted in Figure 5. Table 1 and

Figure 5 show that summation efficiency is high (near 1) if and

only if the components are both perceived as the ‘‘same’’ object.

This is brought out nicely in two papers that introduced cue

differences that reduced the observer’s efficiency from high to low.

Gepshtein et al. [51] introduced a spatial offset between their

visual and haptic objects. When coincident, the two are perceived

as one object and summate efficiently (k = 0.84, note that Table 1

Figure 4. Efficiency for identifying letters and words as a
function of their complexity. Efficiency is nearly inversely propor-
tional to complexity over a nearly hundred-fold range. The horizontal
scale is the perimetric complexity (perimeter squared over ink area) of
the letter or word. Each+is efficiency for identifying one of 26 words of a
given length (1 to 17) in Courier [24]. Each Courier letter has a
complexity of 100 (averaging a-z), and the complexity of a word is
proportional to its length. Each g is efficiency for identifying one letter
of one of 14 traditional fonts and alphabets by native or highly trained
readers, in order of increasing complexity [25]: Braille, bold Helvetica,
bold Bookman, Sloan, Helvetica, Hebrew, Devanagari, Courier, Armenian,
Bookman, Arabic, uppercase Bookman, Chinese, Künstler. The outlying %

is efficiency for a letter in an untraditional alphabet: 464 random
checkerboards, after extended training [25]. The outlying # is efficiency
for identifying the location of a disk. (See ‘Experiment 5. Identifying
disks’ at the end of Materials and Methods.) A disk has the lowest
possible perimetric complexity K = 4p = 12.6. A linear regression of log
efficiency vs. log complexity for the traditional letters (13 fonts and
alphabets) and words (13 lengths), excluding the untraditional alphabet
and disk, has a slope of 20.92 and R2 = 0.99. The regression line and its
equation are shown.
doi:10.1371/journal.pone.0064803.g004

Figure 5. Histogram of the values of the summation index k
reported in Table 1.
doi:10.1371/journal.pone.0064803.g005
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only lists the average of Gepshtein and Banks [52] and Gepshtein

et al. [51]). When sufficiently displaced, the two are perceived as

distinct objects and summate inefficiently (k = 0.17). Nandy and

Tjan [26] replicated the classic finding that a low- and a high-

spatial-frequency grating summate inefficiently (k = 0) and went on

to discover that a low-frequency band of a letter summates

efficiently with a high-frequency band of the same letter (k = 1). In

both studies, summation is efficient (k .0.6) if and only if the two

components are both perceived as different aspects of the same

object, regardless of whether they are mediated by different senses.

Note that high summation efficiency is much more common in

the cross-sensory summation studies (2 senses, upper half of

Table 1) than in studies of summation within a sense modality (1

sense, lower half of Table 1). This counterintuitive result shows the

brain summating more efficiently across senses than within a sense.

However, that is a misleading consequence of which stimuli have

been most investigated, an artifact of stimulus selection. The logic

of summation studies usually supposes that the two components

are limited by independent noises. For that to be plausible, the

stimuli must be substantially different. To achieve that, studies of

summation within a sense have usually used stimuli that represent

different objects, e.g. adjacent gratings or letters in a word. Stimuli

mediated by different senses are already different, freeing

investigators to pick stimuli that appear to be the same object.

However, the difficulty can be overcome. Table 1 includes several

studies that found high summation efficiency for two visual cues

(texture perspective and stereo disparity) to the same object.

Table 1, taken as a whole, dispels any past impression that

summation efficiency is consistently associated with high-level or

evolutionarily old tasks. Instead, what matters is whether the two

components are perceived as the same thing (object). Rosch noted

that what we perceive as an object is not arbitrary [66]. Thus the

high- and low-frequency bands of an ‘‘a’’ each look like an ‘‘a’’,

but in a pair of high- and low-frequency gratings, neither alone

looks like the composite plaid. When perceiving a word, speech

and print combine efficiently because they are perceived as the

same thing, the word. But adjacent letters or syllables combine

inefficiently, because each is perceived as a distinct thing, not the

word itself. It seems that combining likelihoods, for efficient

summation, requires the infrastructure that both stimuli are

perceived as the same object, activating the same mental category.

The conclusion that we draw from the Table is new: combining

is efficient if and only if the two cues each independently code for

(or appear to be aspects of) the same thing. The reports of both

high and low efficiencies by Gepshtein et al. (across senses) and

Nandy and Tjan (within a sense) are key to interpreting the table.

However, they confined the scope of their reviews and presented

much narrower conclusions. Nandy and Tjan emphasized the

remarkable finding of efficient summation across frequency, not

the importance of having cues that appear to be the same object.

