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Abstract: This paper presents a nonlinear, universal, path-following controller for Wheeled Mobile
Robots (WMRs). This approach, unlike previous algorithms, solves the path-following problem for
all common categories of holonomic and nonholonomic WMRs, such as omnidirectional, unicycle,
car-like, and all steerable wheels. This generality is the consequence of a two-stage solution that
tackles separately the platform path-following and wheels’ kinematic constraints. In the first stage,
for a mobile platform divested of the wheels’ constraints, we develop a general paradigm of a
path-following controller that plans asymptotic paths from the WMR to the desired path and,
accordingly, we derive a realization of the presented paradigm. The second stage accounts for
the kinematic constraints imposed by the wheels. In this stage, we demonstrate that the designed
controller simplifies the otherwise impenetrable wheels’ kinematic and nonholonomic constraints
into explicit proportional functions between the velocity of the platform and that of the wheels. This
result enables us to derive a closed-form trajectory generation scheme for the asymptotic path that
constantly keeps the wheels’ steering and driving velocities within their corresponding, pre-specified
bounds. Extensive experimental results on several types of WMRs, along with simulation results for
the other types, are provided to demonstrate the performance and the efficacy of the method.

Keywords: wheeled mobile robots; path-following; nonholonomic constraints

1. Introduction

Wheeled Mobile Robots (WMRs) form a significant subset of Unmanned Ground
Vehicles (UGVs). The continuing demand for more advanced and autonomous UGVs
entails more reliable and higher-performance motion controllers for WMRs. The multitude
of motion controllers proposed for mobile robots, especially those with nonholonomic
constraints, may be roughly categorized into three groups [1]: point stabilization [2],
trajectory tracking [3], and path-following [4]. Typically, the path-following approach
is used under a decoupled control architectures [5], where a path-planner provides the
desired geometric path. Then, a path-following module, while considering the temporal
and other intrinsic constraints of the system, maneuvers the robot toward the planned path
and steers it so that it indefinitely follows the path.

The path-following algorithms are classified into several branches, including, but
not limited to, Optimal Control approaches [6,7], Feedback Linearizion methods [8], Line
of Sight guidance laws [9], Pure Pursuit techniques [10], and Vector Fields methods [11]
(see [12] for a thorough review). The majority of these algorithms incorporate a concept
that goes by many names, including “Virtual Target Point”, “Carrot”, and “Rabbit”. In this
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concept, a virtual point is selected and moved along the desired path, while a tracking
controller, also called a guidance controller, makes the robot follow and converge to that
point. The differences among and between those branches mainly occur in the design of the
guidance controller, the method for selecting the virtual point, and the its motion strategy
along the path.

1.1. Related Work

This work belongs to a category of path-followers that parametrize (using the path’s
natural parameter) a virtual position for the mobile robot on the desired path. A nonlinear
guidance controller is employed for the robot to track the virtual point based on an error
space projected on the path through the path’s Serret–Frenet frame.

Early notable works in this field were conducted by [13] for the car-like WMRs,
by [14] for the unicycle types, and by [15] for both unicycles and WMRs with two steering
wheels. However, the projection scheme of this approach, which selects the path’s closest
point to the robot as the virtual point, would result in singularities that, in turn, would
impose stringent initial conditions on the system and on the drivable path curvatures. This
drawback was overcome by having the path’s natural parameter as an auxiliary state and,
therefore, deriving a control law for its progression rate along the path [16]. There have been
various extensions of the original problem, such as covering uncertainties [17], actuator
saturations [18], obstacle avoidance [19] and an extension to aerial [20], marine [21] and
articulated frame [22] vehicles. Comprehensive experimental results of some of these
algorithms have been provided by [23]. However, the majority of recent studies on the
path-following of WMRs consider only a special type of WMR: usually the unicycle type,
with some exceptions, such as [24]. Nevertheless, there is no unified solution for the
path-following of WMRs.

Aside from the general difficulties in designing a universal path-follower for WMRs,
this paper tackles several challenges in the design of motion controllers that are specific to
certain types of WMRs. Most notable is the presence of singularities, both inherently [25]
and in the representation of the configuration space [26] of WMRs with active steering
wheels. While several types of WMR possess steering wheels, those singularities are a
major issue for WMRs that utilize two or more actively steered standard wheels. Due
to their kinematic configuration, such WMRs are called nonholonomic omnidirectional
robots [27,28] or pseudo-omnidirectional robots [29,30]. They have recently gained a
significant level of popularity and are now being used in a wide range of practical fields,
including service robotics (PR2 [31], Care-O-bot [32], Rollin’ Justin [33]), space robotics
(Mars-Exo-Rover [30]), agricultural applications [34,35], among others [36].

The common way of formulating the configuration space of such WMRs is with
the notion of Instantaneous Center of Rotation (ICR) [37]. As the ICR moves closer to a
wheel axis, the driving velocity of that wheel decreases, while the curvature of the wheel’s
footprint, and, hence, its steering velocity, unboundedly increases. When the ICR coincides
with the wheel, its steering angle becomes undefined and singular. To circumvent such
singular configurations, many proposed solutions rely on numerical methods to plan
singularity-free ICR trajectories in velocity space [25]. Others treat the neighborhood of
the singularities as obstacles and solve a navigation problem [29,38]. However, in all of
those methods, considerable portions of the configuration space are avoided, thus reducing
the maneuverability of the platform. Furthermore, when the robot is required to follow a
desired path and heading profile, ICR position has already been determined and, therefore,
none of those approaches are suitable for path-following problems.

1.2. Contributions and Organization

The contributions of this paper are as follows:
• This study solves the path-following problem for all WMRs categories in which their

wheels roll without skidding. To the best knowledge of the authors, this is the first
study that coherently solves the path-following problem with this level of generality.
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• Unlike other path-followers, in this design, the control signals and the resultant vector
field of closed-loop equations of motion are linearly proportional to the base speed (In
this paper, speed exclusively refers to the magnitude of velocity vectors.). In fact,
the controller acts as a feedback path-planner that minimizes the Lyapunov function
of errors as its corresponding cost function.

• The kinematic constraints of all types of wheels are rigorously derived in their most
general form. We derive and prove sufficient conditions for a path-following con-
troller that simplify the kinematic and nonholonomic constraints into explicit relations
between the speed of the base and that of the wheels.

• Based on this framework, we present a closed-form solution for the speed of the WMR’s
base so that all the wheels’ steering and driving speeds remain within their respective
bounds. We show that the solution is time-optimal, because it provides a bang-bang
velocity profile in which, at each time step, at least one of the wheels runs at its
maximum speed.

• This solution allows WMRs with active steering wheels to get close to, and even pass,
their singular configurations by regulating the speed of the WMR and the steering
velocities of the wheels. Hence, this method expands the allowable configuration
space of such robots and allows them to exploit their whole maneuverability.

This paper is the culmination of several earlier studies presented by the authors
in [39–41]. Compared to [41], this paper has several novelties. Section 3 is new, in which
the controller in [41] is generalized into a generic parametrized form and we demonstrate
that the controller serves as an example of such generic form. Moreover, the results
of [40] are coherently included to address the singularities of WMRs with steering wheels.
The majority of the equations, especially the kinematic constraints, are derived in a more
general form and are presented in compact matrix format that is further consistent with the
formulation of WMR constraints in the literature. A new set of comprehensive experimental
and simulation results in a more complex scenario is presented, with further explanations
and remarks.

