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Tubulin is a well-established target of microtubule-targeting agents (MTAs), a widely used 
class of chemotherapeutic drugs. Yet, aside from their powerful anti-cancer efficiency, 
MTAs induce a dose-limiting and debilitating peripheral neurotoxicity. Despite intensive 
efforts in the development of neuroprotective agents, there are currently no approved 
therapies to effectively manage chemotherapy-induced peripheral neuropathy (CIPN). 
Over the last decade, attempts to unravel the pathomechanisms underlying the 
development of CIPN led to the observation that mitochondrial dysfunctions stand as a 
common feature associated with axonal degeneration. Concomitantly, mitochondria 
emerged as crucial players in the anti-cancer efficiency of MTAs. The findings that free 
dimeric tubulin could be associated with mitochondrial membranes and interact directly 
with the voltage-dependent anion channels (VDACs) located in the mitochondrial outer 
membrane strongly suggested the existence of an interplay between both subcellular 
compartments. The biological relevance of the interaction between tubulin and VDAC 
came from subsequent in vitro studies, which found dimeric tubulin to be a potent 
modulator of VDAC and ultimately of mitochondrial membrane permeability to respiratory 
substrates. Therefore, one of the hypothetic mechanisms of CIPN implies that MTAs, by 
binding directly to the tubulin associated with VDAC, interferes with mitochondrial function 
in the peripheral nervous system. We review here the foundations of this hypothesis and 
discuss them in light of the current knowledge. A focus is set on the molecular mechanisms 
behind MTA interference with dimeric tubulin and VDAC interaction, the potential relevance 
of tubulin isotypes and availability as a free dimer in the specific context of MTA-induced 
CIPN. We further highlight the emerging interest for VDAC and its interacting partners as 
a promising therapeutic target in neurodegeneration.
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INTRODUCTION

Most of the chemotherapeutic agents in clinical use currently exhibit a dose limiting neurological 
toxicity, irrespective of their class. Damages to peripheral nerves, referred to as chemotherapy-
induced peripheral neuropathy (CIPN), constitute a major cause of dose reduction and treatment 
interruption in patients with cancer. These side effects can last months to years following 
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treatment and can be  extremely challenging to manage on a 
daily basis for patients and cancer survivors. The prevalence 
and reversal of CIPN vary depending on the type of agent, 
dose per cure, and cumulated dose as well as co-administration 
of other agents (Staff et  al., 2017; Starobova and Vetter, 2017). 
CIPNs are primarily caused by the development of axonopathy 
(through dying back axonal damage) and neuronopathy (with 
the involvement of the dorsal root ganglia), but the precise 
pathophysiology is not clearly understood. Similarly, the 
contribution of non-neuronal cells, such as Schwann cells to 
CIPN, is not fully elucidated (Cavaletti, 2014; Seretny et  al., 
2014; Fehrenbacher, 2015; Kim et  al., 2015). Unfortunately, a 
major clinical drawback is the current lack of preventive 
strategies and limited FDA approved treatment options to 
provide symptomatic relief. Therefore, since management of 
CIPN patients remains an unmet clinical need, extensive efforts 
have been dedicated to target the source by exploring, in 
pre-clinical and in vitro models, the molecular mechanisms 
at play in the etiology of CIPN (Ma et  al., 2018). Multiple 
mechanisms have been proposed to underlie or to correlate 
with the emergence of CIPN including inflammatory processes, 
ion channel disturbance, alteration of microtubule dynamics, 
and oxidative stress in conjunction with mitochondrial 
dysfunctions (Kerckhove et  al., 2017; Staff et  al., 2017). 
Considering all the above, achieving a clear understanding of 
the pathogenesis of CIPN remains a challenging issue.

MITOCHONDRIA CONTRIBUTION  
TO CIPN

Recently, mitochondria contribution to painful neuropathy has 
been extensively reported and defined as an important component 
in the dysregulation of sensory neurons. For historical review 
of mitochondria in CIPN in pre-clinical and clinical cases, see 
Canta et  al. (2015) and Flatters (2015). Cumulative evidence 
has even allowed a drug-based description of mitochondrial 
dysfunctions as summarized in recent reviews (Canta et  al., 
2015; Waseem et  al., 2018). On a morphological standpoint, 
atypical mitochondria with swollen matrices and vacuolations 
have been observed at the clinical level as well as in pre-clinical 
and in vitro models following treatment with paclitaxel, vincristine, 
cisplatin, oxaliplatin, and bortezomib (Sui et  al., 2013; Bennett 
et  al., 2014; Canta et  al., 2015; Ma et  al., 2018). Assessment 
of mitochondrial functions revealed alterations in mitochondrial 
Ca2+ homeostasis, deficits in respiration and in ATP production, 
and induction of apoptotic mitochondrial pathway. All phenomena 
are indicative of an opening of the mitochondrial Permeability 
Transition Pore (mPTP), a multiprotein complex located at the 
contact sites of the mitochondrial outer and inner membranes 
(MOM and MIM, respectively). By definition, mPTP opening 

