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Persistent accelerations disentangle Lagrangian
turbulence
Lukas Bentkamp1,2, Cristian C. Lalescu 1 & Michael Wilczek 1,2

Particles in turbulence frequently encounter extreme accelerations between extended periods

of quiescence. The occurrence of extreme events is closely related to the intermittent spatial

distribution of intense flow structures such as vorticity filaments. This mixed history of flow

conditions leads to very complex particle statistics with a pronounced scale dependence,

which presents one of the major challenges on the way to a non-equilibrium statistical

mechanics of turbulence. Here, we introduce the notion of persistent Lagrangian acceleration,

quantified by the squared particle acceleration coarse-grained over a viscous time scale.

Conditioning Lagrangian particle data from simulations on this coarse-grained acceleration,

we find remarkably simple, close-to-Gaussian statistics for a range of Reynolds numbers. This

opens the possibility to decompose the complex particle statistics into much simpler sub-

ensembles. Based on this observation, we develop a comprehensive theoretical framework

for Lagrangian single-particle statistics that captures the acceleration, velocity increments as

well as single-particle dispersion.
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Complex systems, which feature many excited degrees of
freedom and strong nonlinear interactions, notoriously
defy a reductionist approach. Statistically, these features

imply multi-scale correlations and significant departures from
Gaussianity. Turbulence, the disordered state of a strongly driven
fluid, is a paradigm for this class of systems. Stirred on large scales,
kinetic energy is passed on to ever smaller scales until dissipated
into heat. Cascading flow instabilities generate intense small-scale
vortices and dissipation events with an intermittent spatial dis-
tribution. This spatial intermittency leads to extended phases of
quiescence interrupted by episodes of violent accelerations along
individual trajectories of tracer particles, as they probe turbulence
in space and time. Statistically, this implies a pronounced scale
dependence, with extreme fluctuations on small temporal scales1–6.

A recurrent idea of how to advance the understanding of these
systems is the statistical reduction of complexity. It underlies var-
ious modeling approaches for complex systems, and in particular
turbulence, such as superstatistics7–13 and multifractals14–20. In
these approaches, the full ensemble statistics is obtained by super-
posing simpler statistics characterized by a statistically distributed
parameter. In superstatistics, for example, the sub-ensembles are
assumed to be in thermodynamic equilibrium at fixed temperatures,
but the temperature fluctuates across the ensemble. To obtain a
physically meaningful description for a complex system like tur-
bulence, the challenge is to identify the quantity that separates the
full statistical ensemble into simpler sub-ensembles. Such a quantity
has so far remained elusive for Lagrangian turbulence.

For the description of the spatial (i.e. Eulerian) statistics of
turbulence, Kolmogorov and Obukhov21,22 introduced the idea
that intermittency is rooted in strong spatial fluctuations of the
dissipation rate. In their classic theory, the Eulerian refined simi-
larity hypothesis states that the scale-dependent Eulerian statistics
can be reduced to a universal form, solely depending on the dis-
sipation rate volume-averaged (i.e. coarse-grained) on the given
scale. Indeed, conditional probability density functions (PDFs) of
velocity increments were observed to take a self-similar, or even an
approximately Gaussian form when conditioning on the coarse-
grained energy dissipation23,24 or energy transfer rate25,26.

For Lagrangian turbulence, similar ideas have been proposed,
referred to as the Lagrangian refined similarity hypothesis27–31.
Here, it is assumed that Lagrangian statistics can be formulated in a
universal form in terms of a locally averaged (in time or space)
dissipation rate along tracer particle trajectories. However, condi-
tional statistics appear to remain intermittent and generally depart
from Gaussianity23,32. This raises the question whether there exists
a physically meaningful quantity that separates the intermittent
statistics of Lagrangian turbulence into simpler, Gaussian statistics.

In this paper, we provide an answer to this question. We
introduce the squared acceleration, coarse-grained over a typical
viscous time scale, as a measure of persistence of the Lagrangian
acceleration, and show that it decomposes the strongly non-
Gaussian and scale-dependent statistics of Lagrangian turbulence
into much simpler, close-to-Gaussian sub-ensembles. Based on
this observation, we develop a comprehensive theoretical frame-
work of Lagrangian single-particle statistics.

Results
Coarse-grained Lagrangian acceleration. The central quantity of
this work is the coarse-grained squared acceleration:

αðtÞ �
Z1
�1

dτ FΘðτÞ a2ðt þ τÞ: ð1Þ

Here, a(t) denotes the acceleration vector along a Lagrangian
trajectory and FΘ(τ) a Gaussian filter kernel with standard

deviation Θ. This time-averaged squared temporal derivative of
the Lagrangian velocity can be perceived as a Lagrangian analog
of the volume-averaged squared spatial derivatives of the velocity
field (i.e. the coarse-grained dissipation rate) in the Eulerian
refined similarity hypothesis21,22, which play a key role in
separating Eulerian statistics into simpler sub-ensembles. Con-
trary to the refined similarity hypothesis, where the coarse-
graining scale varies with the scale under consideration, we here
fix the coarse-graining time scale Θ. The resulting quantity α
measures the degree of small-scale turbulence encountered by a
particle. While in principle also the instantaneous acceleration
would be a suitable quantity to achieve this, a coarse-graining is
needed to determine if the acceleration persists in time and can be
considered representative of the local flow. We therefore call this
coarse-grained squared acceleration the (squared) persistent
acceleration.

