
BMJ Open Diab Res Care 2022;10:e002560. doi:10.1136/bmjdrc-2021-002560

Open access�

1

Open access�

Prediction of diabetic kidney disease 
with machine learning algorithms, upon 
the initial diagnosis of type 2 
diabetes mellitus

Angier Allen  ‍ ‍ , Zohora Iqbal  ‍ ‍ , Abigail Green-Saxena  ‍ ‍ , Myrna Hurtado  ‍ ‍ , 
Jana Hoffman  ‍ ‍ , Qingqing Mao  ‍ ‍ , Ritankar Das  ‍ ‍ 

Research and Development, 
Dascena, Houston, Texas, USA

Correspondence to
Dr Myrna Hurtado;  
​lhurtado@​dascena.​com

To cite: Allen A, Iqbal Z, 
Green-Saxena A, et al. 
Prediction of diabetic kidney 
disease with machine learning 
algorithms, upon the initial 
diagnosis of type 2 diabetes 
mellitus. BMJ Open Diab 
Res Care 2022;10:e002560. 
doi:10.1136/
bmjdrc-2021-002560

	► Additional supplemental 
material is published online 
only. To view, please visit the 
journal online (http://​dx.​doi.​
org/​10.​1136/​bmjdrc-​2021-​
002560).

AA and ZI contributed equally.

Received 24 August 2021
Accepted 27 December 2021

Original research

Emerging technologies, pharmacology and therapeutics

© Author(s) (or their 
employer(s)) 2022. Re-use 
permitted under CC BY-NC. No 
commercial re-use. See rights 
and permissions. Published 
by BMJ.

ABSTRACT
Introduction  Diabetic kidney disease (DKD) accounts for 
the majority of increased risk of mortality for patients with 
diabetes, and eventually manifests in approximately half 
of those patients diagnosed with type 2 diabetes mellitus 
(T2DM). Although increased screening frequency can avoid 
delayed diagnoses, this is not uniformly implemented. The 
purpose of this study was to develop and retrospectively 
validate a machine learning algorithm (MLA) that predicts 
stages of DKD within 5 years upon diagnosis of T2DM.
Research design and methods  Two MLAs were trained 
to predict stages of DKD severity, and compared with the 
Centers for Disease Control and Prevention (CDC) risk 
score to evaluate performance. The models were validated 
on a hold-out test set as well as an external dataset 
sourced from separate facilities.
Results  The MLAs outperformed the CDC risk score 
in both the hold-out test and external datasets. Our 
algorithms achieved an area under the receiver operating 
characteristic curve (AUROC) of 0.75 on the hold-out set 
for prediction of any-stage DKD and an AUROC of over 0.82 
for more severe endpoints, compared with the CDC risk 
score with an AUROC <0.70 on all test sets and endpoints.
Conclusion  This retrospective study shows that an MLA 
can provide timely predictions of DKD among patients with 
recently diagnosed T2DM.

INTRODUCTION
Chronic kidney disease (CKD) is a general 
term for describing any disorders that lead 
to the gradual loss of kidney function or 
structure.1 CKD is defined by impaired renal 
function and/or increased urinary albumin 
excretion and strongly associated with excess 
morbidity and cardiovascular as well as all-
cause mortality,2–5 and is a common complica-
tion for patients with type 2 diabetes mellitus 
(T2DM).3 CKD due to diabetes is also 
referred to as diabetic kidney disease (DKD), 
or diabetic nephropathy,3 6 and accounts for 
the majority of increased risk of mortality 
for patients with diabetes.2 T2DM results 
in long-term hyperglycemia and hyperten-
sion, which are the main drivers behind 

pathophysiological and metabolic glomer-
ular changes, and subsequent renal deterio-
ration in DKD.7 Several studies have shown 
that mortality risk increases significantly in 
patients with glomerular filtration rate (GFR) 
levels consistent with CKD stages 3–5.8 9 In 
1990–2012, global mortality resulting from 
DKD increased by over 90%.10 11 With 

Significance of this study

What is already known about this subject?
	► Type 2 diabetes mellitus (T2DM) is a risk factor for im-
paired renal function due to long-term hyperglycemia 
and hypertension affecting kidney function, resulting in 
diabetic kidney disease (DKD). DKD cases have steadily 
increased over the last three decades and are expected 
to continue rising worldwide.

