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Head and neck squamous cell carcinoma (HNSCC) ranks as the sixth most

common cancer among systemic malignant tumors, with 600 000 new cases

occurring every year worldwide. Since HNSCC has high heterogeneity and

complex pathogenesis, no effective prognostic indicator has yet been identi-

fied. Here, we aimed to identify a lncRNA signature associated with the

prognosis of HNSCC as a potential new biomarker. LncRNA expression

data were downloaded from The Cancer Genome Atlas database. A poly-

genic risk score model was constructed by using Lasso–Cox regression

analysis. Weighted gene co-expression network analysis (WGCNA) was

applied to analyze the co-expression modules of lncRNAs associated with

the prognosis of HNSCC. The robustness of the signature was validated in

testing and external cohorts. Polymerase chain reaction was performed to

detect the expression levels of identified lncRNAs in cancer and adjacent

tissues. We constructed an 8-lncRNA signature (LINC00567, LINC00996,

MTOR-AS1, PRKG1-AS1, RAB11B-AS1, RPS6KA2-AS1, SH3BP5-AS1,

ZNF451-AS1) that could be used as an independent prognostic factor of

HNSCC. The signature showed strong robustness and had stable predic-

tion performance in different cohorts. WGCNA results showed that mod-

ules related to risk score mainly participated in biological processes such as

blood vessel development, positive regulation of catabolic processes, and

regulation of growth. The prognostic risk score model based on lncRNA

for HNSCC may help clinicians conduct individualized treatment plans.

Head and neck cancer ranks as the sixth most com-

mon cancer among systemic malignant tumors, with

600 000 new cases occurring every year worldwide [1].

Currently, the main treatments for head and neck can-

cer include surgery, chemotherapy, radiotherapy, and

targeted therapy. Although these treatments are con-

stantly being updated and progressing, the 5-year over-

all survival (OS) rate of patients with head and neck

squamous cell carcinoma (HNSCC) is about 50%, and

this rate has not been improving [2]. Moreover, the 5-

year OS rate of HNSCC patients with distant metasta-

sis is about 20%, indicating a serious threat to human

life and health [3]. Therefore, it is greatly significant to

predict the prognosis of HNSCC patients accurately in

order to guide individualized treatment. Since HNSCC

has high heterogeneity and complex pathogenesis, no

effective prognostic indicator has yet been identified

[4]. This represents an urgent need, specifically, new

biomarkers to predict the long-term survival rate of

patients with HNSCC.
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Long noncoding RNAs (lncRNAs) are RNA tran-

scripts without protein-coding ability. They are longer

than 200 nucleotides, and they play an important role in

regulating gene expression. LncRNAs began to attract the

attention of academia since their function was discovered

in 2007 [5]. Emerging evidence suggests that lncRNA may

be involved in many diseases, and lncRNAs are expected

to become new biomarkers for early diagnosis and prog-

nosis prediction given their conservative secondary struc-

tures [6]. Many studies have shown that lncRNA

expression is changed in gastric cancer, osteosarcoma, liver

cancer, hepatoblastoma, pancreatic cancer, glioma, and

other malignant tumors, suggesting that lncRNAs act as

oncogenes or tumor suppressor genes in the processes of

these malignant tumors [7,8]. So far, there have been few

studies on lncRNAs related to HNSCC, and most have

been studies of single lncRNAs [9]. HOTAIR, MALAT1,

lnc-C22orf32-1, lncTLR4-1, lnc-BCL2L11-3, lnc-

AL355149.1-1, and lnc-ZNF674-1 have been reported to

play pivotal roles in HNSCC development and progres-

sion. However, the underlying molecular mechanisms are

unclear [10–12]. Thus, further studies on the molecular

mechanisms of lncRNAs in the development of HNSCC

need to be conducted.

The Cancer Genome Atlas (TCGA) was created in

2006 in the United States, and it includes 20 000

patient samples and normal control samples as well as

the clinicopathological features of 33 carcinomas,

which are meant to accelerate the comprehensive study

of human cancer gene mapping [13]. Tumor stage and

grade in malignant phenotypes of HNSCC are closely

related to the prognosis of HNSCC, so it is reasonable

to identify prognostic lncRNAs by distinguishing dif-

ferent tumor subtypes of HNSCC [14].