In reporting their finding, Gepshtein et al. said, ‘‘Presumably,

signals should not be combined when they come from different

objects.’’ That sounds like happy news only because they were

focused on cross-sensory combination and were not thinking about

the persistent finding of inefficient summation for neighboring

objects within a sense, which their finding explains nicely. In fact,

in recognizing a word, letters summate inefficiently, as though

each were a distinct object. This is the sad side of the Gepshtein

et al. finding.

One might suppose that the inefficiency of combining is

inevitable. After all, how can we expect a self-wired brain to

perform as well as a statistician who knows how to compute and

combine likelihoods? And yet, the brain does achieve this optimal

summation when the cues are perceived as the same thing, even if

they arrive through different senses. When we combine efficiently,

the brain is smart about the weights, adjusting them in the face of

changing reliability to achieve optimal combination [19]. This

statistical proficiency does not extend to combining cues that are

perceived as different things. Thus, people can combine

likelihoods optimally, but only for stimulus components that

independently refer to the same object. This seems less like an all-

powerful statistician and more like a specific combining glue, not

applicable generally, that joins only the data that arrive to that

particular object memory in the brain.

We have seen that identifying an audiovisual word involves

inefficient combining of letters or syllables and efficient combining

of senses. How does it work? Might the combining of senses bypass

the inefficient combining of adjacent parts? That seems unlikely,

since reading speed (i.e. serial word recognition) is mostly due to

letter-by-letter decoding and much less due to recognition of word

shape [46]. Thus the efficient combining of audio and visual word

cues must build upon the inefficient combining of word parts.

Hearing and seeing the speaking of a word refer to the same

speech act, whereas, in hearing and reading a word, the

correspondence is abstract: They are the same word, but not

manifestations of one human action. Intuitively, because hearing

and reading seem so different, some of the authors expected that

observers would switch streams, attending one or the other, and

not integrate at all (as some observers later reported). However,

our results show that observers do integrate the audio and visual

streams, contrary to their own impressions.

And yet, the brain is not a student required to achieve the

optimal solution by application of the proper method. Does it

matter when its summation efficiency is low? That depends on the

number of parts, or cues. An observer combining two cues with

summation index k has a summation efficiency of 2k21, which is

78% when the index is low (k = 0.65) and 100% when it is high

(k = 1). This is only a 20.1 difference in log threshold energy

(21 dB), which is piddling, too small to be of practical significance.

However, most objects consist of many features. For example, a

one-syllable four-letter word with perhaps 7 features per letter [25]

means 28 features, which is many. For these short words,

summation efficiency is a meager 1%/g1,5%. In other words,

threshold energy is at least 5%21 = 20 times higher than it would

be with perfect summation. Thus low summation efficiency is

innocuous for simple objects, but greatly impairs our ability to see

complex objects.

Here we have found a rule governing the efficiency with which

observers combine parts. Suchow and Pelli [67] show that the

process of letter identification can be separated into two steps,

detecting the parts and combining them. The ideal observer’s

efficiency drops when forced to take two steps, but the human

observer’s efficiency is unimpaired by this constraint. Detecting the

parts separately is inefficient, but people do it anyway. Detection

of each part is independent, with an efficiency independent of the

number of parts. Human efficiency of combining many parts

drops in inverse proportion to the number of parts, as though the

observer combines only a small number of parts.

We suppose that our dichotomy between efficient integration

across views of the same thing and inefficient integration across

things corresponds to the fast and slow dichotomy of combining

process described by Holcombe [68].

We have been concerned, here, with how well observers

combine in summation experiments, assembling parts to recognize

a whole. However, combining is not always good. In real life, and

in masking and crowding experiments, the observer must combine

selectively to isolate the object from masks and neighboring clutter.
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The Unitary Hypothesis
Our notion of efficient combination only of cues that

independently code for the same thing is very similar to the

‘‘unitary’’ hypothesis that helps to explain the ventriloquist effect.