If the coarse-graining time scale is too small, we rely on a
criterion based on a single instant in time, which may not
represent the flow region well. On the other hand, if the coarse-
graining time scale is too large, Lagrangian tracers will probe
regions of mild and strong turbulence within the same coarse-
graining window, reducing the informative value of α. Our results
suggest that, for the Reynolds number range under consideration,
a reasonable choice of Θ is given by 2 or 3τη (τη is the
Kolmogorov time scale). This corresponds roughly to the time
scale on which Lagrangian acceleration components are sig-
nificantly correlated; in fact, autocorrelation functions of accel-
eration components have been observed to cross zero at ~2τη,
almost independent of Reynolds number1,33–35. More informa-
tion on the choice of Θ along with a study of the sensitivity of our
results can be found in Supplementary Note 1.

As shown in Fig. 1, intense vorticity filaments exert significant
centripetal acceleration on tracer particles, which can last for
several Kolmogorov time scales36–39. A key observation is that
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Fig. 1 Tracer particle encountering a vortex filament in turbulence. The
tracer trajectory is colored according to its instantaneous acceleration
magnitude, and the blue-green volume-rendering corresponds to the
intensity of the vorticity field. The particle acceleration components
oscillate strongly in time (inset, in Kolmogorov units) when encountering
the intense vortex filament. The root of the squared acceleration, coarse-
grained over a few Kolmogorov time scales, varies only weakly during such
an event (inset, black curve). The dashed line indicates the instant in time
at which the vorticity field is visualized and the tracer is rendered as
a sphere
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particles retain high values of α during close encounters with
these intense small-scale structures (sometimes termed particle-
trapping events). For the trajectory visualized in Fig. 1, for
example, the value of α is more than a hundred times its mean.
High values of the coarse-grained acceleration are therefore an
indication that Lagrangian tracer particles probe strongly
turbulent flow regions. In contrast to that, low values of α are
expected during episodes in which particles drift through
comparably quiescent flow. A quantity similar to α, the time-
averaged acceleration magnitude, has already been found to be a
good discriminator for Lagrangian intermittency in previous
literature. By filtering out events above a certain threshold of this
quantity, Biferale et al.38 showed that vortex trapping significantly
affects Lagrangian small-scale intermittency.

Pursuing the idea that Lagrangian intermittency can be
disentangled based on the local intensity of the small-scale
turbulence, in the following we discriminate Lagrangian trajec-
tories from direct numerical simulation (DNS) data by means of
the coarse-grained squared acceleration α. To test our approach,
we have investigated a comprehensive set of simulations of fully
developed turbulence in the Reynolds number range (based on
the Taylor microscale λ) Rλ∈ [210, 509] with up to 16 million
tracer particles (see Methods for details). In the following, we
mainly focus on a well-resolved data set at Rλ ≈ 350. Ensemble
averages, denoted by 〈⋅〉, are taken over the set of particles and
additionally in time.

We first show the PDF of α with Θ= 3τη in Fig. 2a. We find
that the coarse-grained squared acceleration α scatters more than
six orders of magnitude in terms of its mean. Note that this mean
is identical to the acceleration variance, 〈α〉= 〈a2〉, as can be
readily seen from Eq. (1). The resulting broad distribution can be
interpreted as a signature of the spatio-temporal intermittency of
acceleration. In previous literature12,33 it was observed that the
tail of the PDF of the instantaneous acceleration magnitude is
well fitted by a log-normal distribution. As demonstrated by the
fit in Fig. 2a, we find that this also holds for the coarse-grained
squared acceleration. We note in passing that a fit over the entire
range of α values can be achieved by an interpolation between an
algebraic increase for small α and the log-normal decay for larger

α (not shown). Figs. 2b–d give an impression of typical velocity
components u(t) along Lagrangian trajectories for different values
of α. At very low values, the velocity is quasi-constant,
corresponding to unperturbed, inertial motion; particles are
essentially swept with the large-scale flow. For an average α, the
velocity varies slowly over time with some fluctuations, as they
occur in mildly turbulent flow regions. This changes dramatically
for high values of α: here, particles undergo fast velocity
oscillations. Such oscillations occur when tracer particles
encounter intense vortices.