In this study, the lncRNA expression profiles of

HNSCC in the TCGA database were used to identify

lncRNAs related to patient prognosis, and weighted gene

co-expression network analysis (WGCNA) was performed

based on these lncRNAs to screen the tumor phenotype

modules in order to identify the important biological pro-

cesses involved. Finally, we identified lncRNAs related to

survival by using multivariate Cox analysis, established a

polygenic model that could accurately predict the prognos-

tic risk of patients with HNSCC, and evaluated and vali-

dated the model to improve the clinical diagnosis and

treatment of patients with HNSCC.

Materials and methods

Data acquisition and preprocessing

TCGA FPKM RNA sequencing data and the latest clinical

follow-up information were downloaded from the TCGA

portal maintained by the Genomic Data Commons (https://

gdc-portal.nci.nih.gov/). The gene expression and prognos-

tic data of the GSE41613 cohort were obtained from the

Gene Expression Omnibus (GEO) database. We mapped

the probe set IDs to the NetAffx annotation file to extract

lncRNA expression data, and the probe set IDs were con-

verted to Ensembl gene IDs. According to the annotation

files, the probes were initially mapped into Ensembl anno-

tation files (gencode.v28.long_noncoding_rnas.gtf) from the

GENCODE website. Batch normalization was performed

by the combat function in sva package, between the RNA-

seq data from the TCGA and the microarray data from the

GEO database. The samples with no clinical information

or OS < 30 days were removed, as were the normal tissue

samples.

Division of the training and testing data sets

A total of 499 samples from the TCGA database were

divided into training and testing cohorts. To prevent devia-

tion from affecting the stability of subsequent modeling, all

samples were randomly assigned 100 times on the random-

ized in advance. The data were randomly partitioned, 50%

into the training cohort and 50% into the independent test-

ing cohort. The following conditions were used to choose

the most suitable training cohort and testing cohort: distri-

bution of age, clinical stage, follow-up time, and death

ratio. These conditions in the two groups were similar. The

97 samples of the GSE41613 cohort served as an external

validation set.

Screening of prognostic lncRNAs for head and

neck squamous cell carcinoma

The survival package in R [15] was used to identify

lncRNAs in the training cohort by univariate Cox regres-

sion. Genes with a P-value < 0.05 were considered to be

significantly related to OS. We further narrowed the gene

range and built a prognostic model while maintaining high

accuracy. The glmnet package in R [16] was used to per-

form Lasso–Cox regression analysis. The Lasso method is

a compressed estimation. It results in a more refined model

by constructing a penalty function, compressing some coef-

ficients, and setting others to 0. It therefore retains the

advantages of subset shrinkage. It is a biased estimation

for processing data with multicollinearity. It can realize the

selection of variables while estimating parameters and solve

the problem of multicollinearity that is present in regression

analysis.

Multivariate Cox regression analysis was then performed

to determine the genetic risk characteristics and their corre-

sponding coefficients. The risk score of each patient was cal-

culated by multiplying the expression value of the gene by

the corresponding coefficient. Next, patients were divided

into high- and low-risk groups according to the median risk
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score. We used the timeROC package for prognostic classi-

fication of the risk score, and we analyzed the classification

efficiency of OS prediction for 3 and 5 years. The difference

in OS between the high- and low-risk groups was analyzed

by using the Kaplan–Meier method.

Weighted gene co-expression network analysis

of risk score modules

We obtained 168 lncRNAs associated with prognosis

(P < 0.05) according to the results of the univariate Cox

analysis. To identify the co-expression modules of lncRNAs

related to HNSCC prognosis and biomarkers related to

risk score, we built a weighted co-expression network using

the WGCNA package in R [17]. The metabolic network is

a typical sort of scale-free network; in other words, there is

a significant negative correlation between the logarithm of

the connection degree of the node log (k) and the logarithm

of the probability of the node log (P (k)), and the correla-

tion coefficient is > 0.8. Thus, we chose b equal to 6 to

ensure that the network was scale-free.