A ventriloquist sits on the stage with a dummy on his knee. When

the ventriloquist speaks, restraining the motion of his lips, but

making the dummy’s mouth move, we mistakenly perceive the

speech as coming from the dummy’s mouth. This ventriloquist

effect is the mislocalization of the source of a sound for which there

are discrepant audio and visual cues. It still works with minimal

stimuli: simultaneously presenting an auditory beep and a visual

mark at various locations along a line. If the audio-visual

discrepancy is small then the two stimuli are fused, perceived as

one event, and observers combine information from the two senses

optimally in estimating its position [8]. However, at larger

separations, the two are seen as distinct events and there is no

longer a benefit in localization of either [69]. In their wide-ranging

review of cross-sensory integration of discrepant cues, Welch and

Warren [70] suggested that the fusion is enabled by a perceptual

assumption of unity, that both senses were reporting on the same

event. Bayesian modeling that explicitly includes this unitary

hypothesis (one vs. multiple events) gives an excellent account of

several aspects of the ventriloquist effect over the full range of

discrepancy, opting for unity at small discrepancies and multiplic-

ity at large discrepancies [71,72]. In that context, of merely

judging the location of a simple event or two, the brain performs

splendidly, properly considering the two possible situations (one vs.

two events) and computing optimally in each. Alas, in word

recognition, the brain seems less splendid, as it inefficiently

combines adjacent letters to recognize the word. This virtue and

vice both reflect the same operating rule of efficiently combining

only cues that code for the same thing.

Conclusion
Sensitivity has been a central topic of perception research since

the nineteenth century, yet it remains largely unexplained. We

show here that, in identifying a word, spoken or printed, most of

the cost in sensitivity lies in combining its many features. Whether

presented to eye or ear, efficiency for detecting a short sinusoid

with few features is a substantial 20%, whereas efficiency for

identifying a word with many features is a mere 1%. Efficiency is

nearly inversely proportional to complexity over a nearly hundred-

fold range.

Past studies have found low and high efficiencies of

summation in various cue-combination tasks. Our survey

includes many summation studies whose results are consistent

with the idea that object thresholds are mostly determined by

inefficient combining of features. However, in the interest of

making the task simple, well specified, and objective, these

studies mainly use the tasks of pattern detection or parameter

estimation (e.g. slant or thickness). It is hard to generalize from

those tasks to object recognition. Recognizing words is an

important object-recognition task, essential to everyday life. The

beauty of our text-and-speech task is that, while showing strong

summation across senses at the word level, it also shows

inefficient summation over the length of the word, so that both

findings, strong and weak summation, are simultaneously

present. Understanding a word, written and spoken, exhibits

both at once: the observer combines parts (letters and syllables)

inefficiently while combining senses efficiently.

Only components that are perceived as the same thing are

combined efficiently. Observers give different names to adjacent

letters in a word, and combine them inefficiently. Observers

give the same name to a word’s image and sound, and combine

them efficiently. Thus the brain has the statistical machinery to

optimally combine cues, but only for cues that are indepen-

dently perceived as the same thing. Presumably such cues find

their own way through the brain to arrive at the same object

memory.

Materials and Methods

Ethics Statement
This study has been approved by the New York University

Institutional Review Board, and conducted according to the

Declaration of Helsinki. All human participants gave written

informed consent. For observers under 18, parental consent was

also obtained.

Experiments
Experiments 1 and 2 assess summation of text and speech,

respectively for single words and sentences. Experiment 3

measures the unimodal psychometric functions for word identifi-

cation, to allow us to calculate the summation index k predicted by

probability summation. Experiment 4 compares efficiencies for

identifying single spoken and written words. Experiment 5

measures the efficiency for identifying the least possible complex

visual object: a disk.

Observers
Twenty native English-speakers (17–59 years) participated in

the study. Ten of the observers took part in Experiments 1 and 2,

three in Experiment 3, five in Experiment 4, and two (MD and

DGP) in Experiment 5. All reported normal hearing and normal

or corrected-to-normal vision. One participant in Experiment 4

exhibited an abnormally high audio threshold, diverging by more

than 4 standard deviations from the average of the other

participants. She was referred to an audiologist and her data

excluded from the analyses. MD and DGP are authors. Other

observers were naive to the purpose of the experiment. All

participants (but MD and DGP) were paid for participating.

Apparatus
The observer binocularly views a gamma-corrected grayscale

CRT monitor (ViewSonic UltraBrite E90f+) from a distance of

57 cm, using a chin rest. The background luminance is set to the

middle of the monitor’s range, about 70 cd/m2. The display

resolution is set to 10246768 pixels, 35.2626.4 cm, i.e. 29.1

pixel/deg at 100 Hz refresh rate. Display characteristics differ for

Experiment 5, and are reported below (see ‘Experiment 5 (Fig. 4):

Identifying disks’). Stimulus presentation is driven by MATLAB

running on an Apple Macintosh computer using the Psychtoolbox

[73,74,75]. The observer wears stereo headphones (Sony MDR-

V500) and the same audio signal is presented to both ears.

Intelligibility Tasks: Word and Sentence Identification
Our task, identifying synchronous text and speech, allows us to

concurrently manipulate the signal-to-noise ratio in two senses.