	► Most individuals with early stages of DKD either exhibit 
non-specific symptoms or are asymptomatic, contrib-
uting to missed diagnoses. There is a lack of accurate 
early risk prediction of DKD development in patients at 
the time of T2DM diagnosis.

What are the new findings?
	► We developed machine learning algorithms (MLAs) to 
predict risk within a 5-year time frame for DKD develop-
ment at the time of T2DM diagnosis, using 1 year of prior 
electronic health record data.

	► The MLAs had improved performance compared with 
the Centers for Disease Control and Prevention (CDC) 
risk score.

How might these results change the focus of 
research or clinical practice?

	► Use of these MLAs in medical practice may help sup-
port clinicians in their decision-making. Early DKD risk 
prediction can facilitate intervention and improve patient 
outcomes for DKD.

	► Data used for MLAs may be automatically extracted 
from electronic health records. This enables broad 
screening and may increase identification of patients at 
risk of DKD, and removes the burden of manually calcu-
lating the risk assessment of DKD with current standard 
models, such as the CDC risk score.
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approximately half of patients with T2DM developing 
kidney disease,3 the global rise in T2DM12 13 imposes a 
significant cost to patients as well as healthcare systems.

Although early detection of DKD may prevent its 
progression,14 15 routine screening is not universally 
feasible; this can lead to missed or delayed diagnoses. 
DKD diagnosis is based on measurement of renal func-
tion and albumin levels in urine along with assessment 
by a clinician. DKD is defined by: estimated GFR (eGFR) 
<60 mL/min/1.73 m2 and albuminuria/creatinine ratio 
>300 mg/g.16 Diabetic retinopathy may also be concur-
rent; more than 25% of patients develop retinopathy 
within 2 years of T2DM diagnosis.17 Despite that these 
measurements are basic clinical and laboratory measure-
ments, screening for DKD is not uniformly implemented.4 
Because individuals with T2DM have an increased suscep-
tibility to development of DKD, it is critical for clinicians 
to rapidly identify those who are at high risk. Prompt and 
accurate risk stratification may warrant thorough exam-
ination and increased screening frequency in high-risk 
patients for earlier DKD identification.

Early DKD prediction could lead to therapeutic inter-
ventions and lifestyle changes, prevention of progression 
to higher stages, and reduction of dialysis dependency 
as well as costly healthcare spending.18 Risk scores19 20 
and machine learning (ML)21–23 approaches have been 
validated for CKD progression, including the Centers for 
Disease Control and Prevention (CDC) CKD risk score, 
which is based on demographic information and pre-
existing conditions.18 However, there remains a need for 
kidney disease prediction for patients newly diagnosed 
with T2DM who are at high risk of DKD development. 
This is critical as patients who are unaware of their high 
risk may be less likely to undergo routine screening, 
increasing their odds of missed or delayed diagnosis. We 
have developed ML algorithms (MLAs) for patients at 
the time of T2DM diagnosis to predict development of 
DKD within a 5-year time frame.

RESEARCH DESIGN AND METHODS
Data source and data processing
Retrospective analysis was performed on patient elec-
tronic health records (EHRs) data extracted from a large, 
proprietary database representing over 700 healthcare 
sites across the USA between 2007 and 2020. All patient 
data were de-identified in compliance with the Health 
Insurance Portability and Accountability Act. The dataset 
was split into training, training validation, and hold-out 
testing sets (see figure 1).

