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Abstract: The consumption of pears has increased, thanks not only to their delicious and juicy flavor,
but also their rich nutritional value. Traditional methods of detecting internal qualities (e.g., soluble
solid content (SSC), titratable acidity (TA), and taste index (TI)) of pears are reliable, but they are
destructive, time-consuming, and polluting. It is necessary to detect internal qualities of pears
rapidly and nondestructively by using near-infrared (NIR) spectroscopy. In this study, we used a
self-made NIR spectrum detector with an improved variable selection algorithm, named the variable
stability and cluster analysis algorithm (VSCAA), to establish a partial least squares regression (PLSR)
model to detect SSC content in snow pears. VSCAA is a variable selection method based on the
combination of variable stability and cluster analysis to select the infrared spectrum variables. To
reflect the advantages of VSCAA, we compared the classical variable selection methods (synergy
interval partial least squares (SiPLS), genetic algorithm (GA), successive projections algorithm (SPA),
and bootstrapping soft shrinkage (BOSS)) to extract useful wavelengths. The PLSR model, based
on the useful variables selected by SiPLS-VSCAA, was optimal for measuring SSC in pears, and
the correlation coefficient of calibration (Rc), root mean square error of cross validation (RMSECV),
correlation coefficient of prediction (Rp), root mean square error of prediction (RMSEP), and residual
predictive deviation (RPD) were 0.942, 0.198%, 0.936, 0.222%, and 2.857, respectively. Then, we
applied these variable selection methods to select the characteristic wavelengths for measuring the
TA content and TI value in snow pears. The prediction PLSR models, based on the variables selected
by GA-BOSS to measure TA and that by GA-VSCAA to detect TI, were the best models, and the
Rc, RMSECV, Rp and RPD were 0.931, 0.124%, 0.912, 0.151%, and 2.434 and 0.968, 0.080%, 0.968,
0.089%, and 3.775, respectively. The results showed that the self-made NIR-spectrum detector based
on a portable NIR spectrometer with multivariate data processing was a good tool for rapid and
nondestructive analysis of internal quality in pears.

Keywords: variable selection methods; variable stability and cluster analysis algorithm (VSCAA);
internal quality; near-infrared (NIR) spectroscopy; pears

1. Introduction

Pears are one of the most popular fruits in the world. Pears are typically used as
food; not only are they sweet, juicy, and delicious, with some acidity, but they are also
rich in nutrition and contain a variety of vitamins and cellulose. The tastes and textures of
different kinds of pears are different. More than 60% of the world’s pears are produced
in China [1]. Consumers pay attention to the external quality of pears, including size,
color, and shape, as well as to the internal quality of pears, including the sugar content,
acidity, and taste. After harvest, the detection and grading of the fruit’s internal quality
always plays an important role in its commercialization [2]. The soluble solid content (SSC)
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not only affects the internal quality and price of fresh fruit, but also determines the fruit
maturity and harvest time [2]. The titratable acidity (TA) is often used to estimate the
ripening time of pears: as fruits get closer to ripening time, their acidity decreases and
their taste tends to be sweeter. The taste index (TI) is defined as the ratio of SSC to TA. This
index can be used to determine the taste and ripening stage of pears. Traditional methods
of detecting internal qualities of fruit are reliable, but they are destructive, time-consuming,
and polluting. Thus, it is impossible for these traditional chemical measurement methods
to detect internal quality of fruit rapidly and nondestructively. Therefore, the conventional
physicochemical analysis methods currently used to evaluate the internal quality of fruit
do not meet consumers’ requirements for fruit with consistency and high quality.

Over the past few decades, various studies have been conducted using near-infrared
(NIR) or visible-NIR (vis-NIR) spectroscopy as rapid and nondestructive methods for de-
termination of the internal quality in fresh fruit. Li et al. [3] used the vis-NIR spectroscopy
spectrometric technique to measure the SSC and firmness of pear fruit in the wavelength
range of 400–1800 nm. The prediction results showed that the correlation coefficient of
prediction (Rp), root mean square error of prediction (RMSEP), and residual predictive
deviation (RPD) were 0.9486, 0.3244%, and 3.1598 for SCC and 0.8955, 1.1077%, and 2.2469
for firmness. These results showed that vis-NIR spectroscopy could be applied as a fast
and accurate alternative method for the nondestructive determination of SSC and firmness
of pears. The research team first used the long-wave infrared hyperspectral imaging in
the wavelength of 1000–2500 nm to measure the SSC in pears [4]. Results of the Monte
Carlo-uninformative variable elimination-successive projections algorithm-partial least
square (MC-UVE-SPA-PLS) model using 18 selected characteristic variables were an Rp of
0.88 and RMSEP of 0.35. The team also used the NIR and portable vis-NIR spectroscopy
for nondestructive determination of SSC in pears, combined with an informative variable
selection algorithm, and two calibration algorithms, including linear regressions of multiple
linear regression (MLR) and nonlinear regression of least-square support vector machine
(LS-SVM), such as MC-UVE-SPA-MLR [5] and MC-UVE-SPA-LS-SVM [6], were used for
measurement. They also established multicultivar models for the determination of SSC in
pears [2] and conducted a comparative study for the quantitative determination of SSC,
pH, and firmness of pears by vis-NIR spectroscopy [7]. Tian et al. [8] developed a fruit
surface feature classification and multivariate regression analysis for the nondestructive
prediction of SSC in pears, based on the vis-NIR transmission spectra of “Korla” pears, with
a portable spectrometer instrument; the Rp and RMSEP were 0.9368 and 0.5256%, respec-
tively. Lee and Han [9] nondestructively detected the sugar content of Korean pears using
NIR diffuse-reflectance spectroscopy, and the prediction accuracy was evaluated to be about
0.24%. Wang et al. [10] used the vis-NIR spectroscopy combined with chemometric meth-
ods for the nondestructive detection of the juiciness of pears, and the external verification
determination coefficient (Rv) was 0.93, and the root mean square error of cross validation
(RMSECV) was 0.97%. Yu et al. [11] used optical properties and diffuse reflectance in the
900–1700 nm spectral region for prediction and comparison of models for SSC determina-
tion in “Ya” pears. Xu et al. [12] developed an application for the online determination of
sugar content in pears based on variable selection in vis- and NIR spectra, with Rv = 0.880
and RMSEP = 0.459% for the validation set. Rittiron et al. [1] used NIR spectroscopy in the
short wavelength region (700–1100 nm) for rapid and nondestructive detection of water-
core and sugar content in Asian pears for commercial trade. Travers et al. [13] predicted and
compared preharvest pear dry matter (DM) and SSC, based on two near-spectral ranges
(680–1000 nm and 1100–2350 nm). Models based on longer NIR spectra were more success-
ful for both parameters (DM/SSC: Rv = 0.78–0.84; RMSECV = 0.78/0.44; latent variables
(LVs) = 6/7). Adebayo et al. [14] used absorption and reduced scattering coefficients based
on the vis- and shortwave (SW)-NIR wavelength range for nondestructive analysis of fruit
flesh firmness and SSC in pears. Nicolaï et al. [15] used time-resolved and continuous wave
NIR reflectance spectroscopy to predict the SSC and firmness of pears. Sun et al. [16] used
online vis- and NIR spectroscopy for simultaneous measurement of brown core and SSC in
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pears. Wang et al. [17] developed multicultivar models to predict the SSC and firmness
of European pears (Pyrus communis L.) using portable vis-NIR spectroscopy. Yu et al. [18]
developed a deep learning method for predicting firmness and SSC of postharvest Korla
fragrant pears using vis-NIR hyperspectral reflectance imaging. Choi et al. [19] used a
portable, nondestructive tester, integrating vis-NIR reflectance spectroscopy, to detect the
sugar content in Asian pears. Passos et al. [20] nondestructively detected soluble solids
content for “Rocha” pears based on vis-SWNIR spectroscopy under real-world sorting
facility conditions. Liu et al. [21] used NIR diffuse reflectance spectroscopy combined
with variable selection algorithms for optimized prediction of sugar content in snow pears.
Sheng et al. [22] nondestructively measured lignin content in Korla fragrant pears, based
on NIR spectroscopy, and the Rp, RMSEP, and RPD were 0.87, 1.36%, and 2.03, respectively.
Fan et al. [23], Zhang et al. [24], Lee et al. [25], and Li et al. [19,26] used vis-NIR and
NIR hyperspectral imaging technology for fast and nondestructive prediction of SSC and
firmness, based on the competitive adaptive reweighted sampling-successive projections
algorithm-partial least square (CARS-SPA-PLS) models, and the Rp and RMSEP of the
prediction sets were 0.876 and 0.491% for SSC and 0.867 and 0.721% for firmness. They
also used this technology for the prediction of internal sugar content in Dangshan pears,
and the Rp and RMSEP of CARS-PLS were 0.8971 and 0.3937%, and they were 0.8969 and
0.3482% for (genetic algorithm: GA) GA-SPA-PLS. They used the technology to detect
the physical damage of pears as well as for the identification of the type of wax on pears,
with an identification accuracy of 99.07% for calibration and 95.83% for the prediction
sets. They used the technology (400–1000 nm) for nondestructive variety discrimination
and prediction of SSC and firmness of pears, with a correlation coefficient (r) of 0.9977 for
firmness and 0.9924 for SSC.