Next, we converted the expression matrix into the adja-

cency matrix and then converted the adjacency matrix into

the topology matrix. We used the business-linkage hierar-

chical clustering method to cluster genes based on the topo-

logical overlap measure by using the Dynamic Tree Cut

method, and the minimum number of lncRNAs in each

network module was 5. After identifying modules by the

Dynamic Tree Cut method, we calculated an eigenvector

for each module, then performed cluster analysis on the

modules. All the closed modules were merged into a new

module. To calculate the correlations between the genes

and clinical information, conditions were set as follows:

height = 0.25, deepSplit = 2, and minModuleSize = 5.

Finally, we analyzed the significant correlations between

the modules and HNSCC.

We used miRcode [18] (http://www.mircode.org) to

determine the interactions between lncRNA and miRNA.

Then, we searched for the target gene of the miRNA by

using the miRDB [19], miRTarBase [20], and TargetScan

[21] databases. After the lncRNA-miRNA and miRNA–
mRNA pairs were determined, Cytoscape v3.7 software

was used to build the DEmRNA-DElncRNA-DEmiRNA

network. The mRNAs in the ceRNA network directly per-

formed the biological functions, so we carried out Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analyses to understand the

biological functions of the network.

Relationships between risk score and clinical

characteristics

Univariate and multivariate Cox regression analyses in

both the training and validation sets were performed to

determine whether the risk score and clinicopathological

features were independent factors of OS in patients with

HNSCC. The clinicopathological features were considered

independent OS features when the P-value was < 0.05.

To determine whether the risk score obtained by the

model was correlated with clinical characteristics, categori-

cal variables were grouped according to clinical characteris-

tics. We removed samples with incomplete clinical

information and found whether the risk scores of the two

groups were significantly different by using t-tests. The risk

scores of the different groups were significantly different

when the P-value was < 0.05.

Gene set enrichment analysis

GSEA 4.0.3 software [22] (http://software.broadinstitute.

org/gsea/index.jsp) was used for the gene set enrichment

analysis (GSEA). All the samples were divided into high-

and low-risk groups by using the critical value of the train-

ing cohort. GSEA was utilized to identify the potential

functions of the lncRNAs. The annotated gene set

‘c2.cp.kegg.v7.0.symbols.gmt’ was selected as the reference

gene set. A false discovery rate < 0.05 was considered

significant.

External validation

We verified the accuracy of the 8-lncRNA signature based

on the external validation set, and we divided the samples

into high- and low-risk groups by using the median value.

The receiver operative characteristic (ROC) curve was used

to further evaluate the predictive power of the model, and

Kaplan–Meier analysis was used to assess the OS between

the high- and low-risk samples determined by the risk score

model.

Quantitative reverse transcription-polymerase

chain reaction validation of lncRNA expression

Twenty pairs of HNSCC and tumor-adjacent normal tis-

sues collected from the Department of Endodontics, School

and Hospital of Stomatology, China Medical University,

were included for validation. The experiments were under-

taken with the understanding and written consent of each

subject. The study methodologies conformed to the stan-

dards set by the Declaration of Helsinki and were approved

by the China Medical University ethics committee.

Total RNA was extracted by using TRIzol Reagent

(Invitrogen, Carlsbad, CA, USA) following the manufac-

turer’s protocol, and it was reverse-transcribed into cDNA

by using a Superscript Reverse Transcriptase Kit (Trans-

gene, Strasbourg, France). A Super SYBR Green Kit

(Transgene) was used to perform real-time polymerase

chain reaction (PCR) in an ABI7300 Real-Time PCR
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System (Applied Biosystems, Foster City, CA, USA). The

GAPDH gene was used as an internal reference, and the

experiments were repeated in triplicate. The primer pairs

were as follows: LINC00567 forward: ATCTGCCCTC-

CAGTGGATCT, LINC00567 reverse: AGGGGCTTTC-

CCCATTTAGC;

LINC00996 forward: TGGTAGGTCGGGGTAGTCA,

LINC00996 reverse: ACAGTCTCCTTGGGGCATTG;

MTOR-AS1 forward: TCCCATCTTTTCTGCCGGTC,

MTOR-AS1 reverse: GAAATGCTCCCCTCAACCCA;

PRKG1-AS1 forward: ATCTTAGCAGTTGGCAGCGT,

PRKG1-AS1 reverse: GAGCTCTCCACGACGTCAAA;

RAB11B-AS1 forward: AACCGTACCTTGAAAGCCC-

C, RAB11B-AS1 reverse: AGGCTTCTAATACTTTTTG-

GACTTG;