This paper is organized as follows. In Section 2, we formally define the WMR that
is the focus of this paper and define the corresponding path-following problem. Next, in
Section 3, we present the path-following solution in a parametrized generic form. In
Section 4, the variables in the parametrized model are meticulously derived and categorized
for different types of wheels and WMRs. We explain how the solution solves the problem
of singularities for WMRs with steering wheel in Section 4.3 and, finally, Section 5 covers
the implementation results and provides extensive experimental data for three types of
WMRs, and simulation results for the other two.

2. Problem Description

WMRs are classified based on the seminal work of [42] into five kinematically feasible
categories. An ordered pair (δm, δs) is assigned to each category the degree of mobility and
degree of steerability of the WMR, respectively. The number of wheels, their types, and their
arrangements determine δm, and δs and, therefore, the WMRs’ category. δm represents
the dimension of the tangent space of the configuration space, while δs corresponds to
the ability to change (steer) the basis of the tangent space by means of steering wheels.
The degree of maneuverability defined as δM = δm + δs then, analogous to degrees of
freedom for mechanism, determines the total mobility of the WMR.

2.1. WMR Architecture and Definitions

Definition 1 (WMR). The WMR considered in this paper is equipped with n wheels, which are
attached to a main body called the base. It belongs to and possesses the minimum actuated wheels
of one of those five kinematically feasible categories of WMRs, and the actuators provide velocity
and position control. Each wheel is of one of the following types: fixed wheels, standard steer-
able wheels, off-centered steerable wheels (Caster wheels), Swedish wheels. Furthermore,
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the following assumptions hold. The WMR traverses on a flat and horizontal plane. The base and
the wheels are rigid, the tires are non-deformable, their contact surface with the ground can be
approximated with a point, and there is no mechanical constraint for the steering of the steerable
wheels; hence, they are free-turn. However, we will discuss the case with limited steering angle
separately in Section 5.3.

Figure 1, depicts a schematic view of a WMR and the desired path. Additionally,
Table 1 lists the definitions of the corresponding parameters and variables. We define the
base current posture X , as

X =
[
qT θb

]T, (1)

where q is the position vector of point Q (the origin of body frame B) and θb is the heading
angle. The base linear velocity at Q is vv̂ with v being the base speed and v̂(ψv) being the
direction of the velocity as a function of the linear velocity angle ψv. Moreover, based on
Definition 1, for a general WMR, several types of wheels may be connected to the base.
As shown in Figure 1, the connection point of the ith wheel is Li and the velocity of the
wheel is viv̂i, in which vi is the driving speed and v̂i(φi) is the direction of wheels heading,
which, in turn, is a function of wheel’s steering angle φi.

The desired path Pd is a 2D and bounded-curvature regular curve on the horizontal
plane. This is defined by the vector-valued function Pd(s) : [0, Ld]→ R2, where s and Ld
are the natural parametrization (arc length) and the length of Pd, respectively. The desired
heading function θd(s) : [0, Ld]→ R of class C3 determines the base’s desired heading θd.
Similar to Equation (1), the WMR desired posture, X d, is defined as

X d =
[
PT

d θd
]T. (2)

Furthermore, the path Pa(λ) is an asymptotic path to Pd. It is defined by Pa(λ) :
[0, La] → R2, where λ and La are the natural parametrization (arc length) and length of
the path, respectively, with its tangent angle denoted by ψa. Correspondingly, the func-
tion θa(λ) : [0, Ld]→ R is an asymptotic angle from the base current heading θb, to the
desired heading θd. We will later show that Pa(λ) and θa(λ) are solutions to autonomous
differential equations with the current pose of the base as the initial conditions.

Figure 1. The desired path and the required coordinate frames.
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Table 1. Parameters and Variables.

Coordinate Frames and Their Basis
U{X̂, Ŷ} The inertial frame with its origin O
B{x̂, ŷ} The body frame attached to the WMR’s base Q
Bv{v̂, û} The base velocity coordinate frame at Q
T {t̂, n̂} The Frenet–Serret frame of the desired path, Pd, at P

Bd{x̂d, ŷd} The desired heading coordinate frame at P

Paths’ Parameters and Variables
s Natural parameter(arc length) of the desired path, Pd

κd(s) The curvature of the desired path, Pd (|κd| < κ 6= ∞)
λ Natural parameter(arc length) of the asymptotic path, Pa

Position Vectors

p ,
[

px py 0
]T

; the position vector of the virtual target point, P, with respect
to O

q ,
[
qx qy 0

]T
; the position vector of the base, Q, with respect to O

`i The position of ith wheel attachment point, Li, to the base with respect to Q

Angles
θb The WMR’s heading angle that defines the body frame B
θd The desired heading angle; defines the frame Bd at P
ψv The angle of the base linear velocity direction, v̂
ψd The desired angle for the base linear velocity direction, v̂

ψvb , ψv − θb

ψt The tangent angle; defines the desired path tangent vector t̂
φi The ith wheel steering angle
ηi The angle between the base linear velocity vv̂ and the ith wheel position

vector, `i

Others
v̂ The direction vector of the base linear velocity at Q
v The speed of the base at Q

v̂i The direction vector of the ith wheel linear velocity
vi The driving speed of the ith wheel

ωb , θ̇b; the base angular velocity
ωv , ψ̇v; the angular rate of v̂

ωvb , ωv −ωb

2.2. Problem Formulation

As shown in Figure 1, the virtual target point on Pd is denoted as P. It is determined
by s, which is set as an auxiliary state with ṡ being its corresponding control signal. Along
with s, we define error state variables as

S = (xe, ye, θe, ψe) (3a)

S∗ = (xe, ye, θe), (3b)
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where, [
xe
ye

]
= UR

−1
T (q− p) (4a)

θe = θd − θb, (4b)

ψe = ψd(s,S∗)− ψv, (4c)

and URT , equivalent to R(ψt), is the rotation matrix from frame T to frame U . In the
above, the position error signals, xe and ye, are measured along t̂ and n̂, respectively, while
θe independently represents the heading error. The signal ψd, as a function of S∗, is the
desired heading that is determined by the controller and basically generates a suitable
approach angle to Pd(s).

The time derivation of Equations (4a) to (4c) yields to the open-loop equations of
motion

ẋe = ṡ(κd(s)ye − 1) + v cos(ψt − ψv) (5a)

ẏe = −ṡκd(s)xe − v sin(ψt − ψv) (5b)

θ̇e =
dθd
ds

ṡ−ωb (5c)

ψ̇e = ψ̇d −ωv, (5d)

in which the angular velocity of the frame B, is ωb , θ̇b and, similarly, ωv , ψ̇v. We
assemble all of the above formulations into the following definition for the WMR’s base.

Definition 2 (Base Path-Following). Base path-following error dynamics is a system with the
full states (s,S) or the reduced states (s,S∗), and with the control inputs C, which are defined as

C = (ṡ, ωb, ωv). (6)

The dynamics of this system is given by Equations (5a) to (5d), in which the base speed v is
seen as an exogenous input.

