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Background: Salmonella typhi is a foodborne pathogenic bacterium that threatens health. S. typhi
infection exacerbated the antibiotic resistance problem that needs alternative strategies. Moringa oleifera
possesses anti-inflammatory and antimicrobial effects. However, there is a lack of information about the
pharmacological value of red M. oleifera. The fermentation of red M. oleifera leaves extract (RMOL) is
expected to add to its nutritional value.
Objective: The present study aimed to evaluate non-fermented RMOL (NRMOL) and fermented RMOL
(FRMOL) effects on S. typhi infection in mice.
Materials and methods: Female Balb/C mice were randomly divided into eight groups. The treatment
groups were orally administered with NRMOL or FRMOL at doses 14, 42, and 84 mg/kg BW during the 28
days experimental period. Then S. typhi was introduced to mice through intraperitoneal injection except
in the healthy groups. The NRMOL or FRMOL administration was continued for the next seven days. Cells
that expressed CD11bþ TLR3þ, CD11bþTLR4þ, CD11bþIL-6þ, CD11bþIL-17þ, CD11bþTNF-aþ, and
CD4þCD25þCD62Lþ were assessed by flow cytometry.
Results: Our result suggested that NRMOL and FRMOL extracts significantly reduced (p < 0.05) the
expression of CD11bþTLR3þ, CD11bþTLR4þ, CD11bþIL-6þ, CD11bþIL-17þ, and CD11bþTNF-aþ subsets. In
contrast, NRMOL and FRMOL extracts significantly increased (p < 0.05) the expression of
CD4þCD25þCD62Lþ subsets. NRMOL at dose 14 and 42 mg/kg BW was more effective compared to
FRMOL in reducing the expression of CD11bþTLR3þ, CD11bþTLR4þ, and CD11bþTNF-aþ subsets.
Conclusion: Our findings demonstrated that NRMOL and FRMOL extracts could be promising agents for
protection against S. typhi infection via modulation of TLR3/TLR4, regulatory T cells, and proinflammatory
cytokines.
© 2021 The Authors. Published by Elsevier B.V. on behalf of Institute of Transdisciplinary Health Sciences
and Technology and World Ayurveda Foundation. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Salmonella enterica serovar typhimurium (Salmonella typhi) is a
Gram-negative bacterium that is an important foodborne pathogen
with a worldwide distribution. S. typhi has received extensive
attention due to its harmful effect on humans and animals,
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including abdominal pain, acute diarrhea, fever, nausea, vomiting,
and sometimes lethal septicemia [1,2]. Interestingly, S. typhi infec-
tion in humans and mice produces many similar symptoms and
hence mice are the most widely used animal model for studying
Salmonella infection [3,4]. Salmonella infection was reported to
affect around 11e21 million people worldwide, and approximately
128e161 thousand people die annually, with South-East Asia being
one of the regions with highest case frequency [5].

As a first-line of defense, body initiates an acute inflammatory
response in response to S. typhi infection. This response is executed
via direct interaction of S. typhiwith host cells such asmacrophages
or dendritic cells (DCs), followed by intensifying the inflammatory
response, mainly in the liver, spleen, lungs, and intestines [6,7].
During bacterial infection, macrophages expressed Toll-like re-
ceptors 4 (TLR4), which primarily recognizes the lipopolysaccha-
ride (LPS) as the major component of the cell wall of S. typhi. This
recognition subsequently stimulates TLR4 signaling pathways, such
as NFkB, to produce proinflammatory cytokines, resulting in
increased systemic cytokine production and septic shock in the
later stages [8e10].

In the earliest phase of infection, both expressions of TLR3 and
TLR4 in macrophages were increased to overproducing proin-
flammatory cytokines. These circumstances provide a survival
advantage during bacterial elimination by producing reactive oxygen
and nitrogen species, resulting in increased oxidative stress [11e14].
However, chronic inflammation and oxidative stress can promote
tissue damage [15,16]. Therefore, the development of alternative op-
tions for the treatment or prevention that will reduce tissue damage
caused by S. typhi and its virulence are urgently needed since S. typhi,
and other bacteria become multi-resistant to antibiotics [17].