RPS6KA2-AS1 forward: CAAGTCCAAAAAGTATTA-

GAAGCC, RPS6KA2-AS1 reverse: TGGAAGAAAATG-

TTTGCAAGAAGGA;

SH3BP5-AS1 forward: CAAGTCCAAAAAGTATTA-

GAAGCCT, SH3BP5-AS1 reverse: TGGTGTCATGTA-

CAGATTTGGAT;

ZNF451-AS1 forward: ACCGAAGAGGCAGTTATGGC,

ZNF451-AS1 reverse: GCAAATTCTTACTGAACTCAT-

GTTG; and

GAPDH forward: ACCCAGAAGACTGTGGAGG,

GAPDH reverse: TTCTAGACGGCAGGTCAGGT.

Results

Flowchart

To better understand the research idea of this paper,

we drew a flowchart (Fig. 1).

Data preprocessing

We obtained 549 RNA sequencing samples from the

TCGA database. A total of 13 689 lncRNA transcripts

from 499 preprocessed samples with follow-up infor-

mation were selected for further study. Samples were

divided into two groups according to a training

cohort-to-testing cohort ratio of 1 : 1 by random sam-

pling. The final training cohort consisted of 250 sam-

ples, while the final testing cohort consisted of 249

samples. The GSE41613 cohort contained 97 samples.

The clinical information statistics of the three cohorts

after pretreatment are shown in Table 1.

Construction of the prognostic 8-lncRNA model

Univariate Cox analysis was performed to screen

lncRNAs related to prognosis based on the 250 sam-

ples in the training cohort. There were 168 lncRNAs

with a significant difference in OS (log-rank P < 0.05).

The large number of lncRNAs was not conducive to

clinical detection, so we further narrowed the range

while maintaining high accuracy. We used the Lasso

regression to compress the 168 prognostic lncRNAs.

First, we analyzed the trajectory of each independent

variable change (Fig. 2A). The lambda increased grad-

ually, and the number of independent variable coeffi-

cients tending to 0 also increased gradually. We used

threefold cross-validation for model construction.

Through the analysis of each lambda confidence inter-

val (Fig. 2B), we found that the model achieved the

optimum with a lambda value of 0.000251, so 59 genes

at lambda = 0.000251 were selected as target genes.

The coefficients generated by multivariate Cox analy-

sis were used to calculate the risk score of each patient

using the following formula: risk score = gene expres-

sion value multiplied by the corresponding coefficient in

summation. Finally, 8 lncRNA risk score models were

obtained (Table 2), and the 8-mRNA signature formula

was as follows: RiskScore = �3.16*expLINC00567�
2.807*expLINC00996�14.543*expMTOR-AS1+5.184*exp
PRKG1-AS1�0.212*expRAB11B-AS1�24.845*expRPS6KA2-AS1+
0.864*expSH3BP5-AS1�6.759*expZNF451-AS1.

Assessment of the prognostic 8-lncRNA model

To evaluate the effect of the model on HNSCC prog-

nosis, patients in the training cohort were divided into

high- and low-risk groups according to the median risk

score value. Fig. 3A–C shows the distribution of risk

scores based on the 8-lncRNA signature in the training

cohort. Kaplan–Meier analysis results showed that the

OS in the high-risk group was significantly lower than

that in the low-risk group (P < 0.001, Fig. 3E).

We performed ROC analysis on the risk score for

prognostic classification by using the timeROC pack-

age at 3 and 5 years in the training cohort (Fig. 3D).

The area under the curve (AUC) for 3 years was

0.686, and for 5 years, it was 0.709.

Similar results were obtained in the testing cohort;

the AUC for 3 years was 0.679, and for 5 years, it was

0.704. Kaplan–Meier analysis results showed that the

OS in the high-risk group was significantly lower than

that in the low-risk group (P = 0.011, Fig. 4A–E).
We used the same method to calculate the lncRNA

risk signature in the GSE41613 cohort. The results

showed that the 3-year AUC was 0.653, and the 5-year

AUC was 0.749. The OS in the high-risk group was

significantly worse than that in the low-risk group

(P = 0.0038, Fig. 5A–E) according to the median

value. Our results suggested that the 8-lncRNA risk
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model could effectively distinguish the OS of patients

with HNSCC in different cohorts.