Qualitative and quantitative analysis techniques of NIR spectroscopy have been
widely applied to rapidly and nondestructively detect external and internal quality of fruit
and vegetables because of their characteristics of fast response speed, multiple analysis
components, and accurate prediction [27,28]. Modern spectroscopy instrumentation is
composed mainly of optical and electronic components, however, which are easily affected
by the surrounding environment. As a result, thousands of spectral data obtained by spec-
trometers inevitably contain useless interference information. The thousands of spectral
data are too complicated to establish a calibration and prediction model, and the calibration
process is quite time-consuming, which is even worse than the prediction performance
of the model. Therefore, variable selection is an essential step before establishing the
calibration and prediction models [29–32].

The partial least square regression (PLSR) model has been widely established for
its calibration and prediction analysis in spectroscopy technology because of its simple
operation and high prediction accuracy. Variable selection is an important step in the
multivariate model, because the predictive ability of the model can be increased, and the
complexity of the model can be reduced [33]. The regression coefficient β is an important
index parameter in the PLSR model, and several classical variable selection algorithms
based on this regression coefficient include Monte Carlo non-information variable elimina-
tion (MCUVE), competitive adaptive reweighted sampling (CARS), and bootstrapping soft
shrinkage (BOSS). Useful variables are selected according to the stability of each variable
in the MCUVE methods [29,32–34]. A large number of sample spaces can be generated
using MCUVE, and PLSR models are built for each sample space. The stability of each
variable can be obtained according to the mean value and standard deviation of PLSR
regression coefficient. When the stability of a variable is less than the threshold, the variable
is considered to be useless and is eliminated. The variables that are selected are still large
in the MCUVE application, however, and the value of threshold has a significant impact on
the results of variable selection. In the CARS algorithm, variables can be selected according
to the absolute value of the regression coefficient [10,29,31,32,34–36]. The variables with
smaller absolute values of the regression coefficient must be removed. The absolute value
of the regression coefficient will change, however, with the change of the sample space,
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which can result in the eliminated variables containing useful variables. The BOSS algo-
rithm [29,32] is a kind of spectral line selection method based on variable space. Submodels
are established based on a large number of variable spaces generated by the weighted
bootstrap sampling (WBS) method and the Monte Carlo algorithm. PLSR models are
built based on the submodel, and then, the absolute value of the regression coefficient
is calculated and normalized to update the weight of each variable. The variables with
bigger values of weight have a greater chance of being selected in the next iteration. The
BOSS algorithm, however, considers only a characteristic factor “regression coefficient” in
the variables space. Therefore, the selected variables may not be optimal. In light of the
variable selection method problems, we proposed a variable selection method based on
the combination of variable stability and cluster analysis algorithm (VSCAA) to select the
infrared spectrum variables in this work.

In summary, development of a nondestructive method combined with a variable
selection algorithm for the detection of the SSC, TA, and TI properties of pears is necessary.
Therefore, the objectives of this study were as follows: (1) set up an ultra-compact NIR
spectroscopy system to collect the spectral data; (2) preprocess the raw spectra by different
preprocessing methods to eliminate the light-scattering effects; (3) utilize and compare
SiPLS, SPA, BOSS, GA, and VSCAA methods as well as their combination to select the fea-
ture variables and enhance the model’s prediction ability; and (4) evaluate the performance
of the PLS model based on the independent verification datasets.

2. Materials and Methods
2.1. Sample Collection

We conducted this experiment in the summer of 2020 in a Spectral Analysis Laboratory
at Southwest University, Chongqing, China. We purchased a total of 195 snow pears, a
representative China pear, from a local fruit market for this research. To ensure the accuracy
of the experiment, pears are washed, numbered, and then stored in an ice box (4 ◦C, 75%
relative humidity (RH)) for 24 h to avoid moisture loss before the experiment was carried
out [37]. Figure 1 shows that three measuring points (P1, P2, and P3) around the equator of
the pear were set as a 120◦ angular distance.