Some further notes are given here for the reduced states, S∗. For the majority of
WMRs, except a special case, it is possible to incorporate a rather simpler scheme by
dismissing ψe in (4c) as an error state (ψe = 0 ∀t), therefore controlling the base velocity
direction v̂(ψv) directly. In the reduced states S∗, ψv acts as a control signal by directly
setting ψv = ψd(s,S∗). In Section 4.2, we will detail the types of WMRs and conditions
under which the choice of S∗ is not possible.

In what follows, we formally define the problem that is the focal point of this paper.

Problem 1 (WMR Bounded Velocity Path-Following). Given the desired path Pd(s) and
heading profile θd(s) derive feedback control laws for the wheels’ driving vi and steering inputs φi
(or their rates φ̇i) such that:

(I) Path-Following: The velocity frame Bv converges and follows the tangent frame T ; that
is, error signals xe and ye, remain bounded and converge to zero (See Equation (4a)).

(II) Heading Control: The body frame B converges and follows Bd; that is, the heading error
signal θe, remains bounded and converges to zero (See (4b)).

(III) Bounded Velocity: vi and φ̇i should not exceed their corresponding predefined limits.

We solve the above problem in two stages. In the first stage, we place our focus solely
on the base path-following defined by Definition 2, its stability and features. In the second
stage, we focus on the kinematic constraints between the wheels and the base, the details
of which are given in Section 3.2. We utilize these constraints to solve sub-problems (I) and
(II) of Problem 1 by mapping the intermediary control inputs C, to the wheels’ variables.
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Furthermore, those mappings are used to solve the bounded velocity problem (sub-problem
(III)) by selecting an appropriate v that bounds the driving and steering velocities.

At first glance, this approach is solely applicable to holonomic omnidirectional WMRs
(δm = 3). However, this treatment is a rather general and we will show that, for each
category of WMRs, a proper subset of the above intermediary control sets along with a
pertinent choice of body origin Q results in a feasible solution that abides by the kinematic
limitations of that category.

3. WMR Path-Following: The Generic Form

In the following, Section 3.1 focuses on a generic form of C for the base path-following
that has some unique features. Then, in Section 3.3, those features are utilized to present a
parametrized version of the WMRs’ kinematic constraints, which, in turn, are incorporated
into a closed-form solution for Problem 1.

3.1. Base Path-Following

Proposition 1. For the base path-following system defined by Definition 2, assume that some exists
feedback control laws exist for C that render the origin of the error space asymptotically stable and
they are in the generic form of

ṡ = s′(s,S)v (7a)

ωb = κb(s,S)v (7b)

ωv = κv(s,S)v (7c)

ψd = ψd(s,S∗), (7d)

in which s′, κb, and κv are functions of only s and error states, S . Then, at any given time t ≥ 0,
the closed-loop equations of motion result in a set of differential equations for an asymptotic path
Pa(λ) and a heading θa(λ), with the initial conditions being q(t) and θb(t), respectively. In other
words, X (t), the base posture at the time t, is

X (t) =
[
PT

a (λ = 0) θa(λ = 0)
]T, (8)

and as λ increases,
[
PT

a (λ > 0) θa(λ > 0)
]T asymptotically converges toward the desired pos-

ture X d.

Proof. To prove the above proposition, notice that ||q̇|| = v and a geometric variable λ
exist, where λ̇ = v. Consequently, Equation (7a) becomes ṡ = s′λ̇. Based on the chain rule,
we have v = ds

dλ λ̇ and, hence, s′ = ds
dλ . Using the same analogy for Equations (7b) and (7c)

and substituting them into the open-loop error states (Equations (5a) to (5d)) results in

ds(λ)
dλ

= s′(s,S) (9a)

dxe(λ)

dλ
= x′e(s,S) = s′(κd(s)ye − 1) + cos(ψt − ψv) (9b)

dye(λ)

dλ
= y′e(s,S) = −s′κd(s)xe − sin(ψt − ψv) (9c)

dθe(λ)

dλ
= θ′e(s,S) =

dθd
ds

s′ − κb(s,S) (9d)

dψe(λ)

dλ
= ψ′e(s,S) = ψ′d − κv(s,S), (9e)

where,

ψ′d =
dψd
dλ

=
∂ψd
∂xe

x′e +
∂ψd
∂ye

y′e +
∂ψd
∂θe

θ′e . (10)
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The above equations provide a set of differential equations for (s,S) based on the
independent variable λ. The algebraic Equations (4a) to (4c) can be used to track the
geometric evolution of q, θb, and ψv as functions of λ, which are Pa(λ), θa(λ), and ψa(λ),
respectively, and are governed by

Pa(λ) = Pd(s(λ)) + URT (s(λ))
[

xe(λ)
ye(λ)

]
(11a)

θa(λ) = θd(s(λ))− θe(λ) (11b)

ψa(λ) = ψd(s(λ),S∗(λ))− ψe(λ). (11c)

Therefore, the differential Equations (9a) to (9e) together with the algebraic
Equations (11a) to (11c) result in a set of expressions for the asymptotic path Pa(λ) and
heading θa(λ). Notice that λ does not explicitly appear in any of the above equations;
therefore, (s(t),S(t)), the base path-following states at time t, can be associated with initial
conditions (λ = 0) of the above differential equations.

The merit of Proposition 1 is that a majority of path-following controllers in the
literature (e.g., [16,19]) cannot be written in the generic form of Equations (7a) to (7c).
Therefore, while, in those path-followers, v is an exogenous input and does not have
a direct role in the stability (as long as v ≥ vm > 0), the asymptotic path Pa cannot
be determined independently of v(t) and it is only after the assignment of the speed
profile that one can derive the asymptotic trajectory Pa(λ(t)). However, Proposition 1
enables us to determine Pa(λ) without specifying the future velocity commands by directly
integrating closed-loop equations. In other words, a path-following controller in the form
of Equations (7a) to (7d) acts as a feedback path-planner that has a certain error function as
its cost function and plans asymptotic paths from the base current posture X , toward the
desired posture X d. We provide an example for such a controller in Section 4.1.

In this paper, there is no need to solve the closed-loop differential equations. The dif-
ferentials of (s,S), obtained in the form of the above proposition, will be used for WMRs’
kinematic constraints in the next proposition. For that purpose, the higher time differenti-
ations of control signals and error states may also be written as differentials based on λ,
which are listed below for future reference.

s̈ = s′′(s,S ,S ′)v2 + s′(s,S)v̇ (12a)

ω̇b = κ′b(s,S ,S ′)v2 + κb(s,S)v̇ (12b)

ω̇v = κ′v(s,S ,S ′)v2 + κv(s,S)v̇, (12c)

where, s′′ = ds′
dλ = d2s

dλ2 , κ′b = dκb
dλ , κ′v = dκv

dλ , and

S ′ = (x′e, y′e, θ′e, ψ′e
)
. (13)

Finally, for the closed-loop system, we may transform BẊ and BẌ , the velocity and
acceleration of the base posture (Equation (1)) expressed in the body frame B, into

BẊ = BX ′v, BẊ ′ = BX ′′v, (14a)
BẌ = BX ′′v2 + BX ′v̇, (14b)
BX ′ = [cos ψvb sin ψvb κb)