Moringa oleifera Lam. (Family: Moringaceae) originated from the
Himalayas and was distributed almost worldwide in tropical and
subtropical countries.M. oleifera is commonly known as horseradish
tree, drumstick tree, or kelor (Indonesian). M. oleifera is also consid-
ered the magic tree or tree of life due to its abundant macro-, micro-,
and phytonutrients [18,19]. Accumulating evidence showed that
M. oleifera leaves extract (MOL) possessed antioxidant [20], antidiar-
rheal [21], anti-inflammatory [22], and antimicrobial activities [23]
due to its richness in flavonoids, flavanol glycosides, glucosinolate,
isothiocyanate, phenolic acid, terpene, alkaloid, and sterol contents
[24,25] However, the extract fromMOL is not palatable [26].

It has been long recognized that utilization by microorganisms
has been commonly used strategy to improve the functional
properties of the plant [27,28]. The fermentation of MOL generate a
sweet aroma that may increase its appeal and palatability [29].
Besides, MOL fermented by Lactobacillus plantarum alters its taste,
pH, and viscosity [30]. Interestingly, fermention of MOL with
L. plantarum reduces its phytate and raffinose content and en-
hances its peptic digestibility and radical scavenging activity
[26,31]. Further, milk fermented with L. plantarum demonstrated
beneficial effects against S. typhi infection [32].

Although many studies have reported MOL's function and its
product as an anti-inflammatory agent, there is still a lack of in-
formation about red MOL as anti-inflammation in the context of
improving specific host immune function related to S. typhi infec-
tion. Red M. oleifera is not very popular as green M. oleifera. In
contrast, the red M. oleifera is frequently used by local tribes in
Southeast Sulawesi, Indonesia, as traditional medicine for curing
various diseases than the greenM. oleifera [33]. Herein, we provide
evidence that red M. oleifera could restore naïve regulatory T cells
and TLR3/TLR4 expression that affect proinflammatory cytokines,
i.e., interleukin (IL)-6, IL-17, and TNF-a in macrophages of mice
infected with S. typhi. Red Moringa may have anti-inflammatory
activity through modulation of host-immune response in mice
challenged with S. typhi.
2

2. Material and methods

2.1. Plant material and identification

The fresh portions of red M. oleifera leaves (leaves, seeds,
flowers, and roots) were obtained from Sampang, Madura, East
Java, Indonesia, during July 2017. The plant specimens then were
authenticated and deposited at Purwodadi Botanic Garden, Indo-
nesian Institute of Sciences, Pasuruan Indonesia, with the voucher
specimen numbers 1051/IPH.06/HM/VIII/2017.

2.2. Moringa oleifera preparation

Red M. oleifera leaves were washed three times using distilled
water. Then the leaveswere air-dried for 72 h, followed by drying in
an oven at 40 �C for 3 h. Dried leaves of red M. oleifera were
grounded to obtain a powder. The leaves powder (200 g) then
macerated with 2 L 70% ethanol for three consecutive days,
continuously shaking at 125 rpm for 1 hour per day. The red
M. oleifera leaves extract (RMOL) was filtered using Whatman No. 1
paper and then concentrated using a rotary evaporator (IKA RV10).

2.3. Moringa oleifera fermentation

L. plantarum FNCC 0137 was received from the Food and Nutri-
tion Study Center, Gadjah Mada University. L. plantarum FNCC 0137
was prepared using the MRS broth medium and incubated at 37 �C
for 72 hours followed by centrifugation for 20 min at 4 �C. MOL
extract at room temperature was fermented with 1 � 108 CFU/g
L. plantarum FNCC 0137, followed by incubation at 37 �C for 120 h
[31]. The fermentation product of RMOL (FRMOL) was supple-
mented with 10% sucrose and 0.5% NaCl prior to freeze-drying [34].