Figure 1. The diagram of the three measuring points (P1, P2, and P3), which were marked around
the equator of pear and set as a 120◦ angular distance.

2.2. Spectral Acquisition

We established an ultra-compact NIR spectroscopy system for spectral measurement,
as shown Figure 2. The system mainly consisted of a light source, NIR spectrometer, two-
dimensional adjustment platform, and lifting bracket. The Vivo Light Source (Ocean Insight,
Largo, FL, USA) consisted of four 5-watt tungsten halogen lamps and was adjusted at an
angle of approximately 45◦ to verify a unit’s lighting, which is often applied to measure
the diffuse reflection spectral of a sample. In this study, we used an NIR spectrometer
(NIRQuest512-2.5, Ocean Insight) with a range of 900–2500 nm and a resolution of 6.3 nm
for the core part of the detection system to collect spectra. A coated quartz focusing
lens (74-UV, Ocean Insight) with a diameter of 5 mm and focal length of 10 mm was
coupled to the front of the spectrometer to concentrate the light toward the entrance of the
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spectrometer and achieve a larger photosensitive range. We used a self-designed lifting
bracket with a two-dimensional adjustment platform and a bracket to adjust the sample
location in the optical sensing system to avoid ambient light interference. The spectral
acquisition system can achieve the acquisition of NIR spectra from 900 to 2500 nm. In order
to make the focusing lens closer to the sample surface, the pear was put onto the sample
tray, and the vertical and horizontal positions of the bracket were adjusted. The integration
time of the NIR spectrometer was set to 0.01 s and the average number of scan times was 5.
We repeated this operation three times, which was accompanied by rotating the sample
120◦. Therefore, each sample spectrum was measured three times for averaging.

Figure 2. The near-infrared (NIR) spectroscopy system for spectral measurement. (a) Structure diagram of detector.
(b) Design drawing of detector.

2.3. Reference Value of SSC, TA, and TI
2.3.1. Reference Measurements of SSC

We used a fully automatic desktop digital refractometer (RX-5000i-plus, ATAGO, Japan)
to measure the SSC reference value of pears immediately after spectra collection [38–40]. The
measurement range of the refractometer was 0–100% Brix, and the accuracy was ± 0.01%.
When measuring the SSC value, pear juice was squeezed out of each sample and dripped
onto the mirror of the refractometer using a pipette. We then detected and recorded the SSC
value. Three SSC values were tested to obtain the average value at each marked point of each
sample (Table 1).

Table 1. Statistical results of lignin content in snow pears.

Parameters No. of Samples Unit Range Mean ± SD SEL

SSC 195 ◦Brix 8.04~11.78 9.92 ± 0.78 0.06
TA 195 % 0.0851~0.1480 0.1194 ± 0.0102 0.0007
TI 195 - 68.34~100.82 83.4 ± 6.06 0.43

SSC: soluble solid content; TA: titratable acidity; TI: taste index; SD: Standard deviation; SEL: Standard error
of laboratory.

2.3.2. Reference Measurements of TA

We determined the TA value using a traditional titration method according to 942.15,
described by the Association of Official Analytical Chemists (AOAC) [41]. We diluted 10 g
of pear fruit in 50 mL deionized water and added 0.5 mL phenolphthalein (10 g/L, w/v),
which was used as an indicator. We used 0.1 mol/L NaOH solution (standardized) to
neutralize the acidity and stopped the titration when a pink color persisted for 30 s. We then
measured and recorded the TA value. We used the average value for three measurements
at each marked point in the latter analysis (Table 1).
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2.3.3. Reference Measurements of TI

We defined TI as the ratio of SSC to TA; see Equation (1):

VTI =
VSSC

VTA
(1)

where VTI is the value of TI, Vssc is the value of SCC, and VTA is the value of TA. For
the convenience of calculation, we made a global numerical transformation of VTI; see
Equation (2):

nVTI = VTA × PTA + VTI × 0.119 × PTI (2)

where nVTI is new value of VTI, and this value participated in the modeling in the later data
processing. PTA is the percentage of VTA in the range of 0–100%, and PTI is the percentage
of VTI in the range of 0–100%, which ensures that the sum of PTA and PTI is 100%. In this
work, the optimal PLSR model had the best performance base on the nVTI by setting a
PTA of 90% and PTI of 10%, with a (Rc) of 0.962, RMSEC of 0.084%, Rp of 0.984, RMSEP
of 0.063%, and RPD of 5.14, respectively. Therefore, the latter spectral preprocessing and
variable selection are based on the following Equation (3):

nVTI = VTA × 90% + VTI × 0.119 × 10% (3)

The SSC, TA, and TI of all 195 pears were 8.04–11.78◦Brix, 0.0851–0.1480%, and
68.3–100.8, respectively. As shown in Figure 3, the concentration of the sample was in
accordance with the normal distribution. The SSC distribution of the calibration set and
the prediction set are given in Table 1.

Figure 3. The SSC content distribution of all pears. a.u: arbitrary unit. SSC: soluble solid content; TA: titratable acidity; TI:
taste index.

2.4. Spectrum Pre-Processing

The main spectra preprocessing methods [10] include baseline correction, scattering
correction, smoothing processing, and scale scaling. Baseline correction is used to deduct
the influence of instrument background or drift on signal, including first derivative (D1) and
second derivative (D2). Scattering correction is used to eliminate the influence of scattering
caused by uneven particle distribution and different particle size on the spectrum, including
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multiplicative scatter correction (MSC) and standard normal variate (SNV) transformation.
Smoothing processing is used to eliminate the random noise in the spectrum signal and
improve the signal-to-noise ratio of the sample signal, including moving average smoothing
(MAS) and Savitzky–Golay (SG) smoothing. Scale scaling is used to eliminate the adverse
effects caused by too large scale differences of data, including centralization, Pareto scaling,
and maximum and minimum normalization. In this work, we used MAS (smoothing
points = 11), normalization, MSC, SNV, D1, and D2 (polynomial order = 2, smoothing
points = 11) methods to pretreat the raw NIR spectra using the software Unscrambler X v.
10.4 (Camo Analytics, Oslo, Norway).

2.5. Description of VSCAA

We divided the variables into sample space and variable space and calculated the
stability of each variable in the sample space and the frequency of each variable in the
variable space. We used the WBS to divide the variables into useful variables and useless
variables, according to the stability of each variable, and applied the exponential decay
function to eliminate the useless variables with low frequency in the variable space. To
realize the selection of variables, this method was named VSCAA.