Conditional statistics. Next, we demonstrate that conditioning
on α leads to remarkably simple, close-to-Gaussian statistics. As
an extreme example, we choose the PDF of the strongly non-
Gaussian Lagrangian acceleration, for which events up to several
hundred standard deviations have been observed3,18,40,41. The
heavy tails of this distribution are indicative of the frequent
occurrence of extreme events, which play an important role, for
example, in the context of cloud microphysics42. Fig. 3a shows the
PDFs of an acceleration component a (all components have
identical statistics due to isotropy) both unconditional (red line)
and conditional on α (colored lines). Whereas the unconditional
PDF is extremely heavy-tailed, the conditional acceleration PDFs
display a close-to-Gaussian form for all values of α. Note that they
have approximately zero mean and are shown in standardized
form. Their variance, displayed in Fig. 3b, grows almost linearly
with α. As a quantitative benchmark, their flatness is shown in
Fig. 3c. It is close to the Gaussian value three for all values of α,
with a tendency to sub-Gaussianity for low values of α. We find
the same behavior for multi-scale quantities like the velocity
increment, which is presented in detail in Supplementary Note 2.
Thus, the discrimination of Lagrangian trajectories by means of α
appears to separate the statistical ensemble of Lagrangian
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Fig. 3 Lagrangian acceleration statistics decomposed into Gaussian sub-
ensembles. a The PDFs f(ɑ|α) of acceleration components conditional on α
(colored lines) are all close to Gaussian. The unconditional PDF (red line)
and a Gaussian distribution (black, dashed line) are plotted for comparison.
b The conditional second-order moment of the acceleration increases
slightly faster than linearly. c The flatness of the conditional acceleration is
close to the Gaussian value three for a large range of α. The conditional
ensemble average on α is denoted by 〈⋅|α〉
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trajectories into much simpler, close-to-Gaussian sub-ensembles
—a strong reduction of the complexity of Lagrangian statistics.

A framework for single-particle statistics. Based on this obser-
vation, we now develop a comprehensive framework of Lagran-
gian single-particle statistics. The complete statistical information
of a Lagrangian trajectory is contained in its characteristic func-
tional, which has been introduced in Hopf’s functional approach
to turbulence43. It allows us to derive single-particle statistics
ranging from particle dispersion to multi-time velocity or accel-
eration statistics44,45. For simplicity, we here restrict ourselves to
a single Lagrangian velocity component. Exploiting our obser-
vation that conditioning on α leads to approximately Gaussian
statistics, we now assume Gaussianity in each sub-ensemble, i.e.
for each value of α. Mathematically, this is described by Gaussian
characteristic functionals ϕGα ½ϑ�, which take the form44,46

ϕGα ½ϑ� ¼ exp � 1
2

Z1
�1

dt
Z1
�1

dt′ ϑðtÞCαðt � t′Þ ϑðt′Þ
2
4

3
5 : ð2Þ

Here, ϑ(t) denotes a test function. We assume the sub-ensembles
to be statistically stationary and to have zero mean (like the
entire flow). Gaussianity then implies that the statistics of each
sub-ensemble is entirely determined by its autocorrelation
function. These conditional velocity autocorrelation functions
Cα(τ)= 〈u(t0−τ/2)u(t0+ τ/2)|α(t0)〉 can be determined from the
DNS data and are shown in Fig. 4 for different values of α. They
provide insight into the typical temporal evolution of the velocity.
For small values of α, corresponding to more quiescent regions of
the flow, the autocorrelations start from a small variance and then
decay slowly. This statistical observation is consistent with the
sample trajectories shown in Fig. 2b. For higher values of α, we
observe an initially high value with a fast short-time decay. While
tracers experience higher-amplitude fluctuations, velocities also
decorrelate more quickly, consistent with the larger variety of
particle trajectory geometries shown in Fig. 2c. At the highest
values of α, we find another indication for particle trapping
events: Here the conditional velocity autocorrelation function
exhibits a second local maximum after a few Kolmogorov time
scales, a typical feature of oscillatory motion at a well-defined
frequency. This feature can also be inferred from the sample
trajectories shown in Fig. 2d.

To obtain the characteristic functional for the full ensemble, we
need to evaluate the superposition of the Gaussian characteristic

functionals weighted by the PDF of α44,45:

ϕ½ϑ� ¼
Z1
0

dα f ðαÞ ϕGα ½ϑ�: ð3Þ

This means that the full Lagrangian ensemble can be considered
as a probabilistic mix of Gaussian sub-ensembles with varying
correlations. It has been demonstrated in previous literature that
a superposition of Gaussian PDFs can be successfully employed
to model specific statistical quantities, such as Eulerian20,47 or
Lagrangian20 velocity increment PDFs, as well as acceleration
PDFs12. Our framework generalizes such approaches: Since the
characteristic functional offers a comprehensive statistical
description, the complete single-particle statistics of Lagrangian
turbulence can be determined from our framework once the PDF
f(α) and the conditional correlation functions Cα(τ) are given. For
the present results, we take these quantities directly from our
DNS data without resorting to further modeling assumptions.