allows the solutes up to ~1.5 kDa to permeate the MIM, which 
results in equilibration of all small electrolytes across the MIM. 
These events lead to osmotic swelling of mitochondria, 
permeabilization of the MOM and disruption of metabolic 
gradients between the mitochondria and the cytosol. For an 
extensive review on the history, definition, regulation, and 
functional consequences of mPTP, see the work by Halestrap 
(2009). While the exact composition of the mPTP, which initially 
included the voltage dependent anion channel (VDAC), is still 
a matter of debate, its opening constitutes a common feature 
of many pathological conditions (Halestrap and Brenner, 2003) 
including neurodegenerative diseases (Du and Yan, 2010; 
Quintanilla et  al., 2017).

It is important to mention that MOM permeability to 
metabolites and ions essentially relies on the presence of VDAC. 
Considered the most abundant pore-forming proteins in the 
MOM, VDAC shows both ion selectivity and voltage dependence 
defining an open (permeable to organic anions ATP, ADP, 
and to metabolites) and closed (cation selective) states (Hodge 
and Colombini, 1997; Colombini, 2016). In mammals, three 
distinct genes encode for three VDAC isoforms (VDAC1, 
VDAC2, and VDAC3), which display different roles in 
physiological and pathological conditions, as well as different 
expression level and tissue specificity (Messina et  al., 2012). 
Beyond their metabolic functions, VDACs also constitute docking 
sites for several cytosolic proteins, including those involved 
in apoptosis, energy production, cytoskeletal organization, 
steroidogenesis, and neurodegeneration [for an exhaustive list, 
see Caterino et  al. (2017)]. In such respect, VDAC functions 
are closely related to the maintenance of homeostasis and 
pathological conditions. To the best of our knowledge since 
the relative distribution of each individual isoform of VDAC 
has not been determined in human peripheral sensory neurons, 
the next sections will refer to VDAC without isoform specification.

Following the observation that mitochondrial deficits are 
apparent before the emergence of pain and nerve terminal 
degeneration, a “mitotoxicity hypothesis” has been formulated, 
which establishes a causative link between mitochondrial 
bioenergetics deficits and abnormal sensitization of distal nerve 
fibers (Bennett et  al., 2011, 2014). In that instance, protection 
of mitochondrial function has been suggested as a promising 
therapeutic strategy to alleviate or prevent chronic pain and 
CIPN. Thus, several mitochondria-targeted peptides or compounds 
have been developed and assayed in pre-clinical models of CIPN 
(Flatters et  al., 2006; Jin et  al., 2008; Melli et  al., 2008; Xiao 
et  al., 2009; Toyama et  al., 2014, 2018; Areti et  al., 2017). The 
mitigated success encountered so far call for a better understanding 
of the molecular details and mitochondrial targets at play. Here, 
we  propose to focus on a prevailing hypothesis regarding how 
a specific class of chemotherapy agents, the microtubule-targeting 
agents (MTAs), would interfere with mitochondrial function in 
the context of CIPN. Despite their established potency in the 
clinics as chemotherapeutic agents, the Vinca-alkaloid drug 
vincristine and the Taxane drug paclitaxel are the most neurotoxic 
MTAs. This ever-growing family of compounds has been  
classified into microtubule-stabilizing agents (MSAs) and 
microtubule-destabilizing agents (MDAs) based on their effects 