The observer fixates the 2.5u gap between two vertically aligned

white bars (each 1u60.07u) presented on the grey background at

the center of the screen, and initiates the trial. Then a randomly

selected stimulus (signal in noise) is presented through eye and ear.

The fixation bars remain on the screen during the presentation of

the stimulus.

The stimulus consists of two synchronized streams, visual text

and audio speech, each embedded in zero-mean white Gaussian

noise. In the sentence experiment (Exp. 2), the visual stream is a

sentence presented sequentially, one word at a time, at a fixed rate
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(350 ms/word, 2.86 Hz, see below), each centered at fixation.

There is no temporal gap between successive visually presented

words. In the single-word experiments (Exp. 1, 3, and 4), the visual

stream includes just one word, presented for either 350 ms (Exp. 1

and 3) or 470 ms (Exp. 4). The audio stream presents the same

words, recorded with natural stress and intonation. At the end of

the trial, the observer reports the signal.

For sentences, the observer verbally reports the perceived

words, taking as long as he likes. The total number of accurately

reported words per sentence is recorded, irrespective of word

report order. Due to large variations in their audio durations, the

last word of each sentence is not scored. The single-word

experiments use a 10-alternative forced choice procedure. Every

trial uses the same list of 10 possible words. A response screen

appearing 100 ms after stimulus offset contains the 10 possible

words, displayed at the same size, font, and contrast polarity as the

word in the stimulus. The observer indicates which word he thinks

was presented by using the mouse to move the cursor and click on

the word.

Stimuli
In Experiment 2, 120 sentences composed of 9 to 15 one-

syllable words (11.361.4, mean 6 s.d.) are used (word length

4.161.1 characters). Twelve of the sentences are from Kwon et al.

[76], we composed the rest for this study. The sentences are easy

to comprehend, roughly corresponding to first-to-fourth-grade

difficulty level (mean Flesch-Kincaid Index 0.61, mean SMOG

index 3.13, mean Gunning-Fog Index 4.51). Here are two of the

sentences that we use:

‘‘The two friends did not know what time the play would start’’.

‘‘On top of the pile there were two small pens’’.

Experiments 1 and 3 use the ten most frequent one-syllable 3-

letter words, according to Kučera and Francis [77]: and, but, can,

had, has, him, his, not, one, was. Experiment 4 uses ten high

frequency one-syllable 4-letter words selected from the North-

western Auditory Test No. 6 (NU-6), Form A [78]: bath, deep,

late, life, mess, ring, road, soap, talk, turn.

Written stimuli are rendered as light letters on the gray

background. Experiments 1, 2 and 3 present words in lowercase

Courier, a monospaced serif font, at normal spacing. Experiment

4 uses lowercase Helvetica, a proportional sans-serif font. The first

letter of each sentence is capitalized and the period at the end is

removed. None of the sentences contain punctuation marks. We

use a fixed 1u visual angle x-height, the vertical extent of the

characters with no ascenders or descenders. The signal is a word-

shaped luminance increment. Its Weber contrast c is the ratio of

the increment to the background luminance.

A linguistically trained female native Canadian speaker of

English read the sentences (sampling rate 22,050 Hz, 16-bit

resolution). To facilitate the synchronization of the visual and

audio signals, the speaker is paced with a visual metronome

(flashing dot). The speaker is instructed to read the sentence with

natural stress and intonation, while producing words at the

metronome rate (constant rate of 2.86 Hz, appropriate to elicit

naturalistic speech).

Soundtrack editing was performed using PRAAT [79]. We align

the two streams by first synchronizing the audio-visual onset of the

first word and then stretching or compressing the audio stream

(using the Time-Domain Pitch-Synchronous Overlap-and-Add

algorithm [80]) to achieve alignment of the onset of the last word.

The compression is 0.9960.05 (mean 6 s.d.). The overall word

onset asynchrony (6693 ms, mean 6 s.d.) is well within the

temporal audio-visual integration window [81].

The same speaker recorded single words used in Experiments 1

and 3 (in sentence-like context, minimizing co-articulation). The

sound files used in Experiment 4 are edited from a recording of the

NU-6 words, commercially released by Auditec, St Louis [82].

Word audio duration varies (Experiments 1 and 3: mean: 333 ms,

range: 275–359 ms; Experiment 4, mean: 401 ms, range: 344–

462 ms). The intensity of each sound file (sentence and single

word) is peak normalized at 99% of its maximal amplitude and

scaled to 70 dB SPL.