]T, (14c)
BX ′′ = [−κvb sin ψvb κvb cos ψvb κ′b

]T, (14d)

in which, ψvb,ψv − θb, and κvb,κv − κb. The above transformation facilitates the treatment
of kinematic constraints in Section 3.2.
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3.2. Wheels’ Kinematic Constraints

Figure 2 depicts a schematic view of an abstract Generalized Wheel (GW) as the ith
wheel of the WMR and its corresponding parameters. The GW represents both Swedish
wheels and normal wheels. In this sense, rsr and γ define the radius and the direction of
the small rollers’ axis, respectively; hence, for a functional Swedish wheel: γ 6= π

2 and
rsr 6= 0. For a normal, non-Swedish wheel, we simply set γ = π

2 and rsr = 0. The wheel
is mounted on an L-shaped rod, parametrized by off-center values: (di, ci), at the point
L′i, with B`′ i = ci

B ûi + di
B v̂i. The rod is connected to the base at the attachment point Li

by a revolute joint. As shown in the figure, φi represents the steering angle of the wheel,
and viv̂i represents its driving velocity vector, generated by the wheel’s actuator. We define
the absolute steering angle Φi and the projection matrix Ji(x̂i) as

Φi = θb + φi, (15a)

Ji(x̂i) =
[
x̂T

i x̂i.(ẑ× B`i)
]
, (15b)

in which x̂i is an arbitrary unit vector.

Figure 2. A generalized wheel and its corresponding parameters.

Moreover, for fixed and Swedish types, the steering direction B v̂i(φi), is a mechanical
design variable, and is measured for steerable types, except when it is set as the control
signal—a case that will be further explored. Table 2, for each type of wheel, lists the
required values for the GW variables and parameters. To derive the kinematic relations
for the GW, we may differentiately form the vector relation L′i = q + `i + div̂i + ciûi and
express it in the body frame to arrive at a velocity constraint between the wheel and the
base, which is

v B v̂ + ωb(ẑ× B`i) =(vi − ciΦ̇i)
B v̂i + diΦ̇i

B ûi

− rsrφ̇sr(ẑ× Bγ̂), (16)

in which φ̇sr is the angular velocity of the GW’s small rollers. The above equation can be
manipulated into scalar equations

vi âi. B v̂i = Ji(âi)
BẊ + Φ̇i âi.(ẑ× B`′ i) (17)
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where,

âi =

{Bγ̂(γ) Swedish wheel(γ 6= π
2 , rsr 6= 0)

B v̂i(φi) Other types(γ = π
2 , rsr = 0)

. (18)

Equation (17) accompanied by the proper choice of âi (Equation (18)) determines
the driving velocity vi. By definition, for fixed and Swedish wheels φ̇i = 0. For the
steerable wheels, when di 6= 0, φ̇i is determined by setting âi =

B ûi in Equation (17), which
eliminates the left-hand side of the equation. When B ûi.(ẑ× B`′ i) is zero (equivalent to
di = 0), setting âi =

B ûi and di = 0 in Equation (17) and differentiating from this yields:

Φ̇i Ji(
B v̂i)

BẊ + Ji(
B ûi)

BẌ = ω2
b
B ûi.B`i. (19)

Evidently, the above kinematic constraints cannot be analytically solved for a base
speed that results in specified driving and steering velocities. However, as in the following
proposition, we show that the incorporation of Proposition 1 into the kinematic constraints
yields a set of direct relationships between the base speed and wheel velocities.

Table 2. GW Parameters for each Type of Wheel.

Variable

Type
Fixed Wheel Centered Steering Wheel Caster Wheel Swedish Wheel

B v̂i(φi) Fixed Measurement or Equation (24) Measurement Fixed

di di ∈ R di = 0 di ∈ R 6=0 di ∈ R
ci ci ∈ R ci ∈ R ci ∈ R ci ∈ R
γ γ = π

2 γ = π
2 γ = π

2 γ 6= π
2

rsr rsr = 0 rsr = 0 rsr = 0 rsr 6= 0

Proposition 2. Consider a WMR defined in Definition 1. If the WMRs intermediary control
signals C conform to the generic form, as outlined in Proposition 1, then the driving and steering
velocities of the ith wheel (1 ≤ i ≤ n) are in the form of

vi = v′i(s,S ,S ′,C ′)v (20a)

φ̇i = φ′i(s,S ,S ′,C ′)v, (20b)

in which, v′i =
dvi
dλ , φ′i =

dφi
dλ , and

C ′ = (s′, κb, κv
)
. (21)

Proof. We prove this proposition by constructing v′i and φ′i . This is carried out by substi-
tuting the results of Proposition 1 into the kinematic constraints and performing some alge-
braic manipulations that can be simplified to the form of Equations (20a) and (20b). Based
on Equations (7b) and (15a), we have Φ̇i = ωb + φ̇i and ωb = κbv. Therefore, the proof for
Equation (20b) is equivalent to finding an expression for Φ̇i = Φ′iv and setting φ′i = Φ′i − κb.
Clearly, Equation (20b) automatically holds for zero steering wheels (fixed and Swedish
wheels) with Φ′i = κb and φ′i = 0. For the other types, setting âi =

B ûi in Equation (17),
and substituting BẊ by BX ′v from Equation (14c), and BẌ from Equation (14b) in Equa-
tion (19), this can be rewritten in the form of Φ̇i = Φ′iv with

Φ′i=

{
d−1

i Ji(
B ûi)

BX ′ di 6= 0
(Ji(

B v̂i)
BX ′)−1

(κ2
b
B ûi.B`i−Ji(

B ûi)
BX ′′) di = 0

, (22)

which proves the second relation, Equation (20b). Notice that, for di = 0, the choice
of control signals eliminates the acceleration terms from Equation (19) and simplifies it
into the form of Φ̇i = Φ′iv. In this case, the only caveat is that Ji(

B v̂i)
BX ′ in the above
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Figure 3. Schematic block diagram of the whole system.

equation may become very small, or even zero. This situation corresponds to the singularity
configuration of wheels with di = 0 that are called centered steering wheels. This situation
and its treatment is fully explained in Section 4.3. Finally, following the same paradigm,
Equation (17) can be manipulated into the form of Equation (20a) with

v′i = (âi. B v̂i)
−1
(

Ji(âi)
BX ′ + Φ′i âi.(ẑ× B`′ i)

)
, (23)

in which âi is determined by Equation (18).

Remark 1. For a WMR with centered steerable wheels (di = 0), under the reduced state model
S∗, the wheels’ steering angles φi can be set as control signals and are derived as follows. Based
on Equation (16), the steering direction is B v̂i(φi) is v B v̂ + ωb(ẑ × B`i). Therefore, for the
closed-loop system, ωb can be replaced with κbv and the steering direction becomes

B v̂i =
B v̂ + κb(ẑ× B`i)√

1 + κ2
b l2

i + 2likbsin ηi

. (24)

The major benefit of the above formulation is that it determines the proper steering direction of
the wheels, even when the robot is stopped and the base speed is zero.