Comparison of theoretical and simulation results. Next, we
compare simulation results of various aspects of Lagrangian
single-particle statistics with results obtained from our theoretical
framework. As a starting point, we focus on second-order sta-
tistics. For example, the velocity autocorrelation function can be
obtained by taking two functional derivatives of Eq. (3),

CuðτÞ ¼ � δ2ϕ½ϑ�
δϑðtÞδϑðt′Þ

� �
ϑ¼0

¼
Z1
0

dα f ðαÞCαðτÞ ; ð4Þ

where τ= t−t′. The resulting correlation function Cu(τ) is simply
the averaged conditional correlation function. Therefore, this
quantity is correctly captured by design. More generally, all
quantities that are kinematically related to the velocity auto-
correlation function, such as the mean squared displacement
〈R(τ)2〉 and the acceleration autocorrelation function Ca(τ), are
accurately captured as well. Fig. 5a shows the mean squared
displacement, which characterizes Lagrangian single-particle
dispersion. A transition from a ballistic regime to a diffusive
regime is observed. The correlation functions of the velocity and
acceleration are shown in Fig. 5b. Compared to slow decay of the
velocity autocorrelation, the acceleration autocorrelation shows
the characteristic zero-crossing at about 2τη. As expected, these
quantities are captured by our framework.

The main challenge in capturing Lagrangian single-particle
statistics is intermittency, which can be studied in terms of the
statistics of the velocity increment v= u(t+ τ/2)−u(t−τ/2) taken
over a time lag τ. Intuitively, velocity increments characterize
velocity fluctuations across a given time scale and therefore are
well suited to probe the multi-scale nature of Lagrangian
turbulence. Statistically, intermittency manifests itself in a
pronounced scale dependence of the PDF f(v; τ) of Lagrangian
velocity increments v taken over a time lag τ. It exhibits heavy
tails for small time lags but relaxes to an almost Gaussian
distribution for large time lags. This is why it constitutes a prime
example for the lack of statistical self-similarity in turbulence. For
short times, the velocity increment is proportional to the
acceleration. With appropriate standardization, the short-time
limit of the velocity increment PDF is therefore given by the
single-point acceleration PDF f(a), whereas its long-time limit is
related to the single-point velocity PDF f(u) (through a
convolution). As detailed in the Methods section, these PDFs
can be derived from our framework (3) and expressed as a
function of the PDF f(α) and the conditional velocity auto-
correlation functions Cα(τ). For example, we can determine the
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increment PDF as

f ðv; τÞ ¼
Z1
0

dα f ðαÞgðv; S2;αðτÞÞ: ð5Þ

Here, g is a Gaussian increment distribution with the sub-
ensemble second-order structure function S2,α(τ)= 2Cα(0)
−2Cα(τ) as variance. Similarly, the velocity PDF is given by a
superposition of Gaussians with variance Cα(0). The acceleration
PDF is given by a superposition of Gaussian PDFs with variance
�Cα″ð0Þ, where the double prime denotes a second derivative with
respect to τ.

As a quantitative benchmark of our framework, we compare
the PDFs obtained from (3) to the ones obtained from DNS.
Fig. 5c shows the velocity increment PDFs along with the PDFs of
velocity and acceleration at Rλ ≈ 350. Very good agreement is
found at all scales, which supports our hypothesis that Lagrangian
intermittency can be perceived as a consequence of the statistical
mixture of different regions of the flow, each characterized by a
particular coarse-grained squared acceleration. To test the
Reynolds number dependence, we compute acceleration variance
and flatness of the model and of the DNS for three different
simulations in the range Rλ∈ [210, 509], which are shown in the
insets of Fig. 5c. For all of them, we use the same coarse-graining
time scale Θ= 3τη. By design, there is perfect agreement with the
acceleration variance directly obtained from DNS data across all
Reynolds numbers. Moderate deviations can be observed in the
acceleration flatness. To test the sensitivity of our results with
respect to the coarse-graining time scale, we vary it in the range
[1.5τη, 4.5τη]. The resulting variation in acceleration flatness is
indicated with error bars in the inset in Fig. 5c. For the simulation
at Rλ ≈ 509, we find optimal results for a smaller value of Θ at
about 2τη. This points to a Reynolds-number dependence of the
only free parameter in our framework. We address this issue in
more detail in Supplementary Note 3. One important question for
the next generation of experiments and simulations is whether an

asymptotic value of Θ can be reached at very high Reynolds
numbers.

Discussion
In conclusion, we showed that Lagrangian single-particle statistics
can be decomposed into approximately Gaussian sub-ensembles
when trajectories are discriminated with respect to the coarse-
grained squared acceleration α. Physically, high values of α cor-
respond to events in which particles encounter intense small-scale
structures such as vorticity filaments. Hence the decomposition
intuitively separates regions of highly turbulent activity from
more quiescent regions.

Based on this, we developed a theoretical model of Lagrangian
single-particle statistics, which requires the PDF of α and the
conditional Lagrangian velocity autocorrelation functions as
input. Formulated in terms of the characteristic functional, our
framework offers a comprehensive statistical description of
Lagrangian single-particle statistics, which constitutes a con-
ceptual generalization of previous approaches. By projecting it to
finite-dimensional statistics, such as velocity increment distribu-
tions, we find very good agreement with simulation results. In
particular, we find that our approach accurately captures
Lagrangian intermittency across a range of Reynolds numbers.