2.5.1. Definition of Variable Stability in the Sample Space

We assumed that the NIR spectra data matrix of sample is Xn×p, the number of
samples is n, and the number of spectral lines (variable) is p in the matrix X, and that n << p;
y is the concentration information matrix of the analysis sample. When the components
contained in the sample are 1, y is the concentration information vector, and e is random
error. The relationship between the spectral matrix and concentration information during
the establishment of PLS regression model can be expressed as follows:

y = Xβ+ e (4)

where β is the vector of the regression coefficient, β = [β 1,β2, · · · ,βp

]T
. The n1 samples

were selected randomly from n samples as the sample space using the Monte Carlo algo-
rithm. We repeated the operation M times and got the M sample spaces. The matrix of the
regression coefficient βp×M was obtained after the PLS regression model was established
for each sample space; see Equation (4):

Si =

∣∣∣∣mean(βi1,βi2 · · ·βiM)

std(βi1,βi2 · · ·βiM)

∣∣∣∣ (5)

where mean ( . . . ) is the mean value of variables’ regression coefficient, std ( . . . ) is the
standard deviation of each variable’s regression coefficient, and Si is the stability of the
i-th variable.

2.5.2. Variable Selection Method: VSCAA

When selecting characteristic variables, the VSCAA algorithm should consider not
only the stability of each variable’s regression coefficient, but also the frequency of variables.
When the stability of a variable is smaller, it has a higher probability of being considered a
useless variable. At this time, if the frequency of the variable is also smaller, the variable
will be forced to be eliminated. When the loop reaches the set number of times, the iteration
will stop.

The specific implementation steps of the VSCAA algorithm were as follows:

Step 1

At the beginning of the iteration, the initial number of the variable was equal to the
number of the wavelengths of the sample, and the number was p. The n1 samples were
selected randomly from the n samples as the sample space, and the stability of each sample
Si was calculated. The p samples were divided into useful variable and useless variable
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according to the value of Si, by the weighted bootstrap sampling method. Note that the
number of useful variables was about 0.632 times the length of the variable.

Step 2

The number of samples n was constant. The Monte Carlo algorithm was applied
to randomly select P1 variables from p variables. We repeated the previous operation
W times and got W variable spaces. The PLS regression model was established for each
variable space and the RMSE was obtained for each PLSR model. The αW models with
smaller RMSE values were chosen from the W models, and the frequency of each variable
fi was obtained.

Step 3

The exponential decay function was used to determine the remaining variables after
each iteration. The formula of the exponential decay function is as follows:

ri= αe−ki (6)

where ri is the number of the remaining variables,

α = (
p
2
)

1
N−1 (7)

k = ln(
p
2
)

1
N−1 /(N − 1) (8)

where i is the i-th loop, and N is the number of loops. When the number of remaining
variables was greater than the number of useful variables in step 1, then the variables
with low frequency in step 2 were removed from the useless variables. When the number
of remaining variables was less than the number of useful variables, then all of the use-
less variables should have been removed and the variables with low stability would be
eliminated from the useful variables.

Step 4

The PLS regression model was established based on the remaining variables after each
iteration. The RMSE value was obtained and recorded in each iteration; the value of p was
updated at the same time, so p = r and i = i + 1.

Step 5

If i ≤ N, it returned to step 1 for the next iteration; otherwise, it executed step 6.

Step 6

The combination of variables corresponding to the minimum RMSE value was selected
as the optimal variables.

2.6. Performance Evaluation of Methods

The predictive power and the optimal number of LVs of the different models was as-
sessed using Monte Carlo cross-validation (MCCV). Compared with other cross-validation
methods, the credibility of model evaluation can be improved by using the random sam-
pling method in the MCCV, and the risk of model over-fitting can be reduced. We selected
part of the samples as a calibration set (a total of 145 pears) and used the remaining samples
for external verification (a total of 50 pears) using the random method. We repeated the
process 100 times and evaluated the performance of the models using the determination
coefficient of cross-validation (Rc(p)) and RMSE of cross-validation (RMSEcv(p)), as follows:

Rc(p) =

√
1− ∑n

i−1 (ŷi − yi)
2

∑n
i−1 (ŷi − ym)2 (9)



Foods 2021, 10, 1315 9 of 22

RMSECV(P) =

√
1

N × n

n

∑
i−1

(ŷi − yi)
2 (10)

where ŷi is the predicted value of the i-th sample; yi is the measured value of the i-th
sample; ym is the average value of sample set; N is the times of repetition, which was equal
to 100 in this paper; and n is the total number of samples. In addition, we also calculated
the ratio of the standard error in prediction to the standard deviation of the samples, which
is the RPD. An RPD > 2.5 meant excellent model predictions, 2.5 ≥ RPD ≥ 2 meant very
good, 2 > RPD ≥ 1.8 meant good, 1.8 > RPD ≥ 1.4 meant fair, 1.4 > RPD ≥ 1 meant poor,
and RPD < 1 meant very poor [42]. Generally, a good model had higher Rc, Rp, and RPD
values and lower RMSECV and RMSEP values, but the difference between RMSECV and
RMSEP also was small [43].

3. Results and Discussions
3.1. Estimation of the SSC, TA, and TI Using Different Spectral Preprocessing Methods

A number of clear absorption peaks were shown in the typical absorbance spectra
for the pears within the range of 900 to 2500 nm (Figure 4a). Similar peaks could also be
observed at the wavelengths of 1085, 1470, and 1985 nm. From 1000 to 1150 nm, there was
a small peak at about 1085 nm, which was related to the third harmonic generation of N-H
bonds. After the wavelength at 1300 nm, there was a continuous increase in absorbance; the
second and the third peaks appeared at around 1470 and 1985 nm, respectively. The second
peak was related to the frequency doubling of C-H, N-H, O-H, and H2O bonds. The third
peak was related to the combined frequency of H2O and O-H bonds, with the strongest
absorption band existing at approximately 1985 nm. In general, there was a considerable
baseline offset in the 900–2500 nm region. Because of the self-made ultra-compact NIR
spectroscopy system, there were many interference spectral signals at the two ends of the
spectral line (Figure 4a). Therefore, we obtained the useful wavelength region within the
range of 1000 to 2300 nm (Figure 4b).

Figure 4. The NIR diffuse reflection spectral of the snow pears. (The lines in figures are the absorbance values of 195
samples at the different wavelengths.). (a) NIR raw spectra. (b) NIR raw with the range of 1000–2300 nm.