3.3. WMR Path-Following

The previous proposition most importantly shows that, for the closed-loop path-
following of all WMR types, the kinematic constraints between the base and the wheels
can be reduced to proportional functions of the base speed with proportions that are only
functions of s and instant error states S . Consequently, a suitable solution to Subproblems
(I) and (II) of Problem 1 is the selection of an arbitrary v, and a C that conforms to conditions
in Proposition 1, and then using Equations (20a) and (20b) to evaluate the wheels’ driving
and steering velocities. Furthermore, to solve the Subproblem (III), instead of having an
arbitrary profile for v, Proposition 2 can be used to find instant limits for v that bound the
wheels’ velocities. Such a solution exhaustively solves Problem 1 and is formally stated
in the following Algorithm 1, with Figure 3 schematically depicting the corresponding
block diagram.
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Algorithm 1 WMR Bounded Velocity Path-Following.
Assume that the WMR possess nd driving actuators and ns steering actuators (nd + ns ≤ 2n).
The maximum driving velocity of the ith driving actuator is denoted as v(max)

i , and the
maximum steering velocity of the ith steering actuator is denoted as φ̇(max)

i . At each time
step, the control signals of wheels’ actuators is evaluated by
1. Desired Inputs: Evaluate the internal state s, by integrating the internal feedback ṡ,

and obtain the virtual target values P and θd by using Pd(s) and θd(s).
2. Error Calculation: Evaluate the error states S by using the localization feedback

(see Equations (4a) to (4c)).
3. Controller Σ: Evaluate S ′ (Equation (13)), and C ′ (Equation (21)) and, by using

the values of those signals, obtain v̂i, v′i, and φ′i of Equations (20a) and (20b) for all
the wheels.

4. Bounded Velocity: Based on Equations (20a) and (20b), there are nd + ns candidates
for v, namely, v(i), which are

v(i) =
v(max)

i
|v′i|

and v(nd+i) =
φ̇(max)

i
|φ′i |

(25)

Then, the maximum allowable base speed, denoted as v(max), is

v(max) = min
i

v(i), i ∈ {1, 2, .., nd + ns}. (26)

5. Wheels’ Control Inputs: Select a v ≤ v(max), and use vi = v′iv and φ̇i = φ′iv to
evaluate the actuators’ velocity commands (Equations (20a) and (20b)).

Note that Equations (20a) and (20b), which are used in the forth step of the above
algorithm to derive the velocity candidates, are strictly monotonic with respect to vi, and φ̇i
and so is their inverse with respect to v. Hence, applying the minimum of those m velocity
candidates results in driving and steering velocities less than or equal to the given velocity
bounds. Alternatively, at each instant, if v = v(max) is selected, then at least one of the
actuators is being driven at its maximum velocity, which renders the solution a bang-bang
control [43] for the velocity v and, therefore, for a given desired path, heading, and control
gains, the solution is time-optimal.

4. WMR Path-Following: Detailed Illustration

In this section, we provide the pertinent expressions for the parametrized controller
presented in the previous section. In Section 4.1, we present an example controller for the
base that complies with the conditions of Proposition 1, and thereby customize Algorithm
1 for WMRs based on their degree of maneuverability, δM.

4.1. Base Path-Following: The Controller

First, we define ψd(s,S∗), the desired input for ψv as

ψd(s,S∗) = ψt − σ(ye), (27)

in which, σ(ye) is a function that generates a suitable approach angle from the base to Pd(s)
and has the following features: σ(0) = 0 and yeσ(ye) > 0 ∀ye 6= 0. One candidate for
σ(ye) is

σ(ye) , sin−1 k2ye

|ye|+ ε
, (28)

where 0 < k2 ≤ 1 and ε > 0.
Based on the above definition, it can be construed that, for large normal errors ye,

σ(ye) goes toward π/2 and, consequently, the base turns toward the virtual point P to
decrease the error. As ye decreases, σ(ye) moves toward zero and the base velocity turns
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toward the path tangent at P; therefore, the robot motion becomes more aligned with the
path. Evidently, larger values for k2 result in sharper turns for the robot to reach the path.

Proposition 3. The feedback control laws for signals C that are given by

ṡ = s′(s,S)v ωb = θ′b(s,S)v ωv = ψ′v(s,S)v, (29)

where,

s′(s,S) = k1xe + cos(ψt − ψv) (30a)

θ′b(s,S) = k3θe +
dθd
ds

s′ (30b)

ψ′v(s,S) = ψ′d (30c)

ψ′d = κds′ − y′e
dσ(ye)

dye
. (30d)

and k1, k3 > 0, lead the reduced error states, S∗, to asymptotically converge to zero. Moreover,
replacing Equation (30c) with

ψ′v(s,S) = κds′ − dσ(ye)

dye
y′e − κ2

e ye∆ + k4ψe (31a)

∆ =

{
sin(ψt−ψv)−sin σ(ye)

ψe
ψe 6= 0

cos σ(ye) ψe = 0
, (31b)

in which κe 6= 0 and k4 > 0 result in error states S asymptotically converging to zero. Conse-
quently, the origin of the error space is stable and semi-globally exponentially stable by setting
v(t)≥vm >0 ∀t.

Proof. Here, we use standard quadratic form of error signals as the Lyapunov function but
with modified control laws to make curvatures independent of speed, v. First, we provide
a proof for the case where error states are S∗, and then we extend it for the full state S .
Consider the following Lyapunov function:

V1 =
1
2

x2
e +

1
2

y2
e +

1
2

θ2
e , (32)

which is positive, definite and radially unbounded. The time differentiation of V1, along
with the solution of Equations (5a) to (5c), results in:

V̇1 = −(k1x2
e + k2

y2
e

|ye|+ ε
+ k3θ2

e ) v(t) , (33)

which is negative; thus, the origin is stable. For a given d1 > 0, if v(t) ≥ vm > 0 and,
initially, |ye(t0)| < d1, it is easy to show that V̇1 < −λV1. Thus, the origin is semi-globally
exponentially stable.

To complete the proof, consider the following Lyapunov function:

V2 = V1 +
1

2κ2
e

ψ2
e . (34)

The time differentiation of V2 along the solution of Equations (5a) to (5d) results in:

V̇2 = V̇1 −
k4

κ2
e

ψ2
e v(t) , (35)

which, again, is negative; therefore, the origin of the error state is stable.
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The above control laws clearly follow the generic format of Proposition 1. As men-
tioned in the above proposition, with the given control laws, the origin of S is semi-globally
exponentially stable for non-zero base speeds. The practical implication of this feature
is that the WMR may stop (v = 0) for some time during the path-following operation,
during which the states remain bounded and the path-following is naturally resumed once
the WMR starts to move and the speed is not zero anymore. Note that there are several
other functions for σ(ye) in the literature. However, while all of them result in negative
V̇, the one presented here is the one that results in a quadratic form for ye in V̇, and hence
provides exponential stability.

4.2. Customization of the Path-Following Algorithm

WMRs are classified based into five different categories on the ordered pair δ =
(δm, δs). Three of these categories possess the degree of maneuverability δM = δm + δs = 3,
and, for the other two, δM = 2. In the following, we customize Algorithm 1 based on the
WMR’s degree of maneuverability and explain the accompanying details. The results of
this section are listed in Table 3.

Table 3. Customization of the Path-Following.