To prove the robustness of the signature, we

included the GSE41613 cohort, which was prepro-

cessed according to Data acquisition and preprocess-

ing. We applied the same model and coefficients as the

training cohort to the GSE41613 validation cohort

and analyzed the ROCs of the samples’ risk scores.

The results showed that the 3-year AUC was 0.653,

and the 5-year AUC was 0.749.

We conducted z-score transformation of the risk

scores, dividing the samples with risk scores > 0 into

the high-risk group and those with risk scores < 0 into

the low-risk group (Fig. 6B,D).

Weighted gene co-expression network analysis

of risk score-related modules

Hierarchical clustering analysis was carried out on the

samples, and outliers were eliminated before WGCNA

(Fig. 6A). Based on the Dynamic Cut Tree algorithm,

6 gene modules were obtained (Fig. 6B), and the gray

module included all the genes that could not be clus-

tered. We calculated the correlations between the 6

gene modules and age, sex, stage, risk, and other clini-

cal information (Fig. 6C). We found that the blue,

turquoise, yellow, green, and brown modules were neg-

atively correlated with fustat and positively correlated

with grade, while the blue and turquoise modules were

negatively correlated with stage.

The blue, turquoise, yellow, green, and brown mod-

ules contained 20, 42, 7, 9, and 9 lncRNAs, respec-

tively. The relationships between the rest of the

modules and clinical features were weakly relevant or

irrelevant. The module and clinical feature with the

highest correlation were turquoise module and fustat.

As shown in Fig. 6D, the absolute correlation coeffi-

cient between the turquoise module and fustat was

Pearson Cor = 0.58, with this module showing the

highest correlation with HNSCC, and the correlation

was significant (P < 0.001), so it was selected as the

hub module. The target genes regulated by the

lncRNAs in the hub module are shown in Table S1.

The enrichment analysis results are shown in Fig. 6E.

The module was mainly involved in the biological pro-

cesses of blood vessel development, positive regulation

of catabolic processes, regulation of growth, ubiquitin-

dependent protein catabolic processes, signaling by

interleukins, regulation of cellular response to stress,

pathways in cancer, response to growth factor, nega-

tive regulation of cell differentiation, and the MAPK

signaling pathway.

Fig. 1. Flowchart of the method of this study.
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LncRNA-based risk score is an independent

feature of overall survival for head and neck

squamous cell carcinoma

To determine whether risk scores could be used as

independent OS indicators, univariate and multivariate

Cox regression analyses were performed in the training

cohort. Univariate Cox analysis results showed that

the 8-lncRNA risk score was significantly associated

with worse prognosis, with a hazard ratio (HR) of

1.700 (P < 0.001, 95% CI: 1.284–2.251, Table 3).

Moreover, grade (HR = 1.759, 95% CI: 1.068–2.898,
P = 0.027) and N stage (HR = 1.506, 95% CI: 1.054–
2.152, P = 0.025) were also significantly correlated

with OS. We then included all variables in the multi-

variate Cox analysis. The 8-lncRNA risk score

remained a risk factor for worse OS in patients with

HNSCC (HR = 1.794, 95% CI: 1.255–2.565,
P = 0.001). Thus, it was suggested that the 8-lncRNA

signature was an independent OS factor for HNSCC.

Gene set enrichment analysis

GSEA results indicated that in the training cohort, the

high-risk group was mainly enriched in OLFACTOR-

Y_TRANSDUCTION, while the low-risk group was

mainly enriched in NATURAL_KILLER_CELL_ME-

DIATED_CYTOTOXICITY, PHOSPHATIDYLINO-

SITOL_SIGNALING_SYSTEM, FC_GAMMA_R_-

MEDIATED_PHAGOCYTOSIS, FC_EPSILON_RI_

Table 1. Clinical information statistics of three cohorts after

preprocessing.