Algorithm models were tuned with hyperparameter 
optimization (HPO), fitting each hyperparameter combi-
nation on the training set and evaluating its performance 
on the training validation set. The hyperparameter 
combination which yielded the highest average precision 
was then used to train the final model on both training 
and training validation sets, as described in the Machine 
learning model section below. We report performance 

of the model on the hold-out test data (not used during 
the model development process) and the external vali-
dation data. The external validation data come from 
healthcare sites and patients separate from those used for 
model selection and training. Each model estimates the 
risk of developing DKD in the 5 years following T2DM 
diagnosis. Tree-based models use decision trees to build 
more complex ensembles, which can allow for a desir-
able balance of speed, complexity, and interpretability. 
Two variations of this model type were fitted to the data 
to assess different tree-based techniques, random forests 
(RF) and gradient boosted trees (XGB). RF fit many deci-
sion trees to the data, which combine their predictions 
democratically. XGB sequentially fit trees that improve 
on previous errors to generate their predictions.

Gold standard
All patients with T2DM were identified using the Inter-
national Classification of Diseases (ICD-9 and ICD-10) 
codes. Within this population, patients with at least 5 
years of medical data post-T2DM diagnosis, age over 18 
years old, and with at least one of each required measure-
ments in the year prior to T2DM diagnosis were included 
in the study (see table 1). We included patients with albu-
minuria or reduced eGFR at the start of the study. The 
positive class, patients who developed DKD within the 5 
years after T2DM diagnosis, were defined by ICD codes 

Figure 1  Patient inclusion diagram. Hold-out test set and 
external validation set both consist of patients who are not 
seen during training and validation of the MLAs. The external 
validation set consists only of patients from clinical sites that 
are not used in training, validation and hold-out test sets. 
MLAs, machine learning algorithms; T2DM, type 2 diabetes 
mellitus.
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as reported in online supplemental table 1. Patients with 
T2DM who did not have an associated ICD code for 
DKD within the 5-year window were in the negative class. 
Patients were excluded if they had been diagnosed with 
CKD or had a renal transplant before T2DM diagnosis 
time.

In addition to an any-stage DKD endpoint, we evaluated 
model performance on endpoints defined as reaching 
DKD stages 3–5 as well as reaching DKD stages 4–5 within 
5 years following T2DM diagnosis. The endpoint for the 
CDC CKD risk score is stages 3–5. Patients reaching stages 
4–5 require close monitoring of kidney function as well 
as assessment for potential kidney transplants or dialysis.

Input selection
To generate the inputs, we first conducted a compre-
hensive search through previous literature for CKD 
risk factors. This list included age, sex, diabetes, hyper-
tension, cardiovascular diseases, smoking, obesity, age, 
alcohol use, cholesterol levels, white cell counts, genetic 
disposition, etc.24–27 We then narrowed the list of features 
down by what is available in the EHR. For example, 
genetic information and socioeconomic status, though 
they affect the risk of CKD, are not typically found in the 
EHR. Finally, we trimmed the model of features that did 
not significantly affect the model performance, that is, 
malignancy, HIV infection and triglyceride levels.

ML model
Two MLAs were developed and evaluated: an XGB 
(XGBoost)28 model and an RF model. The RF model was 
developed using the Python library Scikit-learn.29 Input 

features for both models consisted of demographics, clin-
ical measurements, laboratory values, and patient history 
as reported in table 1. Demographics, clinical measure-
ments, and laboratory values were averaged over the year 
prior to T2DM diagnosis as described below. The eGFR was 
precalculated in the dataset using the following equation: 

‍eGFR = 186 × S−1.154
Cr × age−0.203 ×

(
1.212 if black

)
×

(
0.742 if female

)

‍, where SCr is serum creatinine in mg/dL.30 The devel-
oped models were compared with the CDC CKD risk 
score based on pre-existing conditions and demographic 
information.31 HPO was performed using the Python 
library Hyperopt32 for all models except the CDC CKD 
risk score, which does not require training.