Abbreviations: ADP, Adenosine diphosphate; ATP, Adenosine triphosphate; CIPN, 
Chemotherapy-induced peripheral neuropathy; CTT, C-terminal tail; MDA, 
Microtubule-destabilizing agent; MIM, Mitochondrial inner membrane; MOM, 
Mitochondrial outer membrane; mPTP, Mitochondrial permeability transition pore; 
MSA, Microtubule-stabilizing agent; MTA, Microtubule-targeting agent; OxPhos, 
Oxidative phosphorylation; VDAC, Voltage-dependent anion channel.
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on the microtubule cytoskeleton at high concentrations (in the 
100  nM to micromolar range). In such conditions, they either 
promote microtubule assembly (MSAs) or trigger microtubule 
disassembly (MDAs) into tubulin dimer subunits and small 
oligomers. However, at low and clinically relevant concentrations 
(low nanomolar range), both MSAs and MDAs primarily suppress 
microtubule dynamics without significantly affecting the 
microtubule polymer mass (Dumontet and Jordan, 2010). It is 
now increasingly accepted that MTAs clinical efficiency cannot 
solely be  the fact of an anti-mitotic activity, as illustrated by the 
long doubling times of some solid tumors (Komlodi-Pasztor 
et  al., 2011), but rather involve interference with interphase 
microtubule functions (Mitchison, 2012; Field et  al., 2014; 
Markowitz et  al., 2017). By hampering critical cell signaling 
pathways and preventing microtubules from properly interacting 
with focal adhesions and adherens junctions (Ogden et al., 2014), 
MTAs exert complementary anti-angiogenic, anti-vascular, and 
anti-metastatic properties and proved to be  an efficient anti-
cancer strategy (Braguer et  al., 2008; Schwartz, 2009). Besides 
their well-known effects on the microtubule network, MTAs also 
activate the intrinsic apoptotic pathway through direct and indirect 
actions with mitochondria (Estève et  al., 2007). It has notably 
been shown that MTAs prevent mPTP closure leading to MOM 
permeabilization and subsequent release of cytochrome c from 
isolated mitochondria (Evtodienko et al., 1996; André et al., 2000; 
Varbiro et al., 2001). In other words, MTAs anti-cancer efficiency 
could be  explained by the presence of possibly direct targets on 
mitochondria. As for the molecular mechanisms underlying MTAs 
neurotoxic effects, it is generally considered that the same 
mechanisms are at play in peripheral neurons: direct and indirect 
targeting of both microtubule/tubulin and mitochondrial networks, 
as supported by a few studies (Rovini et  al., 2010; Shemesh and 
Spira, 2010; Benbow et al., 2016; Smith et al., 2016). Yet refinements 
and in-depth investigations of patients and cellular models are 
needed to provide a clear understanding of CIPN etiology.

The hypothesis we  want to discuss here is related to 
mitochondrial abnormalities observed in neurons from patients 
and in cellular models of CIPN, following paclitaxel and 
vincristine treatment. This hypothesis proposes that MTAs target 
and damage mitochondria by binding to the β-tubulin subunit 
associated with VDAC, which subsequently prevents mPTP 
closure. While it is oftentimes referred to such putative mechanism 
to explain MTAs neurotoxicity (Mironov et  al., 2005; Bordet 
and Pruss, 2009; Zheng et  al., 2011; Gornstein and Schwarz, 
2014; Nieto et  al., 2014; Canta et  al., 2015; Brewer et  al., 2016; 
Smith et  al., 2016), it is still lacking experimental evidence.

SCIENTIFIC CONTEXT OF THE 
HYPOTHESIS: THE EMERGENCE  
OF A NEW FUNCTION FOR FREE 
TUBULIN DIMERS

It is the initial finding by Carre of an interaction between tubulin 
and VDAC that paved the way for the presently discussed 
hypothesis (Carre, 2002). In this study, the authors first detected 