Characteristic

TCGA training

cohort

TCGA testing

cohort GSE41613

Survival

status

Alive 141 141 46

Dead 109 108 51

Stage I/II 43 51 41

III/IV 171 166 56

Age < 60 102 118 50

>= 60 148 131 47

Sex F 74 59 31

M 176 190 66

Grade G1 43 18 –

G2 133 165 –

G3 64 55 –

G4 0 2 –

GX 9 7 –

T T0 0 1 –

T1 24 21 –

T2 59 72 –

T3 45 51 –

T4 92 79 –

TX 17 16 –

N N0 87 83 –

N1 33 32 –

N2 71 93 –

N3 4 3 –

NX 40 29 –

M M0 95 90 –

M1 0 1 –

MX 29 32 –

Total – 250 249 97

Fig. 2. (A) The Lasso regression model and cross-validation method were used to screen lncRNAs. When the number of variables was 59,

we obtained the minimum partial likelihood deviance. (B) Regression coefficient graph of lncRNAs in the Lasso regression model.
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SIGNALING_PATHWAY, B_CELL_RECEPTOR_

SIGNALING_PATHWAY, PRIMARY_IMMUNO-

DEFICIENCY, T_CELL_RECEPTOR_SIGNALING_

PATHWAY, CHEMOKINE_SIGNALING_PATH-

WAY, NON_SMALL_CELL_LUNG_CANCER,

VASCULAR_SMOOTH_MUSCLE_CONTRACTION,

CELL_ADHESION_MOLECULES_CAMS, ANTI-

GEN_PROCESSING_AND_PRESENTATION, and

ACUTE_MYELOID_LEUKEMIA (Fig. 7A–F).

Quantitative reverse transcription-polymerase

chain reaction validation of the expression levels

of the 8 lncRNAs

The results of quantitative reverse transcription-PCR

showed that PRKG1-AS1 and SH3BP5-AS1 were sig-

nificantly upregulated in HNSCC samples compared

with normal samples. In addition, LINC00567,

LINC00996, MTOR-AS1, RAB11B-AS1, RPS6KA2-

AS1, and ZNF451-AS1 were significantly downregu-

lated in tumor samples compared with normal samples

(Fig. 8).

Discussion

Adverse prognostic factors, such as tumor stage,

tumor grade, tumor size, lymph node metastasis, and

chemotherapy drug resistance, are considered to be

closely related to HNSCC risk [23]. In addition,

mRNAs and miRNAs as biomarkers to predict the

risk of HNSCC recurrence have been widely applied in

studies [24,25]. However, there are few studies of

lncRNAs as prognostic biomarkers for HNSCC, and

the biological mechanisms of recurrence are unclear.

Table 2. 8-lncRNA multivariate cox analysis.

id coef HR HR.95L HR.95H P-value

LINC00567 �3.16 0.907 0.831 0.990 0.029

LINC00996 �2.807 0.865 0.721 1.038 0.118

MTOR-AS1 �14.543 0.665 0.321 1.377 0.272

PRKG1-AS1 5.184 1.784 0.858 3.708 0.001

RAB11B-AS1 �0.212 0.809 0.669 0.978 0.029

RPS6KA2-AS1 �24.845 0.32 0.125 0.820 0.018

SH3BP5-AS1 0.864 2.372 1.156 4.866 0.019

ZNF451-AS1 �6.759 0.623 0.420 0.922 0.018

Fig. 3. (A) Distribution of risk scores of patients with HNSCC in the training cohort. (B) Risk scores and survival states of patients with

HNSCC in the training cohort. (C) Heat map of risk scores based on lncRNA expression in patients with HNSCC in the training cohort. (D)

ROC curve of the prognostic model constructed in the training cohort. (E) Kaplan–Meier survival curve of high- and low-risk patients’ OS

rates in the training cohort.
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Traditional studies usually focus on the effect of a

certain lncRNA on cancer. Because the occurrence

and development of cancer are very complex, with the

involvement of multiple genes and abnormal signaling

pathways, studying the effect of a single gene on can-

cer has limitations. At present, many data make it pos-

sible to understand and study tumors at the genome

level. The establishment of the TCGA database, the

GEO database, and other large cancer databases has

enabled researchers to obtain large gene expression

profiles. Therefore, with the help of several algorithms,

we established a risk score to quantify the relation-

ships between lncRNAs and prognosis in HNSCC,

and we clarified the interactions between prognosis,

clinical features, and lncRNAs in HNSCC.

We selected 250 HNSCC samples as the training

cohort and established an 8-lncRNA prognostic model

by using univariate, multivariate, and Lasso–Cox anal-

yses. HNSCC patients were divided into high- and

low-risk groups according to the median risk score,

and the high-risk group was found to have worse

prognosis than the low-risk group.