Noise
Noise is added independently to each pixel of the visual

stimulus. Each noise sample is a luminance increment or

decrement from a zero-mean Gaussian distribution truncated at

62.5 standard deviations (SD is 0.4 contrast). The root mean

square (rms) contrast of the noise is 0.38. At the viewing distance of

57 cm, each noise check side (1 pixel) subtends 0.0344u. Visual

noise is static, independent for each word. Zero-mean Gaussian

white noise is added to each speech signal sample (sampling rate

22,050 Hz). Average (rms) audio noise sound pressure level is

70 dB.

Thresholds
Threshold energies are estimated by the improved QUEST

Bayesian adaptive procedure [83] with guessing rate c= 0.002 for

the sentence experiment, 0.1 for the single-word experiments, and

lapsing rate d = 0.01. The steepness parameter b, which affects the

speed of convergence but not the mean threshold estimate, is 3.5

for Experiments 1 and 2. In Experiment 3, we measured b to be

about 1.5 and used this value in Experiment 4. To minimize

standard error, all reported thresholds are based on a reanalysis of

the trial-by-trial responses with b = 1.5.

We record the power threshold estimate (mean of the posterior

probability distribution) corresponding to 50% correct word

recognition. Threshold energy is the average word energy (across

all the words) at the threshold power. Each individual threshold

estimate is based on about the same number of words: 5 sentences

(each made of about 11 words, on average) or 55 single words.

Each experiment has several blocks of trials (about 330 words

per block). In each block, several thresholds, one per condition, are

simultaneously estimated using interleaved QUEST procedures.

Thus, the observer never knows whether the next trial will contain

visual or audio signals, or both. (Our one exception to interleaving

is described at the end of the caption to Fig. 2.) At least four

threshold estimates are obtained for each condition. The first

threshold is taken to be practice and discarded. We compute the

geometric mean of the remaining threshold energy estimates.

Experiments 1 and 2: Assessing Summation
We measure the threshold energy required by the observer to

achieve 50% correct recognition, under unimodal and four

bimodal conditions. Each condition, including the unimodal

extremes, has a different audio:visual ratio of energies.

The curve

1~v1=kza1=k ðM1Þ

is fitted to the visual v = V/Vuni and audio a = A/Auni components

of the thresholds for the six conditions. The curve has three free

parameters: the unimodal threshold energies Vuni and Auni and the

summation index k. Eq. M1 is fitted to the six threshold estimates,

independently for each observer (n = 10) and experiment, by
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minimizing the squared error in log energy (between fit and data)

along the radial line along which threshold was measured:

P6
i~1

log2 v
1=k
i za

1=k
i

� �k

ðM2Þ

Supposing that the error in log-threshold measurement is fixed-

variance Gaussian, minimizing this metric finds the maximum-

likelihood fit.

Probability Summation and Psychometric Steepness
The steepness of the psychometric function varies among tasks

and senses. Vision papers usually present essentially the same

analysis, but apply the exponent b to signal contrast amplitude

instead of signal energy [29]. Energy is proportional to power, i.e.

amplitude squared, so our summation exponent here is half theirs,

1/k = b/2, and the typical value of b = 3.5, generally attributed to

probability summation, corresponds to a summation index of

k = 2/3.5 = 0.57 here. Psychometric functions are sometimes

expressed in terms of d’. In vision d’ / c 2.8 / E 1.4 [84]. In

hearing, d’ is proportional to energy, d’/ E [56], which

corresponds to a summation index of k = 0.8. Legge and

Viemeister [85] make a closely related point, comparing vision

and hearing.

Experiment 3: Testing Predictions of the Probability
Summation Model

We measured the psychometric function (i.e. performance vs.

energy) of three participants for identifying unimodal (auditory or

visual) single words. The signal energy of unimodally presented

single words is varied according to the method of constant stimuli.

For each modality, we use 15 energies uniformly spaced on a log

scale (visual E/N: 25 to 2,500, audio E/N: 50 to 15,000, at least 30

trials per energy level). Visual and audio presentations are tested in

separate blocks, and energies are randomized within each block.

We fit a cumulative Gaussian psychometric function to the

probability of unimodal word recognition as a function of the log

E/N.

Let P�v(V) be the guessing-corrected probability (see below,

‘Correction for guessing’ and Eq. M4) that a word presented

unimodally at a visual energy V is identified and let P�a(A) be the

guessing-corrected probability that a word presented unimodally

at an audio energy A is identified. The prediction of the probability

summation model for the same word presented bimodally at

energy (V, A) is

Pprob:sum:(V ,A)~1{(1{g) 1{P�v(V)
� �

1{P�a(A)
� �

ðM3Þ

that is, one minus the probability that none of the three processes

(two sensory channels and guessing) identifies the word.