We applied the following methods to get the better performance of the PLSR model
based on the full spectrum: spectra preprocessed by MAS (11 points), as shown in Figure 5a;
spectra preprocessed by maximum normalization (MaxNorm), as shown in Figure 5b; spec-
tra preprocessed by mean normalization (MeaNorm), as shown in Figure 5c; spectra
preprocessed by range normalization (RanNorm), as shown in Figure 5d; spectra prepro-
cessed by SG (11 points) combined with D1, as shown in Figure 5e (SG-D1, Savitzky–Golay
first derivative); spectra preprocessed by SG (11 points) combined with D2 (polynomial
order = 2, smoothing points = 11), as shown in Figure 5f (SG-D2, Savitzky–Golay second
derivative); and spectra preprocessed by MSC (Figure 5g) and SNV (Figure 5h).
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Figure 5. The NIR diffuse reflection spectra preprocessed by different methods. (The lines in figures are the absorbance
values of 195 samples after pretreatment at the different wavelengths.). (a) Raw spectra by moving average smoothing
(MAS). (b) Raw spectra by maximum normalization (MaxNorm). (c) Raw spectra by mean normalization (MeaNorm).
(d). Raw spectra by range normalization (RanNorm). (e) Raw spectra by Savitzky–Golay first derivative (SG-D1). (f) Raw
spectra by Savitzky–Golay second derivative (SG-D2). (g) Raw spectra by multiplicative scatter correction (MSC). (h) Raw
spectra by standard normal variate (SNV).
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The PLSR model for the determination of SSC based on the NIR spectrum, within the
range of 900–2500 nm, without any pretreatment (none) is given in Table 2. The result was
bad, as the Rc and RMSECV in the calibration set were 0.088 and 0.633%, respectively, and
the Rp, RMSEP, and RPD in the prediction set were 0.130, 0.463%, and 1.286, respectively.
These results indicated that the spectrum data at two ends of the portable NIR spectrometer
produced the noise, and they had adverse effects on the performance for prediction of
SSC when using NIR spectroscopy. Therefore, we based subsequent preprocessing and
modeling on the NIR spectra in the range of 1000–2300 nm (Raw spectra). For SSC, the
MaxNorm, MeaNorm, RanNorm, MSC, and SNV preprocessed spectra-based models were
better than that of the Raw spectra. The PLSR model of the Raw spectra was better than
those of the MAS, SG-D1, and SG-D2 pretreatment methods. The Rc, Rp, and RPD of the
SNV preprocessed spectra-based model for SSC were 0.92, 0.92, and 2.557, respectively,
which were greater than those of other pretreatment methods. Therefore, we selected the
SNV pretreatment method with a high correlation coefficient and high RPD as the optimal
preprocessing model for determination of SSC in snow pears. For TA, the MaxNorm,
MeaNorm, RanNorm, SG-D1, MSC, and SNV preprocessed spectra-based models were
better than that of the Raw spectra. The PLSR model of the Raw spectra was better than
those of the MAS and SG-D2 pretreatment methods. We selected the MSC pretreatment
method as the optimal preprocessing model for determination of TA, because the PLSR
model based on the NIR spectrum preprocessed by MSC had an Rc, RMSECV, Rp, RMSEP,
and RPD of 0.908, 0.142%, 0.906, 0.156%, and 2.356, respectively, and it had a minimal
difference between RMSECV and RMSEP, a high correlation coefficient, and a high RPD.
For TI, the PLSR model based on the raw NIR spectrum had a good predictive ability with
an RPD of 3.692. After the raw NIR spectrum was preprocessed according to the different
pretreatment methods, only the MSC and SNV method improved the performance of the
PLSR model. The Rc, RMSECV, Rp, RMSEP, and RPD were 0.971, 0.077%, 0.969, 0.089%,
and 3.775, respectively. Table 2 shows that the MSC and SNV preprocessed spectra-based
models had the best pretreatment effect based on the NIR diffuse reflection spectra for snow
pears. The spectrum of the snow pears was affected by uneven particle distribution and
different particle size. The MSC and SNV belonged to the scattering correction pretreatment
method (see Section 2.4), which eliminated the influence of scattering caused by uneven
particle distribution and different particle size on the spectrum.

3.2. Estimation of Physicochemical Properties Using the Most Effective Wavelengths

According to previous studies about nondestructive and rapid analysis of physico-
chemical properties in fruits and vegetables using NIR spectroscopy, variable selection was
necessary to select the useful information from NIR spectra. Therefore, NIR spectra had to
be extracted by different algorithms after preprocessing to develop the PLSR models.

3.2.1. Estimation of the SSC Property

First, we applied SiPLS (an optimized algorithm of iPLS) to select the effective regions
from the NIR spectrum preprocessed by the SNV method. This algorithm combines sev-
eral different wavelength intervals to combine the wavelength intervals with the largest
correlation coefficients and the smallest prediction errors. In this study, we divided the
full wavelength into 19 subintervals and selected the 7th, 9th, 17th, and 19th subinterval,
as shown in Figure 6. The PLSR model had an Rc, RMSECV, Rp, RMSEP, and RPD of
0.935, 0.209%, 0.925, 0.239%, and 2.654, respectively (Table 3). We used the SPA, VSCAA,
and BOSS algorithms to select characteristic wavelengths for the determination of SSC in
snow pears. According to different optimization strategies, the useful variables by synergy
interval partial least squares-successive projections algorithm (SiPLS-SPA), synergy interval
partial least squares-bootstrapping soft shrinkage (SiPLS-BOSS), and synergy interval par-
tial least squares-variable stability and cluster analysis algorithm (SiPLS-VSCAA) totaled
14, 23, and 26, respectively, which could be arranged in the following order: SiPLS-SPA >
SiPLS-BOSS > SiPLS-VSCAA (Figure 7 and Table 3).
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Table 2. The performance of the PLSR model based on the NIR spectra range of 1000–2300 nm preprocessed by different
methods for determination of SSC, TA, and TI in pears.