In the training set, the prognostic diagnostic effi-

ciency values of the 3- and 5-year ROCs were 0.686

and 0.709, respectively. In the internal validation set,

the prognostic diagnostic efficiency values of the 3-

and 5-year ROCs were 0.679 and 0.704, respectively.

In the independent verification set, the prognostic

diagnostic efficiency values of the 3- and 5-year ROCs

were 0.653 and 0.749, respectively. In the 5-year prog-

nostic classification, the average ROC of the model

was > 0.7. Therefore, our lncRNA signature was more

suitable for predicting the 5-year survival rate of

patients compared with the 3-year survival rate.

The results in the testing cohort and external valida-

tion set were consistent with those in the training

cohort, suggesting that our 8-lncRNA signature had

stable robustness and could well distinguish high-risk

patients from low-risk patients.

We identified a co-expressed lncRNA module closely

related to survival status via WGCNA, and GO analy-

sis results showed that the module was mainly

involved in the biological processes of negative regula-

tion of cell differentiation and the MAPK signaling

pathway. Univariate and multivariate Cox regression

analyses were conducted in the training and testing

cohorts, and the results suggested that the 8-lncRNA

risk score could be used as an independent prognostic

Fig. 4. (A) Distribution of risk scores of patients with HNSCC in the testing cohort. (B) Risk scores and survival states of patients with

HNSCC in the testing cohort. (C) Heat map of risk scores based on lncRNA expression in patients with HNSCC in the testing cohort. (D)

ROC curve of the prognostic model constructed in the testing cohort. (E) Kaplan–Meier survival curve of high- and low-risk patients’ OS

rates in the testing cohort.
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marker. The experimental results of PCR showed that

compared to normal samples, PRKG1-AS1 and

SH3BP5-AS1 were significantly upregulated while

LINC00567, LINC00996, MTOR-AS1, RAB11B-AS1,

RPS6KA2-AS1, and ZNF451-AS1 were significantly

downregulated in tumor tissues.

Decreased LINC00996 expression is associated with

the occurrence and metastasis of colorectal cancer, and

LINC00996 depletion is associated with poor progno-

sis in patients with colorectal cancer, suggesting that

LINC00996 may adjust the JAK-STAT, NF-jB, HIF-

1, TLR, and PI3K-AKT signaling pathways to sup-

press tumor occurrence and metastasis [26]. High

PRKG1-AS1 expression in oral cancer is predictive of

adverse outcomes [27]. RAB11B-AS1 is significantly

reduced in osteosarcoma, and it is associated with the

metastasis and poor prognosis of osteosarcoma.

Reduced RAB11B-AS1 can significantly promote the

proliferation, migration, and invasion of osteosarcoma

cells; prevent the apoptosis of osteosarcoma cells; and

lead to reduced cisplatin susceptibility. Moreover,

upregulated RAB11B-AS1 can inhibit human osteosar-

coma cell attack [28]. SH3BP5-AS1 is significantly

upregulated in neuroblastoma [29]. MTOR-AS1 is

associated with cryptorchidism [30]. RPS6KA2-AS1 is

considered a potential biomarker of acute stroke and

is involved in the neurotrophin signaling pathway [31].

To date, there have been no relevant studies on

LINC00567, MTOR-AS1, ZNF451-AS1, or

RPS6KA2-AS1 in cancer.

To investigate the mechanisms of the 8 lncRNAs in

the progression of HNSCC, GSEA was performed.

The results showed that the low-risk group was mainly

enriched in natural killer cell-mediated cytotoxicity

and the phosphatidylinositol signaling system. Natural

killer cells, which are a special type of white blood cell,

can specifically recognize and destroy tumor cells [32].