The non-external data were split into training, training 
validation, and test sets with a 50:25:25 split. HPO was 
performed by fitting the model on the any-stage training 
data, then testing on the any-stage training validation 
data. The combination of hyperparameters which yielded 
the highest area under the precision-recall curve on the 
any-stage training validation data was then used to test on 
the hold-out testing data and the external validation data. 
The other endpoints of stages 3–5 and stages 4–5 kidney 
disease were also tested on the hold-out and external vali-
dation dataset, but were not used during model training. 
Hyperparameters for each model can be found in the 
online supplemental table 2.

Input features for the models were averaged over the 
1-year input time window using combinations of feature 
median, 5th and 95th percentiles, and last available 
measurement when applicable. In the RF model, features 
were standardized to have mean 0 and variance 1 using 

Table 1  Measurements used as inputs for machine learning algorithms (MLAs) and for calculating CDC risk score.

Measurements used as inputs to MLA Measurements used as inputs to CDC risk score

Demographics Age Age

Sex Sex

Clinical measurements BMI None

Blood pressure (systolic and diastolic)  �

Laboratory values Blood urea nitrogen None

Creatinine  �

eGFR  �

Cholesterol (HDL and LDL)  �

White cell count  �

Medical history Presence of past acute kidney injury Cardiovascular disease

History of chronic heart failure Congestive heart failure

Reported smoking history Peripheral vascular disease

Reported alcohol history Proteinuria

Demographics (age, sex), clinical measurements (BMI, blood pressure (systolic and diastolic)), laboratory values (blood urea nitrogen, 
creatinine and eGFR, cholesterol (high-density lipoprotein and low-density lipoprotein), white cell count), and medical history (presence of 
past acute kidney injury, history of chronic heart failure, reported smoking history, reported alcohol history) served as input features for the 
MLA models. The clinical and laboratory measurement values were pooled using 5th and 95th percentiles, median, and last available result 
over 1 year prior to T2DM diagnosis.
BMI, body mass index; CDC, Centers for Disease Control and Prevention; eGFR, estimated glomerular filtration rate; HDL, high-density 
lipoprotein; LDL, low-density lipoprotein; T2DM, type 2 diabetes mellitus.
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statistics from the training data, and missing features were 
imputed with the training data averages. The XGB model 
assesses missing values as inputs and does not require 
feature standardization. The option to standardize and 
impute features was thus given as an option to be selected 
in HPO for XGB, but was not required (however, the final 
model did select standardization and imputation during 
hyperparameter optimization). The CDC CKD model 
required no imputation, as inputs are based on demo-
graphic and diagnostic information which were available 
for all patients.

For each endpoint, model performance was evalu-
ated on a hold-out testing set not seen during the model 
training process. An additional test set from a unique 
source was also used for external validation of the models 
and endpoints. The models were assessed based on 
area under the receiver operating characteristic curve 
(AUROC), sensitivity, specificity, positive and negative 
likelihood ratios, and diagnostic odds ratio (DOR).

RESULTS
A total of 6 918 247 patients with T2DM were available 
in our dataset. Patients were filtered based on availability 
of 5 years of data following T2DM diagnosis, resulting in 
2 248 457 patients. The dataset was further filtered for 
patients who have age and required input laboratory 
measurements and clinical data (eg, body mass index 
and creatinine) available within the prior year, resulting 
in 111 046 patients. From this patient population, 23 073 
patients from clinical sites not used in the training and 
testing of the MLAs were isolated and used as an external 
validation hold-out test set. A total of 87 973 patients 
were randomly split into training (62 994), validation (17 

323), and test sets (7 656), where the test set consists of 
patients not seen by the algorithm during training and 
validation (figure 1).