WR NVs Component Pretreatment Method LVs
Calibration Prediction

RPD
RC RMSECV RP RMSEP

900–2500 nm 512 SSC none 6 0.088 0.633 0.130 0.493 1.286

1000–2300 nm 397

SSC

Raw 16 0.921 0.229 0.914 0.257 2.468

MAS 19 0.881 0.280 0.887 0.297 2.135

MaxNorm 17 0.925 0.224 0.917 0.251 2.527

MeaNorm 16 0.920 0.230 0.917 0.252 2.517

RanNorm 17 0.926 0.222 0.920 0.247 2.568

SG-D1 15 0.910 0.244 0.897 0.287 2.210

SG-D2 11 0.901 0.256 0.893 0.298 2.128

MSC 16 0.924 0.225 0.917 0.252 2.517

SNV 15 0.920 0.231 0.920 0.248 2.557

TA

Raw 14 0.908 0.142 0.903 0.159 2.311

MAS 15 0.901 0.147 0.890 0.169 2.175

MaxNorm 15 0.906 0.143 0.905 0.156 2.356

MeaNorm 15 0.906 0.144 0.905 0.157 2.341

RanNorm 15 0.906 0.144 0.905 0.157 2.341

SG-D1 11 0.902 0.146 0.906 0.157 2.341

SG-D2 10 0.842 0.186 0.878 0.176 2.088

MSC 14 0.908 0.142 0.906 0.156 2.356

SNV 13 0.911 0.140 0.904 0.158 2.326

TI

Raw 14 0.971 0.077 0.968 0.091 3.692

MAS 20 0.962 0.088 0.960 0.100 3.360

MaxNorm 15 0.970 0.079 0.967 0.091 3.692

MeaNorm 15 0.970 0.078 0.966 0.091 3.692

RanNorm 15 0.970 0.078 0.969 0.088 3.818

SG-D1 14 0.969 0.079 0.962 0.098 3.428

SG-D2 12 0.947 0.104 0.940 0.117 2.871

MSC 14 0.971 0.077 0.969 0.089 3.775

SNV 14 0.971 0.077 0.969 0.089 3.775

WR: Wavelength region; NVs: Number of variables; LVs: Number of latent variables; None: No treatment; Raw: NIR spectra in the range of
1000–2300 nm; Rc: correlation coefficient of calibration; RMSECV: root mean square error of cross validation; Rp: correlation coefficient of
prediction; RMSEP: root mean square error of prediction; RPD: residual predictive deviation; MAS: moving average smoothing; MaxNorm:
maximum normalization; MeaNorm: mean normalization; RanNorm: range normalization; SG-D1: Savitzky–Golay first derivative; SG-D2:
Savitzky–Golay second derivative; MSC: multiplicative scatter correction; SNV: standard normal variate.

Table 3. PLSR modeling results for SSC based on variables selected by SiPLS, SiPLS-SPA, SiPLS-VSCAA, and SiPLS-BOSS.

Method Preprocessing PLS Components No. of Variables
Calibration Set Prediction Set

Rc RMSECV Rp RMSEP RPD

SiPLS

SNV

11 83 0.935 0.209 0.925 0.239 2.654

SiPLS-SPA 9 14 0.936 0.208 0.934 0.231 2.745

SIPLS-VSCAA 10 26 0.942 0.198 0.936 0.222 2.857

SIPLS-BOSS 12 23 0.948 0.188 0.897 0.281 2.257

SiPLS: synergy interval partial least squares; SiPLS-SPA: synergy interval partial least squares-successive projections algorithm; SIPLS-
VSCAA: synergy interval partial least squares-variable stability and cluster analysis algorithm; SIPLS-BOSS: synergy interval partial least
squares-bootstrapping soft shrinkage.
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Figure 6. The four synergy subintervals (gray part) selected for SSC by the SiPLS algorithm, based
on the SNV preprocessed spectra.

Figure 7. The useful variables selected by SiPLS-SPA, SiPLS-VSCAA, and SiPLS-BOSS. SIPLS-BOSS:
synergy interval partial least squares-bootstrapping soft shrinkage; SIPLS-VSCAA: synergy interval
partial least squares-variable stability and cluster analysis algorithm; SiPLS-SPA: synergy interval
partial least squares-successive projections algorithm.

Figure 7 shows that the effective wavelengths extracted by SiPLS-SPA, SiPLS-BOSS,
and SiPLS-VSCAA had similar characteristics. The effective spectra around 1453.49, 1558.87,
1578.87, 1621.35, 2108.81, 2118.58, 2151.13, 2154.39, 2238.93, 2245.42, and 2294.13 nm were
simultaneously selected by the three algorithms. This result indicates that the SPA, VSCAA,
and BOSS could simplify the PLSR model for determination of SSC in snow pears. For
SSC, the absorbance bands between 1453.49 and 1578.87 nm were assigned to the second
harmonic generation of hydrogen-containing groups (O-H, C-H), as well as the second
harmonic generation of the combined frequency of O-H and C-H. The strong absorption
peak of 1621 nm corresponded to the second harmonic generation of C-H. The wavelength
from 2108.81 to 2154.39 nm included the combined frequency of O-H and H2O, and the
2245.42 and 2294 nm wavelengths carried the information of the combined frequency of
C-H, respectively. Finally, we selected the SiPLS-VSCAA as the optimal variable selection
algorithm for SSC because of the high coefficient of regression and RPD and the small
difference between the RMSECV and RMSEP. The Rc, RMSECV, Rp, RMSEP, and RPD were
0.942, 0.198, 0.936, 0.222, and 2.857, respectively (Figure 8). The number of characteristic
wavelengths selected by SiPLS-VSCAA was a little greater than that of SiPLS-SPA and
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SiPLS-BOSS. The VSCAA not only considered the stability of the regression coefficient
of each variable, but it also considered the frequency of the variable. We considered the
variable to be useless and removed it only when the stability and frequency of a variable
were small at the same time.

Figure 8. PLSR model for SSC based on the useful wavelengths selected by SiPLS-VSCAA. Rc: correlation coefficient of
calibration; RMSECV: root mean square error of cross validation; Rp: correlation coefficient of prediction; RMSEP: root
mean square error of prediction.

To further reflect the advantages of VSCAA, we applied the GA, GA-SPA, GA-VSCAA,
and GA-BOSS to select useful variables to establish the PLSR model for the determination
of SSC in snow pears. Figure 9 shows the process of the GA, selecting the characteristic
wavelengths. The value of RMSECV was relatively small when the number of selected
variables was 86. The number of variables selected by GA and the performance of the
PLSR model for SSC were not optimal, however, and the Rc, Rp, and RPD were 0.923,
0.917, and 2.517, respectively. Therefore, we again used the SPA, VSCAA, and BOSS to
select wavelengths combined with the GA. The number of selected wavelengths was 22, 22,
and 34, as given in Table 4. Figure 10 shows that the distribution of wavelengths selected
by the four noted algorithms was not concentrated. The PLS components number of the
PLSR model based on the variables selected by GA, GA-SPA, and GA-BOSS were 14,14,
and 14, respectively, which were bigger than that of GA-VSCAA (Table 4). The PLSR
model based on the variables selected by GA-VSCAA had the best performance in the
calibration and prediction sets, as seen in Table 4. Although the variables selected by the
GA-VSCAA were better than that of the GA-SPA and GA-BOSS methods, the performance
of the PLSR model based on the variables by GA-VSCAA was still not as good as that of
the SiPLS-VSCAA. The SiPLS-VSCAA has been proved to be an excellent variable selection
combination algorithm to measure the SSC in snow pears, according to the results provided
in these figures and tables.