Based on this mechanism, natural killer cell-mediated

Fig. 5. (A) Distribution of risk scores of patients with HNSCC in the external validation cohort. (B) Risk scores and survival states of patients

with HNSCC in the external validation cohort. (C) Heat map of risk scores based on lncRNA expression in patients with HNSCC in the

external validation cohort. (D) ROC curve of the prognostic model constructed in the external validation cohort. (E) Kaplan–Meier survival

curve of high- and low-risk patients’ OS rates in the external validation cohort.
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Fig. 6. (A) Hierarchical cluster analysis to remove outliers. (B) Gene clustering dendrogram according to the adjacency-based dissimilarity of

hierarchical clustering. The color piece below represents the module identified by the Dynamic Cut Tree method. (C) Heat map of

correlations between the module and clinical characteristics. The number represents the correlation in the color piece, and the P-value is

below. Red is positively correlated, and green is negatively correlated. (D) Chart of the results of the GO and KEGG enrichment analyses of

the turquoise module. The length of the bar represents the number of genes enriched, and the names on the right are the pathway names.

(E) Scatter diagram of the correlations between the turquoise module genes and fustat.

Table 3. Univariate and multivariate cox analyses of 8-gene signature in training cohort.

Variables

Univariable analysis Multivariable analysis

HR

95% CI of HR

P HR

95% CI of HR

PLower Upper Lower Upper

Age 1.005 0.978 1.033 0.697 0.996 0.964 1.029 0.817

Gender 0.744 0.376 1.472 0.396 0.515 0.248 1.070 0.075

Grade 1.759 1.068 2.898 0.027 1.489 0.848 2.614 0.166

Stage 1.577 0.969 2.568 0.067 0.809 0.361 1.814 0.607

T 1.295 0.917 1.830 0.142 1.342 0.769 2.342 0.300

M 0.726 0.254 2.071 0.549 0.462 0.136 1.572 0.216

N 1.506 1.054 2.152 0.025 1.433 0.928 2.215 0.105

RiskScore 1.700 1.284 2.251 0.000 1.794 1.255 2.565 0.001
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tumor therapy has been developed clinically. Essen-

tially, this means injecting natural killer cells into the

body to destroy tumor tissues, as shown in a study in

which tumor cells were removed from the bodies of

patients with leukemia [33]. The phosphatidylinositol

signaling system is a complex cellular regulatory sys-

tem composed of enzymes, phospholipid messengers,

and their binding proteins, and it plays an important

regulatory role in cell growth, proliferation, survival,

and cell movement [34]. Mutations in the enzyme that

activates the phosphatidylinositol messenger lead to

high activation of the phosphatidylinositol signaling

system, resulting in abnormal cell proliferation, endo-

cytosis, cell metastasis, and even tumorigenesis [35].

The phosphatidylinositol signaling system plays an

important role in tumor proliferation and metastasis,

so the components of the phosphatidylinositol system

have the potential to become good clinical therapeutic

targets. More and more drugs are on the pathway

toward clinical use, for example, the phosphatidylinos-

itol 3 kinase (PI3K) inhibitor wortmannin. Wortman-

nin and LY294002 can quickly target PI3K, inhibit

tumor AKT phosphorylation, and prevent the activa-

tion of downstream growth signals [36,37]. The mTOR

inhibitor rapamycin targets mTOR and is highly effec-

tive in treating breast cancer, cervical cancer, and

HNSCC [38–40]. The lower risk of HNSCC recurrence

in the low-risk group of this study may be related to

the above mechanisms.

The study has several limitations. First, the existing

clinical information was limited. Only tumor stage

and grade data were available, and information about

other important characteristics, such as tumor size,

chemotherapy drug resistance, lymph node metastasis,

and vascular invasion was missing, which may have

affected the accuracy of the lncRNA risk score

model. In addition, we predicted possible mecha-

nisms, but lncRNA-specific functions in HNSCC

remain unclear, so more experiments are needed for

verification.

In short, we constructed an 8-lncRNA signature as

a prognostic factor of HNSCC through Lasso and

multivariable Cox analyses. GSEA results showed that

the lncRNAs affected the progress of HNSCC through

natural killer cell-mediated cytotoxicity and the phos-

phatidylinositol signaling system.

The lncRNA-based risk score prognostic model was

used to evaluate patients’ prognostic scores. When a

Fig. 7. GSEA results based on the training cohort samples.
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patient’s risk score was > 0, the patient was considered

high-risk. Clinicians can use such information to change

patients’ treatment plans according to the predicted

results of the model in order to realize the individualized

treatment of patients with HNSCC. Strategies should be

developed to prevent or detect HNSCC recurrence early

in high-risk groups. Therefore, high-risk groups should

be followed more frequently.
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