the presence of tubulin in mitochondrial fractions isolated from 
various cancer cell lines. This observation confirmed previous 
studies reporting tubulin association with mitochondrial membranes 
in both purified organelles and whole cells (Bernier-Valentin 
et  al., 1983; Saetersdal et  al., 1990; Cicchillitti et  al., 2008). 
Moreover, tubulin presence on mitochondrial membranes nicely 
corroborated the pre-supposed existence of a regulatory element 
[“Factor-X”, (Saks et  al., 1995)] associated with the cytoskeleton 
to control MOM permeability for respiratory substrates in different 
muscle types (Kuznetsov et al., 1996). In a recent review, Puurand 
et al. gathered evidence from all cellular models in which tubulin 
acts as a regulator of mitochondrial respiration by reducing VDAC 
permeability to ATP, ADP, and other metabolic substrates across 
MOM (Puurand et  al., 2019). Importantly, the authors highlight 
how molecular details (i.e., tubulin isotypes) and functional 
consequences of such regulation happen to be  tissue dependent. 
In the context of this communication, it is relevant to point out 
the studies from Maldonado and coworkers dedicated to 
understanding the molecular basis underlying the partial 
suppression of mitochondrial metabolism that characterizes tumors 
with a Warburg phenotype (Maldonado et  al., 2010, 2013). 
According to the definition of the Warburg effect, which is a 
hallmark of cancer (Hanahan and Weinberg, 2011), the malignant 
cells prefer to produce ATP via glycolysis instead of oxidative 
phosphorylations (OXPHOs) regardless of oxygen supply. In 
studies using hepatocarcinoma cells as a model, Maldonado and 
coworkers assessed the hypothesis that closure of VDAC could 
account for global mitochondrial suppression (Lemasters and 
Holmuhamedov, 2006). The authors first established that free 
cytosolic tubulin dynamically modulates mitochondrial membrane 
potential (Maldonado et al., 2010) and proposed VDAC to be the 
target of free tubulin based on the earlier findings by Rostovtseva 
and coworkers that nanomolar concentrations of dimeric tubulin 
close VDAC reconstituted into planar lipid bilayers and suppresses 
respiration of isolated mitochondria and permeabilized cells (Monge 
et  al., 2008; Rostovtseva et  al., 2008; Timohhina et  al., 2009). 
Subsequent VDAC knockdowns in hepatocarcinoma cells confirmed 
(1) the isoform-dependent relevance of VDAC in mitochondrial 
membrane potential formation and (2) the role of tubulin, which 
by closing VDAC acts as a brake to suppress mitochondrial 
metabolism and therefore contributes to the Warburg effect. It 
is necessary to point out that a direct assessment of VDAC 
opening and closure in a cellular context is hardly achievable, 
leaving uncertainties about the actual status of the channel and 
its dynamic changes. Nevertheless, significant insights about tubulin 
interaction with VDAC were obtained from VDAC reconstituted 
into planar lipid membranes. Notably, the demonstration that 
the tubulin-blocked state of VDAC controls the channel  
selectivity for cations and permeability to ATP (Gurnev et  al., 
2011). In addition, parameters such as the length and charges 
of tubulin C-terminal sequences, membrane lipid composition, 
and phosphorylation state of the channel were shown to be   
crucial in the regulation of tubulin interaction with VDAC 
(Rostovtseva et  al., 2008, 2012, 2017, 2018; Gurnev et  al., 2012).

In the scientific context of the study from Carre, the physiological 
relevance of tubulin interaction with VDAC has been connected 
with VDAC participation to mPTP and MOM permeabilization 
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during apoptosis. Since MTAs could directly induce the mPTP 
opening and the release of cytochrome c from isolated mitochondria 
(André et al., 2000), tubulin associated with VDAC could constitute 
an appropriate target for MTAs to trigger apoptosis. Subsequent 
genetic investigations have found VDAC to be  dispensable in 
mitochondria-mediated cell death associated with mPTP opening 
(McCommis and Baines, 2012; Bernardi, 2013; Baines and 
Gutiérrez-Aguilar, 2018). However, McCommis and Baines recently 
exposed and discussed alternative models for VDAC’s role in 
MOM permeabilization and induction of apoptosis independently 
of the mPTP (McCommis and Baines, 2012). One of these models 
involves binding of pro-apoptotic partners to VDAC inducing 
the channel closure, which would then result in an accumulation 
of mitochondrial metabolites and ultimately outer membrane 
permeabilization by a yet undefined mechanism. Nonetheless, it 
is still not demonstrated whether tubulin would fit this model 
and act similarly in the context of MTA-induced apoptosis.

MOVING FURTHER: NEW INSIGHTS  
ON THE COMPONENTS OF A STILL 
UNTESTED HYPOTHESIS

To refine and critically re-evaluate the hypothesis in the specific 
context of MTA-induced CIPN, it would be essential to understand 
the molecular details related to the different components involved. 
In particular, we address in the following sections questions about 
MTA-dimeric tubulin complex and its interaction with VDAC 
and the potential relevance of both tubulin isotypes and the 
free versus polymerized ratio of tubulin in relation to the hypothesis.