Figure 9. The process of selecting useful wavelengths by using the GA.
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Table 4. PLSR modeling results for SSC based on variables selected by the GA, GA-SPA, GA-VSCAA and GA-BOSS algorithms.

Method Preprocessing PLS Components No. of Variables
Calibration Set Prediction Set

Rc RMSECV Rp RMSEP RPD

GA

SNV

14 86 0.923 0.227 0.917 0.252 2.517

GA-SPA 14 22 0.897 0.261 0.911 0.264 2.402

GA-VSCAA 11 22 0.918 0.234 0.918 0.234 2.710

GA-BOSS 14 34 0.936 0.208 0.921 0.245 2.589

GA: genetic algorithm; GA-SPA: genetic algorithm-successive projections algorithm; GA-VSCAA: genetic algorithm-variable stability and
cluster analysis algorithm; GA-BOSS: genetic algorithm-bootstrapping soft shrinkage.

Figure 10. The useful variables selected by GA, GA-SPA, GA-VSCAA, and GA-BOSS. GA-BOSS:
genetic algorithm-bootstrapping soft shrinkage; GA-VSCAA: genetic algorithm-variable stability
and cluster analysis algorithm; GA-SPA: genetic algorithm-successive projections algorithm; GA:
genetic algorithm.

3.2.2. Estimation of TA Property

As for the SSC property measurement, we used SiPLS and GA methods to select the
characteristic wavelengths to measure TA, based on the NIR spectrum (first preprocessed
by the MSC algorithm) obtained by the NIR spectrometer. The SiPLS method divided
the full wavelength into 19 subintervals, and we selected the 2nd, 5th, 10th, and 12th
subintervals to establish the PLSR model for TA. The number of useful variables selected by
SiPLS was 84, as shown in Figure 11a, and that by the GA was 83, as shown in Figure 11b.
The number of variables selected by SiPLS and GA was greater than that by other selection
methods, so we combined the SPA, VSCAA, and BOSS algorithms with the SiPLS and GA
to further select the more effective wavelengths and build an improved PLSR model for
TA. Then, we selected the characteristic variables by the SiPLS-SPA, SiPLS-VSCAA, and
SiPLS-BOSS, the numbers of which were 15, 19, and 20, respectively, and by the GA-SPA,
GA-VSCAA, and GA-BOSS, the numbers of which were 13, 14, and 20, respectively. These
results could be arranged in the order SiPLS-BOSS > SiPLS-VSCAA > SiPLS-SPA and
GA-BOSS > GA-VSCAA > GA-SPA (Figure 12 and Table 5).
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Figure 11. The useful variables selected by the (a) SiPLS and (b) GA for measuring TA.

Figure 12. The useful variables selected by the (a) SiPLS-SPA, SiPLS-VSCAA, and SiPLS-BOSS and by the (b) GA-SPA,
GA-VSCAA, and GA-BOSS algorithms for measuring TA.

Table 5. PLSR modeling results for TA based on variables selected by different algorithms.

Method Preprocessing PLS Components No. of Variables
Calibration Set Prediction Set

Rc RMSECV Rp RMSEP RPD

SiPLS

MSC

11 84 0.905 0.144 0.875 0.180 2.042

SiPLS-SPA 11 15 0.911 0.139 0.884 0.172 2.137

SiPLS-SCSPA 9 19 0.907 0.142 0.901 0.158 2.326

SiPLS-BOSS 10 20 0.924 0.129 0.872 0.179 2.053

GA 11 83 0.922 0.131 0.910 0.152 2.418

GA-SPA 9 13 0.926 0.127 0.908 0.153 2.402

GA-SCSPA 13 14 0.923 0.130 0.894 0.166 2.214

GA-BOSS 9 20 0.931 0.124 0.912 0.151 2.434

Table 5 shows that the PLSR models for TA based on the useful variables selected by
the SiPLS-SPA, SiPLS-VSCAA, and SiPLS-BOSS, as well as by the GA-SPA, GA-VSCAA,
and GA-BOSS algorithms, had better prediction ability, with a relatively high Rc, Rp,
and RPD and a relatively low RMSECV and RMSEP. These results indicate that these six
methods could simplify the PLSR model for determination of TA in snow pears. Figure 12



Foods 2021, 10, 1315 17 of 22

shows that the distribution of the wavelength selected by SiPLS-SPA, SiPLS-VSCAA, and
SiPLS-BOSS was concentrated and that the distribution selected by GA-SPA, GA-VSCAA,
and GA-BOSS was relatively dispersed. The effective wavelengths of around 1109.61,
1116.25, 1664.05, 1677.18, 1778.86, and 1821.44 nm were simultaneously selected by the six
algorithms. By comparing the PLSR model results for TA based on the variables selected
by different algorithms given in Table 5, we determined that the GA-BOSS method was the
best variable selection algorithm in this work. The PLSR model for determination of TA
in snow pears based on the useful variables selected by the GA-BOSS method had better
values of Rc, RMSECV, Rp, RMSEP, and RPD, which were 0.931,0.124%, 0.912, 0.151%,
and 2.434 (Figure 13), respectively, and the maximum number of PLS components was
9. The wavelengths selected by the GA-BOSS algorithm were 1013.34, 1109.61, 1116.25,
1578.61, 1664.05, 1677.18, 1752.64, 1778.86, 1821.44, 1847.63, 1903.23, 1906.5, 1942.45, 1968.58,
2004.49, 2017.54, 2020.80, 2024.06, 2151.13, and 2154.39 nm. For TA, the absorbance peak at
1013.34 nm was assigned to the combined frequency and the second harmonic generation
of C-H. The absorbance peaks at 1109.61 and 1116.25 nm corresponded to the third har-
monic generation of C-H, and the absorbance peaks at 1578.61, 1664.05, and 1677.18 nm
corresponded to the second harmonic generation of C-H. The wavelengths at 1903.23,
1906.5, 1942.45, 1968.58, 2004.49, and 2017.54 nm were assigned to the combined frequency
of O-H and H2O, which affected the prediction ability of the PLSR model. The wavelengths
of 2020.80, 2024.06, 2151.13, and 2154.39 nm were assigned to the combined frequency of
N-H, which adversely affected the results of the models for measuring TA.

Figure 13. PLSR model for TA based on the useful wavelengths selected by GA-BOSS.