Let us briefly comment on the implications of our findings for
the systematic development of a predictive theory for Lagrangian
turbulence. In this context, it is worth emphasizing that our
framework provides more than just a model to fit one particular
statistical quantity. It rather provides a comprehensive, self-
consistent description of Lagrangian single-particle statistics: By
design, it is consistent with any kinematic finite-dimensional
statistical equation of Lagrangian turbulence. As an example, we
remark that both the velocity increment PDF f(v; τ) and the mean
acceleration conditioned on the increment 〈a|v; τ〉 can be directly
computed from the characteristic functional (3). It then can be
shown (see Supplementary Note 4) that the kinematic evolution
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equation for the increment PDF48

∂τ f ðv; τÞ ¼ �∂v hajv; τif ðv; τÞ½ � ð6Þ
is satisfied. In this sense, our approach provides a self-consistent
framework for Lagrangian single-particle statistics once the PDF
of α and the conditional correlation functions are provided. For
the current results, we obtained the PDF of α along with the
conditional autocorrelation functions directly from DNS data.
Once theoretical models for these quantities become available,
our framework becomes fully predictive, which is an exciting
direction for future work.

So far, theories of turbulence can be broadly categorized into
predictive, but phenomenological models and rigorous, but
unclosed (and therefore not predictive) approaches. By combin-
ing aspects of these two lines of research, our work helps to bridge
this gap, which may lead to further theoretical progress in this
long-standing problem.

Methods
Characteristic functional and reduced statistics. The characteristic functional of
the Lagrangian velocity time series u(t) is defined as46

ϕ½ϑ� ¼ exp i
Z1
�1

dt ϑðtÞuðtÞ
0
@

1
A* +

; ð7Þ

where 〈⋅〉 denotes an ensemble average and ϑ(t) a test function. Since it contains the
full statistical information about the time series, we can derive arbitrary single-
particle statistical quantities. Note that for presentational purposes, we choose the
times t0 and t0+ τ for two-time quantities as opposed to the centered choice in the
main text. Since the sub-ensembles are statistically stationary, this yields the same
results.

Correlation functions can be computed from the characteristic functional in a
straightforward manner. The Lagrangian velocity autocorrelation function Cu(τ) is
obtained by taking functional derivatives:

CuðτÞ ¼ uðt0Þuðt0 þ τÞh i ð8Þ

¼ð7Þ � δ2

δϑðt0Þδϑðt0 þ τÞ ϕ½ϑ�
� �

ϑ¼0

ð9Þ

¼ð3Þ
Z1
0

dα f ðαÞCαðτÞ : ð10Þ

Various quantities are kinematically determined by this function. For instance, the
acceleration autocorrelation function Ca(τ)= 〈a(t0)a(t0+ τ)〉 is given by its
negative second derivative49:

CaðτÞ ¼ � d2

dτ2
CuðτÞ: ð11Þ

Let X(t) denote one component of a Lagrangian trajectory. The mean squared
displacement 〈R(τ)2〉= 〈(X(t0+ τ)−X(t0))2〉 can be obtained by integration of the
velocity autocorrelation function:

hRðτÞ2i ¼
Zτ
0

dt
Zτ
0

dt′Cuðt � t′Þ: ð12Þ

Finite-dimensional PDFs can be derived from Eq. (3) by an appropriate choice
of the test function ϑ(t). In the simplest case, the single-point velocity statistics, we

set ϑ(t)= γδ(t−t0), which yields the characteristic function

ϕuðγÞ ¼ exp iγuðt0Þð Þh i ð13Þ

¼ð7Þ ϕ½ϑ ¼ γδðt � t0Þ� ð14Þ

¼ð3Þ
Z1
0

dα f ðαÞ exp � γ2

2
Cαð0Þ

� �
: ð15Þ

By a Fourier transform, we obtain the single-point velocity PDF

f ðuÞ ¼
Z1
0

dα f ðαÞ gðu;Cαð0ÞÞ ; ð16Þ

where g is a Gaussian velocity distribution with variance Cα(0). Similarly, in order
to obtain the characteristic function ϕa(γ) of the single-point acceleration, we
choose ϑðtÞ ¼ �γ d

dt δ(t−t0), which yields

ϕaðγÞ ¼ expðiγaðt0ÞÞh i ð17Þ

¼ð7Þ ϕ½ϑ ¼ �γ d
dtδðt � t0Þ� ð18Þ

¼ð3Þ
Z1
0

dα f ðαÞ exp γ2

2
Cα″ð0Þ

� �
: ð19Þ

From Eq. (17) to (18) and from Eq. (18) to (19) we have used integration by parts
to swap the time derivative from the velocity to the delta function and from the
delta function to the correlation function, respectively. The double prime denotes
the second derivative with respect to τ. Note that Cα″(0) is negative. The single-
point acceleration PDF reads

f ðaÞ ¼
Z1
0

dα f ðαÞ gða;�Cα″ð0ÞÞ : ð20Þ

Finally, the characteristic function ϕv(γ; τ) of velocity increments over a time lag τ
can be calculated by inserting ϑ(t)= γδ(t−t0−τ)−γδ(t−t0):