δM

Param.
Error States Desired Inputs Selection of Q κb κv s′

δM = 3 S∗ Pd(s), θd(s) Arbitrary θ′b (30b) ψ′d (30d) s′ (30a)

δM = 3 S Pd(s), θd(s) Arbitrary θ′b (30b) ψ′v (31a) s′ (30a)

δM = 2 S∗ Pd(s) Not on ac
1 ψ′d (30d) ψ′d (30d) s′ (30a)

δM = 2 S Pd(s) Not on ac κb (37) ψ′v (31a) s′ (30a)

δM = 2 S Pd(s) On ac ψ′v (31a) ψ′v (31a) s′ (30a)
1 ac is the common axis of the fixed wheels.

4.2.1. WMRs with δM = 3

These types of WMRs are omnidirectional in nature, which means that they have
independent heading and linear movements. However, the holonomic type with δ = (3, 0)
provides full mobility and, hence, instantaneous velocity in any direction. The other two
categories (δ = (2, 1) and δ = (1, 2)) are steerable and nonholonomic. They are capable
of providing movement in any arbitrary direction, but only after they have steered their
wheels to the corresponding configuration. For the problem at hand, the difference between
holonomic and nonholonomic types only occurs at the beginning of the path, in which the
holonomic type may start path-following instantly, but the nonholonomic types have to
rearrange their steerable wheels. Other than this, on a smooth path and heading profile,
both types provide the same functionality.

These types of WMRs are capable of changing the direction of their base linear velocity
while the base is stationary. This can be instantly performed in the case of holonomic types
or in the case of nonholonomic types by changing the direction of the steering wheels over
time. This fact allows us to directly control ψv and have S∗ as the error states instead of S .
Consequently, for this type of WMR, the heading and linear movements are independent.
Hence, the controller’s inputs are both Pd and θd, and the body frame B is chosen arbitrarily.
For the base path-following (Definition 2) of such WMRs, s′, and κb of Proposition 1 are
s′, and θ′b given by Equations (30a) and (30b) in Section 4.1, respectively. There are two
viable options for κv. If the target states is set to be full states (s,S∗), then, as mentioned
earlier, κv should be set as ψ′d given by Equation (30d). The second option is to set (s,S) as
the target states and, therefore, κv should be evaluated using ψ′v given by Equation (31a).
Table 3 summarize these results.
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4.2.2. WMRs with δM = 2

These types of WMRs have limited mobility in their working plane, and the heading
and linear movements are dependent. They are either differential with δ = (2, 0) or carlike
with δ = (1, 1). Both categories have a set of coaxial fixed wheels. The only difference
between these categories occurs at the beginning of the path-following. The differential
type starts the path-following instantly, but the carlike type has to steer its steerable wheel
according to the start of the path. Aside from this difference, both types provide the same
functionality on a smooth path.

For such WMRs, there is no independent heading control and the progress of the base
heading, as shown in Figure 4, is linked to the position of body origin Q. Therefore, in what
follows, we strive to derive the control laws for ωb, in the form of κbv of Equation (7b),
which observes the kinematic constraints. For a kinematically feasible WMR, all the fixed
wheels are coaxial and, therefore, all ûi are on the same line, which we call this common
axis ac. To derive the constraint equations, set φ̈i = φ̇i = 0 in Equation (16), and its time
derivative, which can be rearranged into

ωb(di − B ûi.(ẑ× B`i)) =v B ûi.B v̂ (36a)

v(ωb −ωv)(v + liωb sin ηi) =(divi + vli cos ηi)ω̇b

−(di v̇i + v̇li cos ηi)ωb. (36b)

From the above equations, it follows that if Q, the origin of the body frame, is not on
the common axis ac, a kinematically consistent expression for ωb may be derived based on
Equation (36a). However, when Q is placed on ac, Equation (36a) degenerates, since both
B ûi.B v̂ and di − B ûi.(ẑ× B`i) become zero and Equation (36b) should be employed. If Q
has been placed on the common axis, then the right-hand side of Equation (36b) is zero
and, in order for the constraint to be valid, ωb should be set equal to ωv at all times. In both
cases, ωb is in the form of κb(s,S)v, which are

κb =

{(
di − B ûi.(ẑ× B`i)

)−1B ûi.B v̂ Q is not on ac

κv Q is on ac.
(37)

Finally, based on Equation (36b), if Q is on the common axis of the fixed wheels ac, then
the heading is tangent to (or has a constant misalignment with) the footprint of Q, which,
in the case of path-following, is eventually ψt. In this case, the WMR is not able to instantly
provide any arbitrary ψv; hence, only the full states path-following (s,S) are possible.
Consequently, for the base path-following, s′ is evaluated using Equation (30a) and κb,
and κv are both set to be ψ′v given by Equation (31a). On the other hand, if Q is not placed on
ac then, based on Equation (37), ωb can be used to achieve any arbitrary ψv. Consequently,
both the full states’ path-following (s,S), and the reduced states’ path-following (s,S∗)
are possible. For the base path-following, s′ and κb are evaluated using Equations (30a)
and (37), respectively. κv is set to ψ′v given by Equation (31a) in the full states’ case or ψ′d
given by Equation (30d) in the case of reduced states. These results are also listed in order
in Table 3.
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Figure 4. Two WMRs with δM = 2. For the one on the left, the origin of B is on the ac and for the
one on the right, the origin is outside of ac.

4.3. Analysis of Steering Wheels Singularities

In Section 4.1, we provided a stable path-following controller for the base path-
following system defined in Definition 2. Next, we incorporated the constraints of
Section 3.2 to map the base control signals to the wheels’ velocities. The path-following
of a WMR with a stable base controller is stable if there is no singularity in the mapping
from the base onto the wheel. Hence, in this section, we elaborate on the singularities of
the mapping and how the bounded velocity path-following algorithm treats and resolves
those singularities, which specifically occurs with centered steering wheels.

As mentioned in the introduction, one way of examining the singularity of the steering
wheels is by studying the base ICR. As the ICR moves closer to a wheel axis, the driving
velocity of that wheel decreases and its steering velocity unboundedly increases. When the
ICR coincides with the wheel’s steering axis, the steering angle becomes undefined and
singular. Here, we study this situation both geometrically and analytically based on the
WMR’s path-following.

Figure 5 shows the path-following of a WMR with four steering wheels that follow a
straight line Pd, during which it rotates around itself for 2π. As shown in the magnified
area of the figure, during the operation, as the body ICR moves close to the first wheel,
the curvature of P1, which is the wheel’s footprint, increases; therefore, for the wheel to
keep up with the rest of the WMR, it has to increase its steering velocity to pass the tight
curvature. At the singularity, the ICR coincides with the steering axis, the curvature of the
wheel’s path becomes infinite and the steering direction becomes undefined. Theretofore,
geometrically, the kinematic mapping between the base and a wheel becomes singular
when a smooth path and movement toward a base result in an infinite curvature for the
wheel’s path.

In Section 3.2, for the closed-loop system, we derived the driving and steering veloci-
ties, vi and φi, in the form of v′iv and φ′iv, respectively. The curvature of Pi, the ith steering
wheel’s path, denoted as κi, becomes κi = φ′i/v′i and can be written as

κi =
κ′blicos ηi + (κv − κb)(1+likbsin ηi)

(1 + κ2
b l2

i + 2liκbsin ηi)
3
2

. (38)

The singularity occurs when the denominator of the above equation becomes zero;
that is, when sin ηi = − sgn κb and |κb| = 1/li.
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Figure 5. A nonholonomic omnidirectional WMR with four steering wheels following the desired
path P(d), which is a straight line, while turning around itself.