Urinary albumin is typically used for diagnosing DKD. 
However, these measurements are not always available and 
may limit screening generalizability. Thus, our model did 
not use urinary albumin to make DKD predictions. eGFR 
was an included input feature. Before inclusion criteria 
were applied to our dataset, 30.96% of the patients were 
missing urinary albumin measurements and 11.13% of 
patients were missing eGFR measurements.

Demographics of both the hold-out test set and 
external validation set at the time of T2DM diagnosis are 
presented in online supplemental tables 3 and 4, respec-
tively. Most patients in the positive class exhibiting DKD 
are aged 50 years and above. Most common comorbid-
ities included hypertension, cardiovascular disease, and 
dyslipidemia in both the positive and negative class.

Performance of the MLA models (RF, XGB) for DKD 
stages 3–5 was compared with the CDC CKD scoring 
system. The AUROC curves are presented in figure  2, 
for (a) the hold-out test dataset and (b) external vali-
dation dataset, demonstrating that both MLA models 
outperformed the CDC CKD comparator in terms of 
the model’s ability to discriminate between classes. Both 
models also outperformed the CDC CKD comparator 
in terms of sensitivity and specificity on both test sets. 
AUROC curves for the MLA models (RF and XGB) for 
any-stage or stages 4–5 DKD are compared with the CDC 
scoring system and shown in online supplemental figures 
1 and 2, respectively. For both of the other endpoints, the 
MLAs also outperformed the CDC risk score in terms of 
AUROC as well as sensitivity and specificity.

Figure 2  Area under the receiver operating characteristic curve (AUROC) plots of machine learning models random forest (RF) 
and gradient boosted tree (XGB), and Centers for Disease Control and Prevention (CDC) CKD scoring system for (A) hold-out 
dataset and (B) external validation dataset for prediction of DKD stages 3–5 in the 5 years following T2DM diagnosis. A random 
classifier was used as the baseline. CKD, chronic kidney disease; DKD, diabetic kidney disease; T2DM, type 2 diabetes 
mellitus.

https://dx.doi.org/10.1136/bmjdrc-2021-002560
https://dx.doi.org/10.1136/bmjdrc-2021-002560
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5BMJ Open Diab Res Care 2022;10:e002560. doi:10.1136/bmjdrc-2021-002560

Emerging technologies, pharmacology and therapeutics

Tables  2 and 3 summarize the performance for RF, 
XGB and the CDC CKD score for the hold-out test set 
and external validation set, respectively. XGB and RF 
achieved similar results in terms of discrimination and 
classification performance, with the RF performing more 
consistently across the two test sets.

DISCUSSION
We have developed and evaluated ML DKD screening tools 
using data easily accessible in the EHR, which provide a 
robust method of predicting DKD within a 5-year window 
for patients at the time of their T2DM diagnosis. Our MLA 
models, which use only demographics, clinical measure-
ments, laboratory measurements, and patient history 
drawn from the EHR outperform the CDC CKD scoring 
system. Urinary albumin is commonly used for kidney 
disease diagnosis, however it is not routinely collected 
data for all patients. Therefore, to enable screening for 
DKD on a broad patient population, it was not included 
as an input. Data for the MLAs can be automatically 

extracted from the EHR, removing the burden of manu-
ally calculating CKD risk assessment with the CDC CKD 
scoring system. These algorithms may provide warning of 
DKD to physicians for improved patient care by deter-
mining who is at high risk and allow for earlier detection 
and intervention. Routine screening for CKD is essential 
for those at high risk, particularly in patients with T2DM, 
who have a higher propensity to develop DKD. However, 
standard detection of early DKD in patients with T2DM 
is poor,33 resulting in inadequate management of disease 
state and higher healthcare costs. Early warning systems 
augment clinical expertise to enable clinicians to make 
improved treatment and intervention decisions. Predic-
tion and early diagnostic methods of DKD offer a lifetime 
of benefits including prevention of stage progression and 
development of associated comorbidities, deterrence 
of dialysis dependency, and an overall extension of life 
expectancy, as well as a reduction in spending on health-
care resources.18 Additionally, early intervention could 
significantly improve patient quality of life as patients 