3.2.3. Estimation of TI Property

We used the SiPLS algorithm to select characteristic wavelengths for building the
PLSR model for determination of TI in snow pears. We divided the full NIR spectrum
into 18 subintervals, and we selected the 4th, 9th, 11th, and 14th subinterval as a group
dataset for TI. The number of useful variables selected only by SiPLS was 88, as shown
in Figure 14a, which was much greater than that by SiPLS-SPA, SiPLS-VSCAA, and SiPLS-
BOSS, as shown in Figure 15a. The number of useful variables selected by the three
algorithms was 13, 19, and 25, as shown in Table 6. Then, to obtain a better PLSR model for
determination of TI in snow pears, we applied GA, GA-SPA, GA-VSCAA, and GA-BOSS
methods to extract the useful variables shown in Figures 14b and 15b. Table 6 shows that
the number of useful variables selected by the GA algorithm was 100, as it was greater than
that by GA-SPA, GA-VSCAA, and GA-BOSS, and the number of selected variables was 18,
23, and 32. For the different optimization strategies, the number of useful variables selected
could be arranged in the following order: SiPLS-BOSS > SiPLS-VSCAA > SiPLS-SPA and
GA-BOSS > GA-VSCAA > GA-SPA.
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Figure 14. The useful variables selected by the (a) SiPLS and (b) GA algorithm for measuring TI.

Figure 15. The useful variables selected by the (a) SiPLS-SPA, SiPLS-VSCAA, and SiPLS-BOSS and the (b) GA-SPA,
GA-VSCAA, and GA-BOSS algorithms for measuring TI.

Table 6. PLSR modeling results for TI based on variables selected by different algorithms.

Method Preprocessing PLS Components No. of Variables
Calibration Set Prediction Set

Rc RMSECV Rp RMSEP RPD

SiPLS

SNV

12 88 0.959 0.091 0.957 0.101 3.326
SiPLS-SPA 9 13 0.955 0.095 0.946 0.111 3.027

SiPLS-VSCAA 11 19 0.962 0.088 0.961 0.094 3.574
SiPLS-BOSS 15 25 0.968 0.081 0.935 0.121 2.777

GA 13 100 0.971 0.076 0.963 0.095 3.536
GA-SPA 13 18 0.958 0.092 0.943 0.117 2.871

GA-VSCAA 10 23 0.968 0.080 0.968 0.089 3.775
GA-BOSS 13 32 0.976 0.070 0.961 0.095 3.536

Figure 15 also shows that the distribution of the wavelengths selected by SiPLS-SPA,
SiPLS-VSCAA, and SiPLS-BOSS was concentrated, and that those selected by GA-SPA,
GA-VSCAA, and GA-BOSS was relatively dispersed. Figure 15a, b also show that the useful
wavelengths around 1614.77, 1755.92, 1775.58, 1948.98, 1965.31, 1971.85, and 2004.49 nm
were simultaneously selected by the six algorithms. The wavelengths at 1948.98, 1965.31,
1971.85, and 2004.49 nm were assigned to the combined frequency of O-H and H2O, which
would have affected the prediction ability of the PLSR model. The fruits had a large number
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of O-H bands and H2O molecule. The maximum number of PLS components based on
the variables selected by SiPLS-SPA, SiPLS-VSCAA, and SiPLS-BOSS was 9, 11, and 15,
respectively, and that by GA-SPA, GA-VSCAA, and GA-BOSS was 13, 10, and 13, as shown
in Table 6. This result indicates that PLSR models based on the variables selected by SiPLS-
SPA and GA-VSCAA had relatively smaller PLS components with good performance. The
Rc, RMSECV, Rp, RMSEP, and RPD of the PLSR model for determination of TA in snow
pears, based on the useful variables selected by the SiPLS-SPA method, were 0.955, 0.095%,
0.957, 0.101%, and 3.326, respectively, and those selected by the GA-VSCAA method were
0.968, 0.080%, 0.968, 0.089%, and 3.775, respectively, as shown in Table 6 and Figure 16. By
comparing these results, the PLSR model based on the variables selected by GA-VSCAA
had the best prediction ability for TI in pears because of a high correlation coefficient and
RPD, minimal difference between RMSECV and RMSEP, and the minimal number of latent
variables. The wavelengths selected by the GA-VSCAA algorithm were 1003.38, 1013.34,
1109.61, 1129.51, 1673.9, 1755.92, 1775.58, 1808.34, 1811.62, 1814.89, 1818.17, 1821.44, 1893.42,
1906.5, 1942.45, 1945.72, 1948.98, 1962.05, 1965.31, 2001.22, 2004.49, 2027.32, and 2235.68 nm.
For TI, the absorbance peaks at 1003.38 and 1013.34 nm were assigned to the combined
frequency and the second harmonic generation of C-H, and the absorbance peaks at 1109.61
and 1129.51 nm corresponded to the third harmonic generation of C-H. The absorbance
peaks from 1673.9 nm to 1821.44 nm corresponded to the second harmonic generation of
C-H. The wavelengths at 2235.68 nm were assigned to the combined frequency of N-H,
which had a bad influence on the measurement model of TI.

Figure 16. PLSR model for TI based on the useful wavelengths selected by GA-VSCAA.

4. Conclusions

Based on the self-made NIR-spectrum detector, the analysis results showed that
the VSCAA proposed in this paper was a good method for selecting effective variables to
establish the PLSR model for measuring the SSC content in snow pears. To further show the
advantages of VSCAA, we used the GA, GA-SPA, GA-VSCAA, and GA-BOSS algorithms
to select useful variables, and we established and compared the PLSR models for detecting
SSC content. The VSCAA not only considered the stability of the regression coefficient
of each variable, but also considered the frequency of the variable. We considered the
variable to be useless and removed it only when the stability and frequency of a variable
were small at the same time. In addition, for TA and TI, we built and compared the PLSR
models based on the useful variables selected by SiPLS, GA, SPA, VSCAA, and BOSS.
The prediction PLSR models, based on the variables selected by GA-BOSS for measuring
TA and that by GA-VSCAA for detecting TI, were the best models because of the high
correlation coefficient and RPD, the minimal difference between RMSECV and RMSEP,
and the minimal number of LVs. In fact, a large number of experiments were carried out at
different times, and the number of pear samples was 120, 160, and 195, etc., respectively.
The results of calculations were basically the same. We successfully showed that the
application of the self-made NIR-spectrum detector, combined with the variable selection
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algorithms and the PLSR model, was feasible for the rapid and nondestructive analysis of
internal qualities (SSC, TA, and TI) in snow pears.
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MC-UVEVariable Elimination
Multiple Linear Regression MLR Least-Square Support Vector Machine LS-SVM
Competitive Adaptive

CARS Relative Humidity RHReweighted Sampling
Weighted Bootstrap Sampling WBS First Derivative D1
Association of Official

AOAC Multiplicative Scatter Correction MSCAnalytical Chemists
Second Derivative D2 Moving Average Smoothing MAS
Standard Normal Variate SNV Monte Carlo Cross-Validation MCCV
Savitzky–Golay SG
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