2.4. Experimental animal

Female Balb/C mice were obtained from the Institute of Bio-
sciences, Brawijaya University. Female Balb/C mice with 25e30 g
weight and six weeks old were housed at Animal Facility, Faculty of
Agricultural, Brawijaya University. Mice were allowed to consume
food and water ad libitum. Mice were acclimatized for seven days at
25e26 �C, RH 60%, and with a 12 h light/dark cycle.

2.5. Non-fermented and fermented MOL administration

After one-week acclimatization, forty female Balb/C mice were
randomly divided into eight groups (n ¼ 5):

Group I ¼ Healthy mice without S: typhi injection ðHMÞ
Group II ¼ S: typhi only without additional administration

ðS: typhiÞ
Group III ¼ NRMOL 14 mg=kg BW þ S: typhi ðNRMOL� 14Þ
Group IV ¼ NRMOL 42 mg=kg BW þ S: typhi ðNRMOL� 42Þ
Group V ¼ NRMOL 84 mg=kg BW þ S: typhi ðNRMOL� 84Þ
Group VI ¼ FRMOL 14 mg=kg BW þ S: typhi ðFRMOL� 14Þ
Group VII ¼ FRMOL 42 mg=kg BW þ S: typhi ðFRMOL� 42Þ
Group VIII ¼ FRMOL 84 mg=kg BW þ S: typhi ðFRMOL� 84Þ

BothNRMOLandFRMOLweregivenorally for 28 consecutivedays.
On the 29th day, mice except for healthy mice groups were intraper-
itoneally infectedwith 1� 107 CFU/ml S. typhi for the next seven days.

2.6. S. typhi confirmation

After 24 h, S. typhi infection was confirmed through collected
blood via vena caudalis. Briefly, 50 mL blood was collected and
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450 mL of 0.9% sterile NaCl was added to it. The mixture was then
planted in Luria broth medium and incubated for 24 h at 37 �C with
120 rpm. Followed by isolation from Luria Broth and inoculation in
Salmonella selective medium, Xylose-Lysine-Deoxycholate (XLD).
The colony of Salmonella is characterized by a colony that formed
dark nuclei with a transparent colony. Further confirmation for
Salmonella was carried out using the catalase test. Briefly, one ose
from cultureed Salmonella was dipped in object-glass containig
H2O2. formation of bubble was confirmed presence of Salmonella
[35,36].

2.7. Splenocyte isolation

Mice were abstained from food overnight with free access to
water before being sacrificed through cervical dislocation. Spleen
was collected, washed, and crushed to obtain a single-cell sus-
pension. The homogenate was then centrifuged at 2500 rpm for
5 min at 10 �C. The supernatant was discarded, and the pellet ob-
tained was added with 1 mL PBS. Homogenates was aliquoted into
1.5mL tubes and centrifuged to remove supernatant. The pellet was
then stained with appropriate antibodies for flow cytometry
analysis.

2.8. Flow cytometry staining

The antibodies used for extra- and intracellular staining were
purchased from BioLegend (San Diego, CA, USA) and prepared
following routine laboratory procedures [37]. Regulatory T cells
(Tregs) were marked by the combination of fluorescein isothiocy-
anate (FITC) anti-mouse CD4 (clone GK1.5), phycoerythrin (PE)
anti-mouse CD25 (clone 3C7), and PE-Cy5 anti-mouse CD62L (clone
MEL-14) as cell-surface antibodies for 30 min at 4 �C in the dark.
Macrophages were identified by cell-surface antibodies FITC anti-
mouse/human CD11b (clone M1/70) for 30 min at 4 �C in the
dark, followed by a wash step and added cytofix/cytoperm for
20 min at 4 �C. The supernatant was discarded after centrifugation,
then the pellet obtained was stained with PE anti-mouse TLR3
(clone 11F8), PE-Cy7 anti-mouse TLR4 (clone SA15-21), PE anti-
mouse IL-6 (clone MP5-20F3), PE-Cy7 anti-mouse IL-17A (clone
TC11-18H10.1), and PE anti-mouse TNF-a (clone MP6-XT22). Cells
were resuspended in PBS, and a total of 10,000 cell events were
acquired using FACS CaliburTM at a low or medium rate. The cells'
population was then according to the stained used for further
analysis. Cell subsets analysis was performed using FlowJo v10 for
Windows (FlowJo LLC, Ashland, OR), following the previously
validated protocol [38].