For each participant, we compute the thresholds predicted by

probability summation for bimodal presentations at various ratios

of signal energy in the two modalities (Eq. M3). The summation

index k is estimated by fitting Eq. M1 to the predicted threshold

energies. Probability summation predicts an average k value of

0.6560.03 (mean 6 s.e., n = 3), which is much less than 1. For ten

human observers presented with the same material, we find

(Fig. 2B) that k is 0.7560.03. Our results reject probability

summation (one-tailed t-test, 7.7 d.f., p = 0.029).

Correction for Guessing
A cosmetic difference between the vision and hearing

treatments of probability summation reflects the emphasis on

detection in vision (two possible responses, with a nontrivial

guessing rate) and on identification in hearing (many possible

responses, with a negligible guessing rate). Nonzero guessing rate

(i.e. occasionally correct answers despite zero signal energy) is

accounted for by supposing a random independent deaf-and-blind

guessing process with proportion correct g. Correction for guessing

yields corrected probabilities

p�~1{ 1{p
1{g

ðM4Þ

that are well described by the same summation formula

1{p�~ P
m

i~1
1{p�i
� �

ðM5Þ

in both hearing and vision, where m is the number of

independently processed components.

Efficiency of Detecting a Short Sinusoid
In hearing and in vision, we do not have a complete description

of the elementary features that mediate word identification. A

short sinusoid is a plausible candidate as one feature, since it is

fairly well matched to the tuning of auditory and visual receptive

fields measured physiologically and tuning functions measured

psychophysically. If observers detect a simple signal by template

matching (a.k.a. cross correlation or feature detection) then the

internal template can be discovered by adjusting the signal to

maximize the observer’s efficiency [86]. Doing this for detection of

a short sinusoid in white noise, it is found that the efficiency for

detecting this candidate feature is about 20%, both in hearing [27]

and in vision [28]. That is nearly as high as possible, given the

steepness of the human psychometric function. As explained

below, the steepness of the human psychometric function

precludes efficiency higher than 24% (vision) or 33% (hearing)

at the usual threshold criterion, d9 = 1 (see below, ‘Efficiency of

detection is limited by psychometric steepness’).

Please do not be distracted by the several higher efficiencies that

appear in the literature. They are either not for detection of a

known signal or wrong. Barlow [87] found high efficiency for

detecting mirror symmetry, but that is a fundamentally different

kind of task, a second-order task, requiring comparison of the

image to itself, whereas detection of a known signal requires

comparison of the image to a template (receptive field). Similarly,

Kersten [88] reported high efficiencies for detecting visual noise,

but this too is second-order, and cannot be performed by a linear

receptive field. High efficiencies have been reported for contrast

discrimination [50,89], but that is not detection. The threshold

contrast for contrast discrimination on a near-threshold pedestal is

about one third of the threshold for detection [84,90]. This makes

efficiency for contrast discrimination about ten times that for

detection, so the two efficiencies are apples and oranges, not

comparable. Finally, Parish and Sperling’s [91] letter identification

results are relevant, but they accidentally plotted the square root of

efficiency instead of efficiency, so their widely quoted peak

efficiency of ‘‘42%’’ for letter identification is actually

0.422 = 18%, in agreement with later estimates [25].

Combining Features

PLOS ONE | www.plosone.org 12 May 2013 | Volume 8 | Issue 5 | e64803



Efficiency of Detection is Limited by Psychometric
Steepness

For detection, the well-known fact that the human psychometric

function is much steeper than that of the ideal implies that human

efficiency cannot exceed roughly 30% at the usual threshold

criterion of d9 = 1. This is because the psychometric function has a

stereotyped shape, d9 / Eb, with log-log slope b, where b = 0.5 for

the optimal (ideal) algorithm [20], b < 1 for human hearing [22,

Figs. 7-4 and 7-5], and b < 1.4 for human vision [84]. A limited

number of trials usually limits the range of measurement to 0, d9

,3. Efficiency is the ratio of ideal and human thresholds

g = Eideal/E, at a given threshold criterion, typically d’ = 1. Because

the human and ideal psychometric functions have different log-log

slopes, the efficiency depends on the threshold criterion, as we see

by solving for ideal and human thresholds, Eideal / (d9)2 and E /
(d9)1/b, and computing efficiency g = Eideal/E / (d9)221/b. By

definition of the ideal observer, a human observer’s efficiency

cannot exceed 100% at any criterion. If efficiency is 100% at

d9 = 3, the highest level measured, then at d9 = 1 it will be less,

because the psychometric functions diverge. To be precise, the

efficiency at d9 = 1 will be g = 1221/b/3221/b = 322+1/b, which is an

efficiency of 33% for hearing (b = 1) or 24% for vision (b = 1.4).