Table 2  Results on hold-out test set

XGB RF CDC

Any-stage DKD

 � AUROC 0.750 0.748 0.634

 � Sensitivity 0.700 0.700 0.633

 � Specificity 0.670 0.662 0.560

 � LR+ 2.120 2.071 1.440

 � LR− 0.447 0.453 0.655

 � DOR 4.738 4.575 2.197

DKD stages 3–5

 � AUROC 0.825 0.823 0.672

 � Sensitivity 0.750 0.750 0.637

 � Specificity 0.742 0.739 0.614

 � LR+ 2.906 2.870 1.652

 � LR− 0.336 0.338 0.591

 � DOR 8.638 8.492 2.794

DKD stages 4–5

 � AUROC 0.830 0.821 0.617

 � Sensitivity 0.751 0.751 0.581

 � Specificity 0.739 0.712 0.581

 � LR+ 2.876 2.606 1.387

 � LR− 0.337 0.349 0.721

 � DOR 8.544 7.461 1.923

Comparison of XGB, RF and the CDC DKD performance includes 
AUROC, sensitivity, specificity, LR+ and LR‒, and DOR. Prediction 
of DKD within 5 years following T2DM diagnosis is divided into 
any-stage DKD, DKD stages 3–5 and DKD stages 4–5.
AUROC, area under the receiver operating characteristic; CDC, 
Centers for Disease Control and Prevention; DKD, diabetic kidney 
disease; DOR, diagnostic OR; LR+, positive likelihood ratio; LR−, 
negative likelihood ratio; RF, random forest; T2DM, type 2 diabetes 
mellitus; XGB, gradient boosted tree.

Table 3  Results on external validation set

XGB RF CDC

Any-stage DKD

 � AUROC 0.769 0.769 0.643

 � Sensitivity 0.761 0.758 0.651

 � Specificity 0.622 0.619 0.573

 � LR+ 2.015 1.989 1.522

 � LR− 0.384 0.391 0.610

 � DOR 5.251 5.089 2.496

DKD stages 3–5

 � AUROC 0.831 0.832 0.676

 � Sensitivity 0.807 0.804 0.640

 � Specificity 0.690 0.692 0.623

 � LR+ 2.605 2.608 1.697

 � LR− 0.279 0.283 0.578

 � DOR 9.322 9.215 2.937

DKD stages 4–5

 � AUROC 0.826 0.827 0.620

 � Sensitivity 0.819 0.826 0.608

 � Specificity 0.664 0.643 0.576

 � LR+ 2.438 2.313 1.436

 � LR− 0.273 0.270 0.680

 � DOR 8.933 8.555 2.111

Comparison of XGB, RF and the CDC DKD performance includes 
AUROC, sensitivity, specificity, LR+ and LR‒, DOR, and threshold. 
Prediction of DKD within 5 years following T2DM diagnosis is 
divided into any-stage DKD, DKD stages 3–5 and DKD stages 4–5.
AUROC, area under the receiver operating characteristic; CDC, 
Centers for Disease Control and Prevention; DKD, diabetic kidney 
disease; DOR, diagnostic OR; LR−, negative likelihood ratio; LR+, 
positive likelihood ratio; RF, random forest; T2DM, type 2 diabetes 
mellitus; XGB, gradient boosted tree.
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with CKD report disease and management affecting not 
only their physical health, but also mental and social 
health.34 As established in previous studies,20 22 35 we 
chose to assess DKD risk over a 5-year window to remain 
within a time frame that would allow improvements in 
outcome through lifestyle or treatment plan changes.