2.9. Statistical analysis

One-way analysis of variance (ANOVA) was used to determine
statistically significant differences between groups (p-value < 0.05).
Tukey HSD test was used for multiple comparisons and post hoc
analysis. Analyses were performed using GraphPad Prism 8
(GraphPad Software Inc, La Jolla, CA).

3. Result

3.1. NRMOL restores CD11bþ TLR3þ and CD11bþTLR4þ subsets
better than FRMOL in mice challenged with S. typhi

In the present study, we try to assess the NRMOL and FRMOL
efficacy on the expression of CD11bþTLR3þ and CD11bþTLR4þ

subsets (Fig. 1AeD). Our result suggest that NRMOL is more effec-
tive than FRMOL to reduce CD11bþTLR3þ and CD11bþTLR4þ subsets
after S. typhi challenge. Based on dot plot analysis, CD11bþTLR3þ
3

subsets (Fig. 1A) and CD11bþTLR4þ subsets (Fig. 1C) were increased
in mice challenged with S. typhi. Both NRMOL and FRMOL admin-
istration significantly reduced (p < 0.05) the CD11bþTLR3þ subsets
(Fig. 1B) and CD11bþTLR4þ subsets (Fig. 1D) compared to mice
challenged with S. typhi only. Interestingly, NRMOL at doses 14 and
42 mg/kg BW more effective than FRMOL to reduce CD11bþTLR3þ

and CD11bþTLR4þ subsets in mice challenged with S. typhi.

3.2. NRMOL and FRMOL declines proinflammatory cytokines in
mice challenged with S. typhi

Proinflammatory cytokines are the main end-product of in-
flammatory processes. The present study data suggest that NRMOL
is more effective than FRMOL to reduce CD11bþIL-6þ (Fig. 2A),
shared the same better effect to reduce CD11bþIL-17þ subsets
(Fig. 2C), and NRMOL reduces CD11bþTNF-aþ subsets more effec-
tive FRMOL after S. typhi challenge (Fig. 2E). Based on dot plot
analysis, CD11bþIL-6þ, CD11bþIL-17þ, and CD11bþTNF-aþ subsets
were increased in mice challenged with S. typhi. Both NRMOL and
FRMOL administration significantly reduced (p < 0.05) the
CD11bþIL-6þ, CD11bþIL-17þ, and CD11bþTNF-aþ subsets compared
tomice challengedwith S. typhi only. Interestingly, NRMOL at doses
14 mg/kg BW is more effective than FRMOL to reduce CD11bþIL-6þ

subsets in mice challenged with S. typhi. Surprisingly, NRMOL at
doses 42 and 84 mg/kg BW reduced CD11bþIL-6þ subsets lower
than healthy mice groups (Fig. 2B). Interestingly, NRMOL and
FRMOL at doses 14 and 42 mg/kg BW reduce CD11bþIL-17þ subsets
in mice challenged with S. typhi towards near healthy mice groups
(Fig. 2D). NRMOL at doses 14 and 42 mg/kg BW is more effective
than FRMOL to reduce CD11bþ TNF-aþ subsets in mice challenged
with S. typhi (Fig. 2F).

3.3. NRMOL and FRMOL restores naïve regulatory T cells in mice
challenged with S. typhi

NRMOL and FRMOL had similar efficacy to improve
CD4þCD25þCD62Lþ subsets after S. typhi challenge (Fig. 3AeB).
Based on dot plot analysis, CD4þCD25þCD62Lþ subsets were
decreased in mice challenged with S. typhi (Fig. 3A). Both NRMOL
and FRMOL administration significantly increased the
CD4þCD25þCD62Lþ subsets (p < 0.05) compared to mice chal-
lengedwith S. typhi only (Fig. 3B). Interestingly, NRMOL and FRMOL
restored CD4þCD25þCD62Lþ subsets in mice challenged with
S. typhi similar to healthy mice groups, except NRMOL dose 14 mg/
kg BW.