Since efficiency cannot exceed 100%, finding an efficiency higher

than 33% (hearing) or 24% (vision) at d9 = 1 would imply a

psychometric function that is shallower than is usually found.

Experiment 4: Comparing the Efficiency of Eye and Ear
We assess human performance on an absolute scale for the

single word experiments (Exps. 1 and 4). We pit the human against

the ideal observer, the algorithm that achieves the best possible

expected performance given the noisy stimulus and its statistics.

Efficiency is the ratio of the ideal’s threshold energy to the human’s

[20,92]. This strips away the intrinsic difficulty of the task,

exposing a pure measure of human ability.

The task is to identify one of many possible signals, embedded in

visual and audio Gaussian noise. All signals have equal prior

probability. We implement the ideal in software. The ideal

compares the noisy stimulus to each of the possible noise-free

signals, computes the likelihood [25], and chooses the most likely

signal. We use the same testing software to measure human and

ideal thresholds, using the optimal algorithm to implement the

ideal observer.

For Experiment 1, the stimulus was one of ten one-syllable

three-letter words spoken by an unpracticed speaker and printed

in the Courier font. Signal-to-noise ratio (SNR) in dB is ten times

the log of the ratio of threshold signal power to noise power. The

audio and visual SNRs are 28.260.5 dB and 28.060.2 dB

(mean 6 s.e. of ten observers). The human log E/N thresholds are

3.0560.05 and 2.2260.02 and the ideal log E/N thresholds are

0.37 and 0.74, so the efficiencies are 0.2% 60.02% (audio) and

3.4% 60.2% (visual). However, to meaningfully compare auditory

and visual word-recognition thresholds, we must consider the

effect of the stimulus parameters. Happily, human and ideal

thresholds are similarly affected by the number of possible words,

so efficiency (their ratio) is relatively independent of set size [25].

However, in our daily lives, we recognize words in a wide range of

voices and fonts. Voice and font have different effects on the

human and the ideal thresholds, so efficiency is affected. Trying to

compare best with best in the efficiency contest between ear and

eye, we select the very-well-spoken male voice of NU-6 and the

widely-used Helvetica font. NU-6 is the Northwestern Auditory

Test No. 6, Form A, available from Auditec of St. Louis. Helvetica

has the highest efficiency for one-letter identification of the

commonly used fonts tested by Pelli et al. [25]. For ten one-

syllable four-letter words in the NU-6 male voice, we measure the

audio threshold SNR to be 215.260.8 dB (for four observers),

which is only slightly (1 dB) better than published values, after

correcting for differences in number of syllables and set size.

(Sumby & Pollack [40] report 215 dB for identifying one of 8

possible two-syllable words, from which we estimate 214 dB for

one-syllable words. Hirsh et al. [48] report 28 dB for identifying

one of 200 possible one-syllable words, from which we estimate

214 dB for 10 words, based on the effect of set size reported by

Sumby & Pollack.) The audio log E/N is 2.4360.08 and the ideal

log E/N is 0.35, so efficiency is 0.9% 60.2%. For Helvetica, visual

SNR is 27.460.4 dB, log E/N is 2.3560.04, and the ideal log E/

N is 0.50, so efficiency is 1.4% 60.1%. Comparing efficiencies for

word identification, Helvetica, at 1.4%, beats the NU-6 voice, at

0.9%, but we call it a tie between eye and ear, both at roughly 1%,

because fewer voices than fonts were tested.

Given that efficiencies range over many orders of magnitude, it

is remarkable to find the competition between eye and ear yielding

efficiencies as close as 0.9% and 1.4%. The scientific criterion for

saying that two things have the same value is that the results of a

reasonable set of measurements cannot reject the null hypothesis

that they are the same. In the present case we are comparing the

best audio efficiency with the best visual efficiency. We find large

effects of font and voice on efficiency. We chose the most efficient

of the several fonts and voices that we sampled, but it is very likely

that there exists another voice or font with 50% higher efficiency.

Thus our data, thorough as they are, cannot reject the null

hypothesis of equality of the maxima.

Energy vs. Word Length (Fig. 3)
Each experiment measured the observer’s threshold for

identification of a word in white noise. The experiment was visual

[24] or auditory [48,49]. The threshold criterion was 64% (Pelli)

or 50% (Hirsh and Rubenstein) correct. The Pelli and Rubenstein

experiments tested each word length in its own block, with a

known list of familiar words: Pelli used 26; Rubenstein used 12. In

each block, Hirsh’s list included 25 nonsense syllables, 50 one-

syllable words, 75 two-syllable words, and 25 ‘‘polysyllable’’ words.