THE MTA-DIMERIC TUBULIN COMPLEX 
AND ITS INTERACTION WITH VDAC

Tubulin associated with mitochondrial membranes was the first 
candidate proposed to explain direct effect of MTAs, as anti-
cancer agents, on mitochondria isolated from cancer cell lines. 
This implies that MTAs access the tubulin dimer bound to 
mitochondrial membrane, raising immediate question about tubulin 
dimer orientation at the membrane surface and identification 
of its membrane-binding domain. Recently, by combining several 
biophysical methods, Hoogerheide et  al. identified α-tubulin’s 
amphipathic helix H10 as responsible for dimeric tubulin binding 
to biomimetic “mitochondrial” membranes (Hoogerheide et  al., 
2017). Importantly, according to these data, MTAs binding sites 
on the β-subunit remain accessible, as suggested by Bhattacharyya 
and Wolff, who showed that vinblastine-binding affinity to β-tubulin 
was unchanged between membrane bound and solubilized tubulin 
(Bhattacharyya and Wolff, 1975). The initial statement of the 
hypothesis (Carre, 2002) introduced the notion that MTAs could 
alter tubulin dimer conformation in such a way that it would 
lead to mPTP opening. In spite of the paucity of data in this 
regard, atomic models based on electron crystallographic density 
and molecular dynamics simulation of the bioactive conformation 
of MTAs bound to soluble tubulin heterodimer show that both  
Taxol® and Vinca-alkaloids induce substantial conformational 

changes in the tubulin dimer structure (Nogales et  al., 1998; 
Snyder et  al., 2001; Xiao et  al., 2006; Mitra and Sept, 2008). 
These changes primarily affect the assembly properties of the 
heterodimer into microtubules (Lobert and Correia, 2000; Coderch 
et  al., 2012). How and whether MTAs bound to soluble tubulin 
heterodimer would impact tubulin dimer interaction with 
mitochondrial membranes or with VDAC remains unanswered. 
On a different standpoint, some MTAs such as colchicine and 
Taxol® have been reported to alter both artificial and biological 
membrane physical properties (i.e., phospholipid phase transitions, 
lipid order parameters, fluidity) (Balasubramanian and Straubinger, 
1994; Mons et  al., 2000; Ashrafuzzaman et  al., 2012), which 
might be  considered as another mechanism of MTA-induced 
disruption of tubulin/VDAC interaction.

NATURE OF THE TUBULIN ISOTYPE 
INTERACTING WITH VDAC AT THE MOM

In humans, at least seven α-tubulin and eight β-tubulin genes 
encode for tubulin isotypes, accounting for the remarkable variety 
of heterodimeric combinations found with respect to the cell 
type and stage of development (Ludueña, 2013; Roll-Mecak, 
2019). Only a few studies have characterized the tubulin associated 
with mitochondrial fractions. Carre has detected α-tubulin and 
classes I, II, III, IV β-tubulin, in variable proportions (Carre, 
2002). They also noticed a marked accumulation of the βIII-
tubulin isotype in the neuroblastoma cell line SK-N-SH. Subsequent 
studies have confirmed the finding of β-tubulin isoforms associated 
with mitochondrial fractions, specifically of βII-tubulin in 
mitochondria samples isolated from rat cardiomyocytes (Guzun 
et al., 2011) and of βIII-tubulin in ovarian cancer cells (Cicchillitti 
et al., 2008). Interestingly, using a combination of two-dimensional 
gel electrophoretic profiles and chromatography affinity assays, 
Cicchillitti et al. characterized a cytoskeletal and a mitochondrial 
class III β-tubulin. According to the authors, one isoform showed 
specific post-translational modifications (glycosylation and 
phosphorylation) and was compartmentalized into the 
cytoskeleton, while the other isoform, unglycosylated and 
unphosphorylated, was instead found exclusively localized to 
mitochondria. Together with the report by Carre (2002) of a 
~3-time increase of βIII-tubulin in mitochondrial fractions 
compared to the whole cell, such pattern of intracellular 
distribution might be  indicative of a regulatory role of βIII-
tubulin at the mitochondrial level. It is worth mentioning the 
particular interest in the cancer research field attributed to βIII-
tubulin, since it has been associated with tumor development, 
aggressiveness, as well as resistance to chemotherapy – notably 
to MTAs – in tumors with poor prognosis (Seve et  al., 2005; 
Katsetos et  al., 2011). A proposed chemoresistance mechanism 
in tumors with increased levels of βIII-tubulin expression (Derry 
et  al., 1997; Gan et  al., 2011) involves the finding that Taxol® 
has a lesser binding affinity for βIII compared to other β-tubulin 
isotypes (Yang and Horwitz, 2017). Further analysis of the 
β-tubulin isotype sequences near the Taxol® binding site  
specifically identified an alanine residue (Ala218) in βIII,  
where other isotypes contain a threonine (Yang et  al., 2016).  
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Applying molecular dynamic simulations, this one residue change 
was sufficient to result in a significant decrease in the drug 
binding to this isotype compared with other β-tubulins. Therefore, 
the overexpression of βIII isotype could limit the binding of 
Taxol®, which would account for its reduced clinical potency 
in such type of tumors.