ϕvðγ; τÞ ¼ exp iγðuðt0 þ τÞ � uðt0ÞÞð Þh i ð21Þ

¼ð7Þ ϕ½ϑ ¼ γδðt � t0 � τÞ � γδðt � t0Þ� ð22Þ

¼ð3Þ
Z1
0

dα f ðαÞ exp � γ2

2
S2;αðτÞ

� �
: ð23Þ

Here S2,α(τ)= 2Cα(0)−2Cα(τ) is the sub-ensemble second-order structure function.
Hence, the increment PDF is given by

f ðv; τÞ ¼
Z1
0

dα f ðαÞ gðv; S2;αðτÞÞ: ð24Þ

In Fig. 5c, we compare second-order and fourth-order acceleration moments
obtained from our framework to DNS data. They can be explicitly derived, for
example, from the single-point acceleration PDF:

a2ðt0Þ
� � ¼ Z1

�1
da f ðaÞ a2 ð25Þ

¼ð20Þ
Z1
0

dα f ðαÞ �Cα″ð0Þð Þ ð26Þ

and

a4ðt0Þ
� � ¼

Z1
�1

da f ðaÞa4 ð27Þ

¼ð20Þ
Z1
0

dα 3f ðαÞ Cα″ð0Þð Þ2: ð28Þ

Description of DNSs. To obtain high Reynolds number simulation data, we use a
pseudo-spectral solver for the Navier–Stokes equations in the vorticity formulation
with a third-order Runge–Kutta method for time stepping and a high-order
Fourier smoothing50 to reduce aliasing errors. The flow is forced on the large scales
by maintaining a fixed energy injection rate in a discrete band of small Fourier
modes k∈ [1.0, 2.0] (DNS units). Along with the flow field, we integrate tracer

Table 1 Main DNS parameters

N Rλ 〈u2〉1/2 L L/η T/τη
t1�t0
T n kmaxη

1024 210 1.05 1.06 144 19.5 23.7 2 × 106 3
2048 350 1.07 1.06 288 30.3 7.2 16 × 106 3
2048 509 1.05 0.99 549 47.9 7.4 16 × 106 1.5

Our simulations are run on three-dimensional periodic domains of side length 2π discretized on
a real space grid with N3 points over the time interval [t0,t1]. Along with the flow fields, n tracer
trajectories are integrated. Using the root-mean-squared velocity component 〈u2〉1/2 and the
energy spectrum E(k), we define the integral length L ¼ πðR dk EðkÞ=kÞ=ð2hu2iÞ. The integral time
scale is computed as T= L〈u2〉−1/2. The Kolmogorov length and time scales, η and τη, are
computed from the mean kinetic energy dissipation ε and the kinematic viscosity ν. Based on the
largest wavenumber kmax resolved by our simulations, we compute the resolution criterion kmaxη
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trajectories using a second-order Adams–Bashforth method coupled to a first-order
spline interpolation which is computed over a kernel of 83 grid points (as detailed
in ref. 51). The characteristics of the DNS are summarized in Table 1. For the
visualization in Fig. 1, data from a distinct simulation at Rλ ≈ 150 was used.

Data availability
The data that support the findings of this study are available from the corresponding
author on request.

Code availability
The simulation and post-processing codes that have been used to produce the results of
this study are available from the corresponding author on request.

Received: 26 January 2019 Accepted: 17 June 2019

References
1. Yeung, P. K. & Pope, S. B. Lagrangian statistics from direct numerical

simulations of isotropic turbulence. J. Fluid Mech. 207, 531–586 (1989).
2. Voth, G. A., Satyanarayan, K. & Bodenschatz, E. Lagrangian acceleration

measurements at large Reynolds numbers. Phys. Fluids 10, 2268–2280 (1998).
3. La Porta, A., Voth, G. A., Crawford, A. M., Alexander, J. & Bodenschatz, E.

Fluid particle accelerations in fully developed turbulence. Nature 409,
1017–1019 (2001).

4. Mordant, N., Metz, P., Michel, O. & Pinton, J.-F. Measurement of Lagrangian
velocity in fully developed turbulence. Phys. Rev. Lett. 87, 214501 (2001).

5. Mordant, N., Crawford, A. M. & Bodenschatz, E. Experimental Lagrangian
acceleration probability density function measurement. Physica D 193,
245–251 (2004).

6. Biferale, L., Boffetta, G., Celani, A., Lanotte, A. & Toschi, F. Lagrangian
statistics in fully developed turbulence. J. Turbul. 7, N6 (2006).

7. Beck, C. Application of generalized thermostatistics to fully developed
turbulence. Physica A 277, 115–123 (2000).

8. Beck, C. On the small-scale statistics of Lagrangian turbulence. Phys. Lett. A
287, 240–244 (2001).

9. Reynolds, A. M. Superstatistical mechanics of tracer-particle motions in
turbulence. Phys. Rev. Lett. 91, 084503 (2003).