One of the significant benefits of the bounded velocity path-following presented in
Algorithm 1 is that it properly handles the steering wheels’ singularities. As the wheel
moves close to its singular configuration φ′i unboundedly increases; therefore, based on
Equation (25), that is, v(nd+i) = φ̇

(max)
i /|φ′i |, the velocity candidate v(nd+i), is reduced to limit

φ̇i to its maximum. This, in turn, leads to the reduction in the base speed v. Hence, as the
WMR moves close to its singular configuration, it reduces its speed and allows the steering
wheel to make a tight turn. Figure 6 demonstrates this procedure for the path-following
scenario depicted in Figure 5. If the WMR falls right into the singular configuration, φ′i
becomes infinity and the robot stops. At this configuration, the curvature of Pi is infinity
and the path has inward and outward tangents at the singular point. This configuration
can be seen as the start of a new path-following; the WMR reorientates its singular wheel
from the inward tangent to the outward tangent and starts a new path-following.
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Figure 6. First wheel angular velocity φ̇1, with and without bounded velocity.

5. Experimental and Simulation Results

In this section, we demonstrate some simulation and experimental data of the pre-
sented path-following controller in action. The results are for four categoiesy of WMR.
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The experimental setup consists of two WMRs, shown in Figure 7. The robot in the left
is a four-wheel, independently steered mobile manipulator called iMoro that is a non-
holonomic omnidirectional WMR (δ = (1, 2)), also known as a two-steer. By manually
fixing the steering of the rear wheels (setting φ̇i = 0), it can also emulate the car-like type
(δ = (1, 1)). In this case, the steering of the front wheels is naturally governed by the
path-following based on the Ackerman principal. This feature was incorporated to test
the algorithm for the car-like WMRs. For the last type, the WMR to the right of Figure 7,
called LabRat, was employed, which is a differential drive mobile robot (δ = (2, 0)) and
represents the unicycle kinematics. The path-following controller, namely, the Algorithm 1,
was implemented on these WMRs in a real-time Linux environment based on [44]. This
section is divided into three case studies; each focuses on different types of WMR and
different scenarios (Videos of some of the experiments are provided in the multimedia
attachment.). Finally, we finish this section by a brief discussion on some of the restrictions
of the presented framework.

Figure 7. Experimental setups: iMoro (left): a four-wheel independently steering WMR (δ = (1, 2)),
and LabRat (right): a differential drive WMR (δ = (2, 0)) with active fixed wheels at the rear.

5.1. Case Study I: δ = (3, 0) and δ = (2, 0)

The simulation was performed on a holonomic omnidirectional WMR (δ = (3, 0)).
The WMR has the same architecture as iMoro, but the steering wheels are virtually replaced
by Swedish wheels of the same radii. Figures 8 and 9 portray the path-following scenario,
the base footprint q, and the two of the wheels’ paths for the holonomic type (simulation)
and the unicycle type (experiment using Labrat), respectively. As shown in the figures,
the desired path is smooth, but has sharp turns and, hence, large curvatures at some of its
points, which challenges the agility of the controller.
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Figure 8. Simulation: Path-following with large initial errors of a WMR with four Swedish wheels
(δ = (3, 0)). It seeks and follows the path Pd, while correcting its heading from the initial error of
−180◦ to the desired heading of 360◦ at the end of the path.
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Figure 9. Experiment: Bounded velocity path-following with large initial errors for LabRat WMR
(δ = (2, 0)). It seeks and follows the path Pd while correcting its heading from the initial heading
error of −180◦ toward the path tangent angle ψt(s).
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Figure 10. Simulation: Driving velocities vi, and the base speed v, for path-following of a WMR with
four Swedish wheels depicted in Figure 8.

We have intentionally set large initial errors to demonstrate the performance of the
controller. The WMR is two meters off the starting point of the path and faces away from
it (initial heading error is −180◦). For the holonomic type, independent heading control
is possible and the desired heading is 360◦ by the end of the path. Conversely, for the
unicycle type (δM = 2), independent heading control is not possible. Since the origin of the
body frame is on the common axis of the fixed wheels, the heading and the linear velocity
angle are the same. Hence, along with the base path-following, the algorithm corrects the
initial heading error and the base heading follows the tangent of the path. As shown in
the figures, the controller can maneuver the robot toward, and asymptotically onto, the
path. The maximum driving velocity was set to 600 MMmm/s and the base speed was
selected as v = v(max) given by Equation (26) in Algorithm 1. Figures 10 and 11 present the
wheels’ driving velocities vi and the base speed v, for the holonomic, and unicycle type,
respectively. As shown in the figures, the bounded velocity algorithm duly scales the base
speed so that none of the wheels exceed their maximum driving velocity.
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Figure 11. Experiment: Driving velocities v1 and v2, and the base speed v, for the bounded velocity
path-following of LabRat (δ = (2, 0)).

As shown in Figure 11, LabRat makes sharp turns by setting the velocities of both
wheels to their maximum values but with different signs, which implies that one is driving
forward and another is running backward. Hence, the base speed becomes almost zero and
the velocity difference leads to the angular velocity that is needed for the turn. Collectively,
these experiments demonstrate the agility of the proposed path-following algorithm to
steadily realize sharp maneuvers without relying on switching procedures.
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5.2. Case Study II: δ = (1, 2)

This case study focuses on the emulation of a manipulation task with iMoro in the
two-steer mode. As shown in Figure 12, the manipulation task consists of grasping the tip
of a T-Slot aluminum profile, which is mounted on and extended from a wheeled table.
A marker attached on the table is detected by a camera mounted on-board at the front
of iMoro. The inertial frame is set on the marker and the pose of the tip is known with
respect to the frame, while the wheeled table is placed randomly in the room. At the start,
the WMRs’ fingers are about to grasp the tip. It is desired for the WMR to start from this
configuration, follow a desired tear shaped path around the room (Figure 13) and creturn
to the exact same initial grasping configuration, which provides a means of investigating
the repeatability of the system. In this experiment, the localization module consists of
sensor fusion between vision data and wheel odometry (more information is given in [45]).

Start

End

Figure 12. Experiment: The repeatability of the path-following controller. The robot starts from the
grasping position marked by ”Start“ follows the path shown in Figure 13 and returns close to the
initial pose.
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Figure 13. Experiment: The desired path and the localization feedback of the WMR, performing the
task shown in Figure 12 (The ramp image is shown for the purpose of clarity and does not represent
the exact position of the ramp).
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To investigate the effects of uncertainties and disturbances, a cable protector ramp
is placed somewhere on the path. The WMR driving up and down the ramp precipitates
temporary but heavy localization disturbances that are evident in Figure 14 between 20 s
and 30 s. Moreover, the independent desired heading is designed such that, for some time,
the marker is out of the camera’s field of view and the localization relies solely on wheel
odometry. Once the marker returns into the camera’s view, a sudden jump appears in
the localization due to the accumulated drifting of the wheels’ dead reckoning, which is
also apparent in the figure before 50 s. Since this happens close to the end of the path,
the controller has little time to correct the absolute error and bring the robot back to the
initial configuration.