Previous MLA-based approaches to CKD prediction 
include that of Ravizza et al, who forecast CKD within 3 
years of a recent diagnosis of diabetes, using 2 years of 
prior data.21 Their performance, which was based on a 
predicted outcome which included all stages of CKD, 
dropped from an AUROC of 0.79 to an AUROC of 
0.72 when prediction was restricted to the more severe 
outcomes defined by Dunkler et al.36 More recently, Chan 
et al developed a model using EHR data along with three 
plasma biomarkers that achieved an AUROC of 0.77 
for predicting the progression of DKD in patients with 
diabetes who have early DKD.22 However, early awareness 
and prevention is a major obstacle for DKD; thus, devel-
oping a model only for patients who are already diagnosed 
with DKD is a critical limitation and does not address the 
current clinical challenges. Moreover, the use of plasma 
biomarkers also poses a challenge for this method to be 
widely implemented, as these are not routinely screened 
for or part of typical EHR data. Additional testing for 
plasma biomarkers would increase the labor burden and 
cost of care. Further, several new biomarkers have been 
proposed for DKD diagnosis and prognosis, but enough 
evidence for their clinical implementation is still lacking; 
studies are typically performed on small cohorts and not 
externally validated.37 Our algorithms use 1 year of prior 
patient data to predict the development of DKD within the 
next 5 years at the time of T2DM diagnosis, and achieved 
AUROC values of 0.77 for any-stage DKD and 0.83 for 
DKD stages 3–5 on an external validation dataset. Both 
RF and XGB performed similarly in terms of AUROC 
and sensitivity/specificity. Results for the RF models were 
more consistent between hold-out test set and external 
datasets, likely due to a higher resistance to overfitting 
than XGB models, because RF models combine many full 
trees’ decisions democratically as opposed to building 
a single output from weak-learning smaller trees as in 
XGB. These results may support the use of RF models for 
greater generalizability across different clinical settings.

MLAs are at their best in clinical medicine when used 
to supplement medical expertise. Tools that inform clini-
cians of risk and allow their clinical judgment to be used 
proactively rather than reactively are highly beneficial for 
patient outcomes. This data-driven information, when 
presented to the clinician in an easy-to-use manner, can 
augment the use of their clinical knowledge and experi-
ence. We have previously demonstrated the utility of this 
approach for detecting sepsis in intensive care units.38 
Additionally, we have also shown that use of ML-based 
techniques in healthcare may lead to considerable cost-
savings.39 Development and adoption of MLA models 
in clinical settings may significantly improve diagnosis 
and treatment options for patients. The use of MLA for 

disease prediction and diagnosis is especially useful for 
diseases which would benefit from early diagnosis and 
intervention such as DKD.

There were several limitations to this study. First, this is 
a retrospective study and therefore we cannot guarantee 
the same performance in a clinical study. The dataset used 
for our models had a diverse demographic sample, yet, we 
cannot guarantee how it will perform in clinical settings 
with other patient populations. We generated the patient 
population with diabetes and subsets of populations with 
CKD based on ICD codes. Although previous studies 
have demonstrated that use of ICD codes to determine 
and classify patient populations with diabetes are highly 
reliable,40–43 we note that there is a possibility of bias that 
could arise from human error or under-reporting in ICD 
coding. Furthermore, although it has the potential to 
improve DKD risk evaluation and patient outcomes, we 
cannot determine how clinicians would react to the use 
of MLA models. Future studies should include evaluation 
of our MLA performance in a prospective clinical prac-
tice and assess patient outcome. This research provides 
interesting preliminary data and we hope to do more 
studies in the future to validate its use.

In this retrospective study, we have developed and eval-
uated MLAs for the prediction of DKD risk over the next 
5 years, for patients recently diagnosed with T2DM. The 
MLAs use commonly available data extracted from the 
patient’s prior year EHR data. Our algorithm provides 
increased accuracy over the CDC score. MLAs may be 
helpful in clinical settings to enable early interventions 
to improve patient outcomes.
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