10. Beck, C. & Cohen, E. G. D. Superstatistics. Physica A 322, 267–275 (2003).
11. Beck, C. Superstatistics: theory and applications. Contin. Mech. Thermodyn.

16, 293–304 (2004).
12. Reynolds, A. M., Mordant, N., Crawford, A. M. & Bodenschatz, E. On the

distribution of Lagrangian accelerations in turbulent flows. New J. Phys. 7, 58
(2005).

13. Beck, C. Generalized statistical mechanics for superstatistical systems. Philos.
Trans. R. Soc. A 369, 453–465 (2011).

14. Benzi, R., Paladin, G., Parisi, G. & Vulpiani, A. On the multifractal nature
of fully developed turbulence and chaotic systems. J. Phys. A 17, 3521 (1984).

15. Meneveau, C. & Sreenivasan, K. R. Simple multifractal cascade model for fully
developed turbulence. Phys. Rev. Lett. 59, 1424–1427 (1987).

16. Benzi, R., Biferale, L., Paladin, G., Vulpiani, A. & Vergassola, M.
Multifractality in the statistics of the velocity gradients in turbulence. Phys.
Rev. Lett. 67, 2299–2302 (1991).

17. Meneveau, C. & Sreenivasan, K. R. The multifractal nature of turbulent energy
dissipation. J. Fluid Mech. 224, 429–484 (1991).

18. Biferale, L. et al. Multifractal statistics of Lagrangian velocity and acceleration
in turbulence. Phys. Rev. Lett. 93, 064502 (2004).

19. Arnèodo, A. et al. Universal intermittent properties of particle trajectories in
highly turbulent flows. Phys. Rev. Lett. 100, 254504 (2008).

20. Chevillard, L. et al. A phenomenological theory of Eulerian and Lagrangian
velocity fluctuations in turbulent flows. C. R. Phys. 13, 899–928 (2012).

21. Kolmogorov, A. N. A refinement of previous hypotheses concerning the local
structure of turbulence in a viscous incompressible fluid at high Reynolds
number. J. Fluid Mech. 13, 82–85 (1962).

22. Oboukhov, A. M. Some specific features of atmospheric tubulence. J. Fluid
Mech. 13, 77–81 (1962).

23. Homann, H., Schulz, D. & Grauer, R. Conditional Eulerian and Lagrangian
velocity increment statistics of fully developed turbulent flow. Phys. Fluids 23,
055102 (2011).

24. Lawson, J. M., Bodenschatz, E., Knutsen, A. N., Dawson, J. R. & Worth, N. A.
Direct assessment of Kolmogorov’s first refined similarity hypothesis. Phys.
Rev. Fluids 4, 022601 (2019).

25. Gagne, Y., Marchand, M. & Castaing, B. Conditional velocity pdf in 3-D
turbulence. J. Phys. II Fr. 4, 1–8 (1994).

26. Naert, A., Castaing, B., Chabaud, B., Hébral, B. & Peinke, J. Conditional
statistics of velocity fluctuations in turbulence. Physica D 113, 73–78 (1998).

27. Benzi, R., Biferale, L., Calzavarini, E., Lohse, D. & Toschi, F. Velocity-gradient
statistics along particle trajectories in turbulent flows: the refined similarity
hypothesis in the Lagrangian frame. Phys. Rev. E 80, 066318 (2009).

28. Yu, H. & Meneveau, C. Lagrangian refined Kolmogorov similarity hypothesis
for gradient time evolution and correlation in turbulent flows. Phys. Rev. Lett.
104, 084502 (2010).

29. Sawford, B. L. & Yeung, P. K. Turbulent Lagrangian velocity statistics
conditioned on extreme values of dissipation. In Proc. IUTAM Symposium on
Understanding Common Aspects of Extreme Events in Fluids. Procedia IUTAM
9, 129–137 (2013).

30. Huang, Y. & Schmitt, F. G. Lagrangian cascade in three-dimensional
homogeneous and isotropic turbulence. J. Fluid Mech. 741, R2 (2014).

31. Sawford, B. L. & Yeung, P. K. Direct numerical simulation studies of
Lagrangian intermittency in turbulence. Phys. Fluids 27, 065109 (2015).

32. Yeung, P. K., Pope, S. B., Lamorgese, A. G. & Donzis, D. A. Acceleration and
dissipation statistics of numerically simulated isotropic turbulence. Phys.
Fluids 18, 065103 (2006).

33. Mordant, N., Crawford, A. M. & Bodenschatz, E. Three-dimensional structure
of the Lagrangian acceleration in turbulent flows. Phys. Rev. Lett. 93, 214501
(2004).

34. Yeung, P. K. One-and two-particle Lagrangian acceleration correlations in
numerically simulated homogeneous turbulence. Phys. Fluids 9, 2981–2990
(1997).

35. Yeung, P. K., Pope, S. B., Kurth, E. A. & Lamorgese, A. G. Lagrangian
conditional statistics, acceleration and local relative motion in numerically
simulated isotropic turbulence. J. Fluid Mech. 582, 399–422 (2007).