4. Discussion

Salmonella constitutes a considerable health burden by causing
acute gastroenteritis, contributing almost half of morbidity and
mortality attributable to typhoid fever in low- and middle-income
countries. Antibiotics are commonly used to treat Salmonellosis in
humans, however because of antibiotic resistance antibiotics are
not entirely effective in combatting Salmonella [39]. Developing
new products from natural plants can be an effective strategy
however it is still challenging for many researchers for past few
decades. Fermentation is a useful method for improving food
products' biological properties, promoting the beneficial effects on
health. Numerous evidences reported that fermentation using
probiotics can be an alternative option to combat Salmonella
[32,40].

Chronic Salmonella infection occurs when the host fails to
completely clear bacteria from the body. An impaired immune
response or gut microbiota disruption may be associated with the
host's inability to clear Salmonella [41]. Our result demonstrated



Fig. 1. Effect of NRMOL and FRMOL on CD11bþTLR3þ and CD11bþTLR4þ subsets in mice challenged with S. typhi. (A) The dot plot analysis of CD11bþTLR3þ subsets in spleen. (B)
NRMOL reduced CD11bþTLR3þ subsets more effective FRMOL on mice challenged with S. typhi. (C) The dot plot analysis of CD11bþTLR4þ subsets in spleen. (D) NRMOL reduced
CD11bþTLR4þ subsets more effective FRMOL on mice challenged with S. typhi. The different letter considered significantly different between each group (p < 0.05) by post hoc test
using Tukey's HSD test. HM ¼ Healthy Mice; NRMOL ¼ Non-fermented red M. oleifera Leaves Extract; FRMOL ¼ Fermented red M. oleifera Leaves Extract; NRMOL-
14 ¼ S. typhi þ NRMOL 14 mg/kg BW; NRMOL-42 ¼ S. typhi þ NRMOL 42 mg/kg BW; NRMOL-84 ¼ S. typhi þ NRMOL 84 mg/kg BW; FRMOL-14 ¼ S. typhi þ FRMOL 14 mg/kg BW;
FRMOL-42 ¼ S. typhi þ FRMOL 42 mg/kg BW; and FRMOL-84 ¼ S. typhi þ FRMOL 84 mg/kg BW.
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that S. typhi elicits an immune response through an increase in
expression of CD11bþ TLR3þ and CD11bþTLR4þ subsets. At the
earliest infection phase by Salmonella, macrophages secrete
proinflammatory cytokines, such as interferon-b (IFN-b), through
TLR3 and TLR4 signaling pathways [13]. TLR3 and TLR4 share the
same adaptor molecule, toll/interleukin-1 receptor (TIR) domain-
containing adapter-inducing IFN-b (TRIF), which activates NFkB,
interferon regulatory factor 3 (IRF3), and MAP kinase leading to the
type I IFN transcription [42]. IFN will protect the host through
antimicrobial autophagy by macrophages, while, the over-
expression of IFN may result in impaired bacterial clearance [43].
Salmonella infection would worsen if the host cannot remove Sal-
monella from the body completely because the Salmonella present
in the body will cause chronic inflammation and will also produce
toxins that will induce mucosal damage [44]. A previous study
reported that presence of S. typhiwas observed in the caecum at 7-
days post-infection. Moreover, the serum concentration of proin-
flammatory cytokines, including TNF-a and IL-6, was higher
compared to control, indicating that S. typhi generated an inflam-
matory response during infection and led to caecum damage [45].