0 10 20 30 40 50

−50

0

50

100

150

time (sec)

Po
si

tio
n

E
rr

or
s

(m
m

)

xe
ye

Figure 14. Experiment: Position errors in x and y directions of the inertial frame for the scenario
depicted in Figure 13. It shows the disturbances due to the robot moving on a ramp and the
localization jump due accumulated error of wheels’ dead reckoning.

The two images on the right side of Figure 12 are from a separate camera mounted
on the aluminum profile that show the position of the gripper’s fingers at the start and
end of the path-following, which attests to the successful return of the WMR to the initial
configuration with around 15 mm of final error. This is also evident in Figures 13 and 14,
which show the appearance of the errors and disturbances, and the controller’s pertinent
compensation. This experiment was repeated nine times with the ramp placed on several
different locations on the path. The WMR successfully returned to the initial grasping
configuration with the maximum error of 25 mm. Therefore, while the localization relying
on vision and wheel odometry is very noisy, the control system shows sufficient robustness
against this noise.

Another scenario using the same setup was also implemented to assess the controller’s
practical ability to bound the velocities and alleviate the singularities. In this scenario, the
robot has to follow a given path, as shown in Figure 15 that ends in the same grasping
configuration as before. However, during the path-following, the WMR is required to make
a turn around itself, which not only pushes the platform near its singular configuration
but also moves the marker out of the camera’s field of view for some time. As illustrated
in Figure 15, the turn happens somewhere near the start of the path, with the base ICR
moving closer to one of the wheels steering axis. During the turn, the vision is lost and the
accumulated error during this phase results in a localization jump once the camera can see
the marker again. However, as shown in the figure, the controller manages to compensate
for the errors and usher the robot toward the final grasping pose.
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Figure 15. Experiment: Bounded velocity path-following with independent heading control of iMoro
WMR (δ = (1, 2)). It seeks and follows the path Pd while correcting its heading from its initial
heading to the desired heading of 360◦ at the end of the path.

The base speed is selected to be v = v(max) given by Equation (26) in Algorithm 1;
therefore, at least one of the wheels runs with its maximum driving or steering velocity.
Comparing Figures 16 and 17, it is clear that, most of the time, at least one of the wheels
drives with its maximum driving velocity. However, when a tight turn is needed, the
maximum velocity steadily changes from driving to steering, as shown in Figure 17. Notice
that, near the beginning of the path, iMoro moves close to its singular configuration a
couple of times, which corresponds to some of the peaks in the steering velocities. Figure 15
shows the high curvature of one of the wheels’ footprint and the closeness of the body ICR
to the wheel’s steering near the singular configuration.
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Figure 16. Experiment: Driving velocities vi, and the base speed v, for the bounded-velocity path-
following of iMoro depicted in Figure 15. The maximum driving velocity for all the wheels (v(max)

i ) are
set as 200 mm/s. The base speed is selected to be v = v(max), given by Equation (26) in Algorithm 1.
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Figure 17. Experiment: Steering velocities φ̇i for the bounded velocity path-following of iMoro
depicted in Figure 15. The maximum steering velocity for all the wheels (φ̇(max)

i ) are set as 1.9 rad/s
(110 deg/s).

5.3. Case Study III: δ = (1, 1)

The last case study focuses on the path-following of car-like WMRs (δ = (1, 1)) and,
specifically, their bounded steering control. In this paper, we assumed that the steering
wheels are free-turn. This assumption can easily be alleviated for some types of WMRs.
Generally speaking, limited steering for WMRs with a degree of steerability greater than
one (δs = 2) is not favorable. This limitation greatly decreases the maneuverability of the
platform to the point that it questions the benefits of allocating extra resources to obtain a
WMR with δs > 1. For example, the independence of heading and linear motion is greatly
compromised and most of the results in the previous case study would not be possible.
However, for configurations with δs = 1, such as car-like WMRs, a limited steering range
for steering wheels is common and widely used. Therefore, in this section we present a
straightforward approach to account for bounded steering in car-like mode.

This experiment has been performed on iMoro. While the steering wheels on iMoro
are free-turn, virtual limits are set to emulate bounded steering. Figure 18 shows the
path-following of iMoro in car-like mode with three steering limits: φmax

i = {45◦, 65◦, 90◦}.
The desired path is smooth but has a very high curvature at its turning point. The derivation
of virtual bounds on control signals to achieve bounded steering is as follows. As shown
in the figure, the body frame is on the common axis of the fixed wheels. Therefore, based
on Equation (37) and the kinematic constraints of Section 3.2, the velocity constraint
vi

B v̂i = vB v̂ + ωb(ẑ× B`i) can be simplified to

B v̂i(φi) =
B v̂ + κv(ẑ× B`i)

||B v̂ + κv(ẑ× B`i)||2
. (39)

In the above equation, B v̂ is known and constant (in case of Figure 18 it is [1 0 0]T).
Replacing φi with the front wheels’ steering limit φmax

i , the above equation can be solved for
the maximum κv, namely κmax

v > 0. Therefore, the bounded control signal κ̄v that is used
to derive actuator commands can be be found by saturating the output of the controller for
κv, using

κ̄v =

{
κv |κv| ≤ κmax

v

sgn(κv)κmax
v |κv| > κmax

v
, (40)

in which sgn(x) is the sign function. Note that, for the case where the base frame is not
on the common axis of the fixed wheels, based on the first case of Equation (37), a similar
procedure can be followed to derive the corresponding bound for the desired velocity
direction B v̂(ψd). In this case, the virtual steering bounds are achieved by using the
reduced-state model S∗ and the saturated value of ψd.
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Figure 18. Experiment: Path-following of iMoro in car-like mode with three steering limits:
φmax

i = {45◦, 65◦, 90◦}.

5.4. Restrictions

As presented in the results of this section, the proposed universal method navigates the
WMRs while keeping the driving and steering actuators within their velocity boundaries.
This approach is generally suitable in conjunction with a path-planner that generates
obstacle-free paths for the WMR. While this approach is capable of navigating the robot
toward the desired path, even when the errors are very large, this feature has to be used with
care with respect to the obstacles that might be present on the corrective path. Moreover,
in order to achieve higher velocity limits while performing tight maneuvers, bounding the
velocities is not enough; the accelerations should be bounded too. We have presented a
bounded acceleration solution for two-steer WMRs, such as iMoro, in [46], and are currently
extending the results to cover all types of WMRs.

6. Conclusions

In this paper, we presented a universal bounded-velocity path-following algorithm
for Wheeled Mobile Robots (WMRs) operating under the condition of pure rolling without
skidding. The solution can be applied to various types of WMRs such as car-like, differ-
ential drive, and omnidirectional. The versatility of the framework is due to the generic
representation of kinematic constraints. This representation accentuates the possibility
of having universal controllers for kinematically different WMRs. We employed these
results to derive a closed-form time-scaling solution for the base speed that keeps the
velocities of the actuators within a set of pre-specified limits. Extending this establishment,
we are currently working to enhance our solution to cover bounded accelerations, dynamic
uncertainties and employ barrier functions for obstacle avoidance.
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