Rubenstein used word lengths of 1, 2, and 3 syllables. Hirsh

reported thresholds for one-syllable, two-syllable, and ‘‘polysyllab-

ic’’ words. The ‘‘polysyllable’’ words had three or more syllables

Table 2. Efficiency for identifying a disk ‘‘letter’’.

Observer Resolution (pix/deg) Check size (pix) Check size (deg) Threshold (log contrast)
Threshold (log E/
N) Log efficiency

DGP 42 666 0.1460.14 21.1160.03 0.9960.05 20.3860.05

MD 35.5 464 0.1160.11 21.1860.02 1.0560.06 20.4560.06

Thresholds and efficiencies are reported as mean 6 se.
doi:10.1371/journal.pone.0064803.t002
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and we suppose an average length of 3.5 syllables. We omitted

Hirsh’s spondee words and nonsense syllables. The Hirsh and

Rubenstein words had a frequency of about 100 per 4.5 million

words in printed magazines. Pelli used the most frequent 26 words

at each length. Lacking access to the recordings, to directly

measure the sound energy of each word, we estimate the energy,

except for an unknown proportionality constant. The threshold

speech-to-noise ratio r, in dB, is converted to power and multiplied

by the number n of syllables, to get the energy

E!n 10r=10 ðM6Þ

Experiment 5 (Fig. 4): Identifying Disks
In exploring the effect of complexity on efficiency for letter

identification, one naturally wants to explore the full range of

complexity. Assessed by perimetric complexity, the simplest object

is a solid disk, a spot, with a perimetric complexity of 4p<12.6, the

lowest possible. We created an ‘‘alphabet’’ consisting of four

‘‘letters,’’ each of which is a disk. The disks differ only in position.

Each disk has 1.1u diameter. The position of the center of each

disk is (60.3u, 60.3u) relative to the center of the screen. Only one

disk is shown at a time, but the average overlap of each disk with

the other three possible disks is 58%, which is within the range of

overlaps found for commonly used fonts [25]. On each trial, we

present one ‘‘letter’’ in noise and asked the observer to identify it.

We measure identification efficiency by a procedure that differs

only slightly from that of Pelli et al. [25]. The static white noise

covers a square region 1.7u by 1.7u, and the rest of the screen is

uniform at the same mean luminance, except for a small black

number label, 1 to 4, near each corner of the noise. The observer

responds by typing the number of the corner in which he thinks

the disk is. The static letter in noise is displayed indefinitely, until

the observer responds by typing his choice: 1, 2, 3, or 4. Each

correct response is rewarded by short beep. Each run is 60 trials.

The contrast of the ‘‘letter’’ is adaptively controlled by Quest to

estimate threshold, defined as 64% correct (b = 1.4, c = 0.25,

d = 0.01). At least 4 thresholds are estimated per observer, and

averaged. Viewing distance is 50 cm. Luminance is 200 cd/m2.

Table 2 presents the display characteristics used for each observer.

To generate the display, we compute a small image array,

containing a disk in noise, with independent noise in each pixel.

This small image array is enlarged by pixel replication to produce

the displayed image. Thus each array pixel is expanded to produce

a uniform square check on the display. The noise is independent

from check to check and from trial to trial. The noise distribution

is Gaussian, truncated at 62 standard deviations. The RMS noise

contrast is 0.18. Across observers, the geometric-mean efficiency is

38%.

Supporting Information

Figure S1 Text and speech demo. Each movie-player box

presents a sentence in noise. The first is just audio; the second is

just visual; the third is audiovisual. It’s hard with audio or visual

alone, and easier with both together. The demo works fine with

speakers, but you’ll hear it better with headphones. Visual

efficiency is higher for smaller letters, so you’ll see it better from

farther.

(ZIP)

Figure S2 Individual summation curves for each of the
ten observers for Experiments 1 and 2. Models’ predictions

and averaged data appear in Fig. 2. The summation index k is the

exponent of a smooth curve (Eq. 1) fitted to the normalized

threshold energies. The curves represent degrees of summation

ranging from none (k = 0) to complete (k = 1). Each error bar

indicates the mean 6 s.e. Note that GC’s k = 0.01 for sentences is

an outlier, much less than the mean, across the ten observers, of

0.7660.13; it may be relevant that GC is working in D.P.’s lab on

stream segregation, and is thus trained to process streams

independently.

(PDF)

Table S1 Notes on our survey of summation. For each

paper, we explain how we estimated k for our Table 1.

(PDF)
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