36. Voth, G. A., La Porta, A., Crawford, A. M., Alexander, J. & Bodenschatz, E.
Measurement of particle accelerations in fully developed turbulence. J. Fluid
Mech. 469, 121–160 (2002).

37. Toschi, F. et al. Acceleration and vortex filaments in turbulence. J. Turbul. 6,
N15 (2005).

38. Biferale, L., Boffetta, G., Celani, A., Lanotte, A. & Toschi, F. Particle trapping
in three-dimensional fully developed turbulence. Phys. Fluids 17, 021701
(2005).

39. Biferale, L. & Toschi, F. Joint statistics of acceleration and vorticity in fully
developed turbulence. J. Turbul. 6, N40 (2005).

40. Lalescu, C. C. & Wilczek, M. Acceleration statistics of tracer particles in
filtered turbulent fields. J. Fluid Mech. 847, R2 (2018).

41. Lawson, J. M., Bodenschatz, E., Lalescu, C. C. & Wilczek, M. Bias in particle
tracking acceleration measurement. Exp. Fluids 59, 172 (2018).

42. Shaw, R. A. Particle–turbulence interactions in atmospheric clouds. Annu.
Rev. Fluid Mech. 35, 183–227 (2003).

43. Hopf, E. Statistical hydromechanics and functional calculus. J. Ration. Mech.
Anal. 1, 87–123 (1952).

44. Wilczek, M. Non-Gaussianity and intermittency in an ensemble of Gaussian
fields. New J. Phys. 18, 125009 (2016).

45. Lukassen, L. J. & Wilczek, M. Lagrangian intermittency based on an ensemble
of Gaussian velocity time series. In Progress in Turbulence VII: Proceedings of
the iTi Conference in Turbulence 2016, (eds Örlü, R., Talamelli, A., Oberlack,
M. & Peinke, J.). 23–29 (Springer, Cham, 2017).

46. Lumley, J. L. Stochastic Tools in Turbulence (Dover Publications, Mineola,
New York, 2007).

47. Castaing, B., Gagne, Y. & Hopfinger, E. J. Velocity probability density
functions of high Reynolds number turbulence. Physica D 46, 177–200 (1990).

48. Wilczek, M., Xu, H., Ouellette, N. T., Friedrich, R. & Bodenschatz, E.
Generation of Lagrangian intermittency in turbulence by a self-similar
mechanism. New J. Phys. 15, 055015 (2013).

49. Tennekes, H. & Lumley, J. L. A First Course in Turbulence (MIT Press,
Cambridge, Massachusetts, and London, England, 1972).

50. Hou, T. Y. & Li, R. Computing nearly singular solutions using pseudo-spectral
methods. J. Comput. Phys. 226, 379–397 (2007).

51. Lalescu, C. C., Teaca, B. & Carati, D. Implementation of high order spline
interpolations for tracking test particles in discretized fields. J. Comput. Phys.
229, 5862–5869 (2010).

52. Schroeder, W., Martin, K. & Lorensen, B. The Visualization Toolkit. 4th edn
(Kitware, Clifton Park, New York, 2006).

Acknowledgements
We would like to acknowledge interesting and useful discussions with Laura J. Lukassen,
and thank Dhawal Buaria for carefully reading the manuscript. The authors gratefully
acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for
funding this project by providing computing time on the GCS Supercomputer Super-
MUC at Leibniz Supercomputing Centre (www.lrz.de). Computational resources were
also provided by the Max Planck Computing and Data Facility. The authors would like to
thank Bérenger Bramas and Markus Rampp from the Max Planck Computing and Data
Facility for the optimized particle tracking module used in our DNS, as well as general
technical support. The visualization in Fig. 1 was generated with VTK52. This work was
supported by the Max Planck Society.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11060-9 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3550 | https://doi.org/10.1038/s41467-019-11060-9 | www.nature.com/naturecommunications 7

http://www.gauss-centre.eu
http://www.lrz.de
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Author contributions
All the three authors made significant contributions to this work. L.B. contributed to the
theoretical framework and analyzed the data. C.C.L. conducted the simulations and
analyzed the data. M.W. designed the study and developed the theoretical framework. All
authors wrote the paper together.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
019-11060-9.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Peer review information: Nature Communications thanks Hussein Aluie and other
anonymous reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11060-9

8 NATURE COMMUNICATIONS |         (2019) 10:3550 | https://doi.org/10.1038/s41467-019-11060-9 | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-019-11060-9
https://doi.org/10.1038/s41467-019-11060-9
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Persistent accelerations disentangle Lagrangian turbulence
	Results
	Coarse-grained Lagrangian acceleration
	Conditional statistics
	A framework for single-particle statistics
	Comparison of theoretical and simulation results

	Discussion
	Methods
	Characteristic functional and reduced statistics
	Description of DNSs

	References
	References
	References
	Acknowledgements
	ACKNOWLEDGEMENTS
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