In the present study, NRMOL and FRMOL inhibited TLR3/TLR4
compared to the increased expression of TLR3/TLR4 detected in
the S. typhi group. The bioactive compounds from MOL have
improved host immunity and inhibited LPS induced inflammatory
responses. LPS is well-known as the primary ligand for TLR4
4

signaling activation [46,47]. Some evidence suggeste that FRMOL
could be a potent immunomodulator [35,36,48]. We would like to
propose two possible mechanisms through which MOL could
downregulate the TLR3 expression. First, the bioactive compounds
of MOL influence TLR3/TRIF-dependent pathways. At various de-
grees, flavonoids can alter TLR pathways. Flavonoids can impact
both TLR gene and cell membrane expression, which are both
directly related to TLR functionality [49]. Luteolin and quercetin,
present in MOL, were demonstrated to suppress the TRIF-
dependent pathway. Interestingly, both luteolin and quercetin
have a C2eC3 double bond in the carbonyl-containing C-ring,
which is important for TANK-binding kinase 1 (TBK1) inhibition
[50]. TRIF activates TBK1, phosphorylates IRF3 and induces the
IFNs expression [13,42]. Further, luteolin's chemical structure,
which has two hydroxyl groups at position 30 and 40 in B-ring, was
considered an important factor to target TLR3 signaling pathways
[50]. Second, the bioactive compounds of MOL may contribute
indirectly through tissue repair. Our previous study revealed that
FRMOL has a hepatoprotective effect via Nrf2 signaling pathways
in mice challenged with S. typhi. FRMOL administration also re-
pairs hepatocyte damage through reduced necrotic cells [51]. TLR3
could be activated through extracellular dsRNA released from
damaged tissue [52]. The diminished expression of TLR3 by
NRMOL or FRMOL may be caused by repairing tissue damage,
which reduces the TLR3 main ligand.



Fig. 2. Effect of non-fermented MOLE and fermented MOLE on proinflammatory generation in mice challenged with S. typhi. (A) The dot plot analysis of CD11bþIL-6þ subsets in
spleen. (B) NRMOL reduced CD11bþIL-6þ subsets more effective FRMOL on mice challenged with S. typhi. (C) The dot plot analysis of CD11bþIL-17þ subsets in spleen. (D) NRMOL
and FRMOL reduced CD11bþIL-17þ subsets on mice challenged with S. typhi. (E) The dot plot analysis of CD11bþ TNF-a þ subsets in spleen. (F) NRMOL reduced CD11bþTNF-aþ

subsets more effective FRMOL on mice challenged with S. typhi. The different letter considered significantly different between each group (p < 0.05) by post hoc test using Tukey's
HSD test. HM ¼ Healthy Mice; NRMOL ¼ Non-fermented redM. oleifera Leaves Extract; FRMOL ¼ Fermented redM. oleifera Leaves Extract; NRMOL-14 ¼ S. typhi þ NRMOL 14 mg/kg
BW; NRMOL-42 ¼ S. typhi þ NRMOL 42 mg/kg BW; NRMOL-84 ¼ S. typhi þ NRMOL 84 mg/kg BW; FRMOL-14 ¼ S. typhi þ FRMOL 14 mg/kg BW; FRMOL-42 ¼ S. typhi þ FRMOL
42 mg/kg BW; and FRMOL-84 ¼ S. typhi þ FRMOL 84 mg/kg BW.
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The data from the present study demonstrated that NRMOL
inhibits proinflammatory cytokines, IL-6, IL-17, and TNF-a secreted
by macrophages. These findings are in agreement with the previ-
ously published results by our group that inhibition of TLR3 and
TLR4 as upstream of signaling pathways would give a beneficial
implication. S. typhi infection amplifies an inflammatory response
5

and induces macrophages to secrete a huge number of proin-
flammatory cytokines [9]. TNF-a is essential for generating a sys-
temic inflammatory response that leads to lethal shock [53].
Interestingly, TNF-a collaboration with IL-17 triggers other proin-
flammatory cytokines production [54]. A recent study reported that
redM. oleifera contains higher quercetin than greenM. oleifera [55].