FREE/POLYMERIZED TUBULIN RATIO IN 
THE CONTEXT OF CIPN

Sensory and motor neurons that compose the peripheral nervous 
system rely on ATP produced by OxPhos to maintain proper 
functioning and sustain their high energy requirements (Baloh, 
2008). Mitochondrial energetic failure and altered mitochondrial 
transport in distal axons are commonly observed in 
neurodegenerative disorders with axonal degeneration, including 
in CIPN. Would it be  conceivable that tubulin regulates the 
mitochondrial bioenergetics of sensory neurons? Would MTAs 
affect tubulin availability in affected neurons in such a way 
that it would alter tubulin regulation of mitochondria permeability 
for adenine nucleotides and metabolite substrates?

The extent of the microtubule damages reported the following 
MTA treatments in animal and cellular models of CIPN seems 
to be quite variable. For instance, initial animal studies described 
a significant decrease in microtubule density in sensory neurons 
from rat models of vincristine-induced peripheral neuropathy 
(Tanner et  al., 1998; Topp et  al., 2000). It is worth mentioning 
that these studies employed different MTAs injection modes 
and administrated concentrations in which clinical relevance 
has been debated (Nakata and Yorifuji, 1999; Theiss and Meller, 
2000; Gornstein and Schwarz, 2014). By contrast, recent studies 
employing cellular models of MTA-induced neurotoxicity have 
revealed alterations in microtubule dynamics parameters (Rovini 
et  al., 2010; Shemesh and Spira, 2010) or tubulin biochemistry 
(Benbow et  al., 2016; Cook et  al., 2018; Wozniak et  al., 2018), 
rather than massive ultrastructural changes of the microtubule 
network. Therefore, alteration of tubulin regulation of 
mitochondrial permeability to metabolic substrates remains to 
be  explored as a possible mechanism by which MTAs would 
disrupt neuronal energy homeostasis.

CONCLUSION

The search for efficient preventive and curative treatment options 
against CIPN constitutes primary challenges in current oncology 
practice. Many aspects of the physiology, especially at the molecular 

level, have not been resolved. Here, we  tried to dissect one of 
the suggested mechanistic hypotheses, which involve the major 
metabolite channel of the outer membrane VDAC and its 
regulation by dimeric tubulin in the etiology of CIPN following 
MTA treatments. While the foundations of this hypothesis provide 
an explanation for mitochondrial apoptosis triggered by MTAs 
in cancer cells, its relevance as a neurotoxic mechanism requires 
further assessment. Since the first mention of the interaction 
between dimeric tubulin and VDAC as a putative target of 
MTAs in neurons, significant knowledge has been gained and 
tubulin is now considered as a regulatory component of VDAC 
permeability to adenine nucleotides and ultimately of mitochondrial 
function in different types of tissues. Similarly, for years, studies 
of VDAC have confined the importance of this channel to cancer 
cells as a modulator of mitochondrial membrane permeability 
and ultimately of apoptosis induction. In the specific context 
of CIPN, VDAC possible involvement in mitochondrial dysfunction 
has never been particularly addressed except as a structural 
component of the mPTP (Canta et  al., 2015; Brewer et  al., 
2016; Waseem et al., 2018). Since the current state of knowledge 
dissociates the MOM channel from the mPTP, VDAC contribution 
to mitochondrial damages associated with CIPN might be thought 
from a different perspective. Lately, the interest for this channel 
has spanned into the neuroscience field with the successive 
findings of VDAC1 serving as the docking site for several 
neurodegenerative disease-related misfolded proteins (Magri and 
Messina, 2018). As a result, VDAC is considered as a potent 
pharmacological target for new molecules and peptides (Magri 
and Messina, 2018), which potentially protects against 
mitochondrial dysfunctions associated with neurodegenerative 
disorders. A multidisciplinary approach to further clarify the 
relevance of tubulin regulation of mitochondrial bioenergetics 
in neurons would certainly benefit to CIPN field of research. 
Unraveling the molecular basis of MTA-induced neurotoxicity 
in the peripheral nervous system may contribute as well to 
understanding the complex interplays between the cytoskeleton 
and the mitochondrial energy metabolism.
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