Fig. 3. Effect of NRMOL and FRMOL on CD4þCD25þCD62Lþ subsets in mice challenged with S. typhi. (A) The dot plot analysis of CD4þCD25þCD62Lþ subsets in spleen. (B) NRMOL
and FRMOL increased CD4þCD25þCD62Lþ subsets on mice challenged with S. typhi. The different letter considered significantly different between each group (p < 0.05) by post hoc
test using Tukey's HSD test. HM ¼ Healthy Mice; NRMOL ¼ Non-fermented red M. oleifera Leaves Extract; FRMOL ¼ Fermented red M. oleifera Leaves Extract; NRMOL-
14 ¼ S. typhi þ NRMOL 14 mg/kg BW; NRMOL-42 ¼ S. typhi þ NRMOL 42 mg/kg BW; NRMOL-84 ¼ S. typhi þ NRMOL 84 mg/kg BW; FRMOL-14 ¼ S. typhi þ FRMOL 14 mg/kg BW;
FRMOL-42 ¼ S. typhi þ FRMOL 42 mg/kg BW; and FRMOL-84 ¼ S. typhi þ FRMOL 84 mg/kg BW.
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Quercetin is reported to suppress the lethal shock caused by S. typhi
infection. The hydroxyl groups of quercetin are important factors
for delaying S. typhi action [53]. Our previous study also showed
that FRMOL increased its total flavonoid content [35]. Our findings
are also supported by a study that reported milk fermented with
Lactobacillus reduced IL-17, TNF-a, and IL-6 in mice challenged with
Salmonella [32,56]. Acurcio et al., 2017 proposed that the possible
mechanism of a protective effect from L. plantarum is due to
modulation of the host immune system [32]. Further, probiotic use
could stimulate the anti-inflammatory cytokine expression, fol-
lowed by reducing proinflammatory cytokines [57]. The anti-
inflammatory properties of MOL have been reported to decline
6

NFkB and proinflammatory cytokines expression in several animal
models of inflammation [58,59]. Based on our findings, we
assumed that both NRMOL and FRMOL might be useful to also treat
other inflammatory diseases through the downregulation of in-
flammatory cytokines in the TLRs signaling pathway.

Our result also demonstrated that NRMOL and FRMOL restored
the naïve Tregs. Tregs are essential to maintain peripheral immune
tolerance to self-antigen. Tregs play an important role in controlling
immune response during infection [60]. Tregs suppress the effector
T cells by various mechanisms, mainly producing IL-10. The balance
between Tregs and effector T cells reflects the immune homeostasis
[61]. A previous study reported that quercetin and other flavonoids
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could modulate the aryl hydrocarbon receptor (Ahr), which further
influenced Tregs' activation via Foxp3, the main transcription factor
for Tregs [62e64]. On the other hand, the activation of heme
oxygenase-1 (HO1) via the Nrf2/HO-1 signaling pathway is re-
ported to increase Foxp3 expression. Meanwhile, a previous study
reported that FRMOL increased HO-1 expression via the Nrf2/HO-1
signaling pathway. Naïve Tregs (CD4þCD25þCD62Lþ subsets) could
be influenced by nutrients and improve their suppressive function
and number [65e67]. Based on our result, we suggest that the
bioactive compound in NRMOL and FRMOL may benefit from
restoring naïve Tregs, whichmay implicate Th cell responses during
S. typhi infection.

5. Conclusion

In summary, our finding showed that NRMOL efficiently
reduced CD11bþTLR3þ, CD11bþTLR4þ, CD11bþIL-6þ and
CD11bþTNF-aþ compared to FRMOL. In addition, NRMOL and
FRMOL displayed similar effect in reducing CD11bþIL-17þ and
restoring naïve Tregs. The main goal of anti-inflammatory therapy
is inhibition of TLR3/TLR4 and the proinflammatory cytokines fol-
lowed by the recovery of naïve Tregs. Our study provides evidence
that the anti-inflammatory properties of RMOL could become a
promising supplement to treat S. typhi infection or might be other
inflammatory diseases. Future studies are required for exploring,
the molecular mechanisms of NRMOL and FRMOL.
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