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Anxiety and depression are highly prevalent mental illnesses worldwide and have
long been thought to be closely associated to neurotransmitter modulation. There is
growing evidence indicating that changes in the composition of the gut microbiota are
related to mental health including anxiety and depression. In this review, we focus on
combining the intestinal microbiota with serotonergic, dopaminergic, and noradrenergic
neurotransmission in brain, with special emphasis on the anxiety- and depression-like
behaviors in stress-related rodent models. Therefore, we reviewed studies conducted
on germ-free rodents, or in animals subjected to microbiota absence using antibiotics,
as well as via the usage of probiotics. All the results strongly support that the brain
neurotransmitter modulation by gut microbiota is indispensable to the physiopathology
of anxiety and depression. However, a lot of work is needed to determine how
gut microbiota mediated neurotransmission in human brain has any physiological
significance and, if any, how it can be used in therapy. Overall, the gut microbiota
provides a novel way to alter neurotransmitter modulation in the brain and treat gut–brain
axis diseases, such as anxiety and depression.
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INTRODUCTION

Anxiety and depression are heterogeneous and complex diseases that can have devastating effects
on the function and quality of life of individuals, and increase the risk of suicide (Arsenault-
Lapierre et al., 2004). The overall burden of anxiety and depression is steadily increasing and now
exceeds most other major diseases (Tyrovolas et al., 2020). Their onset can occur from childhood
to adolescence and last a lifetime (Thapar and Riglin, 2020). In addition, anxiety and depression are
often comorbid (Park and Kim, 2020) and relapse-prone conditions (Ali et al., 2017).

Despite the mechanisms of anxiety and depression are still unclear, neurotransmitters such as
serotonin [also named 5-hydroxytryptamine (5-HT)], dopamine (DA), and noradrenaline (NE)
have explained the pathophysiology of anxiety and depression over several decades (Olivier and
Olivier, 2020; Shao and Zhu, 2020). An increasing number of evidence reveals the importance of the
gut microbiota in the pathogenesis of anxiety and depression (Rieder et al., 2017). Gut microbiota
and its metabolites are at least partially involved in the afferent input of the vagus nerve (Forsythe
et al., 2014) and the regulation of the hypothalamic-pituitary-adrenal (HPA) axis (Sudo et al.,
2004). Perhaps unsurprisingly, the gut microbiota has also been shown to be related to tryptophan
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metabolism and neurotransmitter production (Barrett et al.,
2012; O’Mahony et al., 2015). Given the need to elucidate the
potential role of gut microbiota in regulating neurotransmitter
modulation in anxiety and depression, it seems important to
summarize the evidence provided so far regarding the effects
of neurotransmitters, in addition to uncovering behavioral
alterations specific to these neurotransmitters.

METHODS

We searched for studies including text words related to
microbiota (microbiome or flora) and neurotransmitter, and
anxiety or depression. The search was carried out using the
PubMed, Web of Science, and Embase databases. We included
in vivo studies investigating gut microbiota in relation to anxiety
and depression, and in which neurotransmitters are part of
the pathophysiology, to facilitate comparisons. Studies excluded
from the scope of search were or contained one or more of
the following: did not use rodent species, did not look at
the specific microbiota strain or absence condition, were not
measuring anxiety- and depression-like behavior outcomes, no
brain neurotransmitter was measured, did use genetic model,
were not published in English. Additionally, in case there were
fewer than three studies on the same neurotransmitter (e.g.,
gamma aminobutyric acid), these papers were also excluded due
to lack of comparability. A total of 15 studies met the criteria for
our review at the end of the selection process (Figure 1).

NEUROTRANSMITTER MODULATION
AND BEHAVIORAL OUTCOMES
IDENTIFIED UPON MODIFICATIONS
WITH GUT MICROBIOTA

In this section, we summarize neurotransmitter parameter and
behavior results identified in in vivo studies which used treatment
with modifications by gut microbiota in the context of stress-
related rodent models (Supplementary Table 1).

Serotonin
5-Hydroxytryptamine is a neurotransmitter with important
physiological significance in human body, involved in regulating
many key processes, including behaviors, mood, gastrointestinal
secretion, and peristalsis (Berger et al., 2009; Bamalan and Al
Khalili, 2020). Antidepressants that act on 5-HT are utilized as
front line drugs for many psychiatric disorders, such as major
depressive disorder, post-traumatic stress disorder, anxiety, and
bipolar disorder (Masand and Gupta, 1999; Bandelow et al.,
2017). Although 5-HT is widely distributed throughout the body,
90–95% of 5-HT exists in the gastrointestinal tract (Gershon and
Tack, 2007). Thus, it may not be surprising that the growing
literature links the gut microbiota to host levels of 5-HT.

In germ-free (GF) rodents, two studies found no change
of 5-HT and/or 5-hydroxyindoleacetic acid (5-HIAA) in the
hippocampus and/or frontal cortex as well as in the striatum,
but different anxiety-like behavioral alterations with early-life

stress in C57BL/6N mice or acute stress in F344 male rats
(Crumeyrolle-Arias et al., 2014; De Palma et al., 2015). Another
two studies discovered reduced anxiety-like behavior in GF Swiss
Webster mice, one in two reported higher 5-HT and 5-HIAA
levels in the hippocampus of male mice, but no change of
5-HT and 5-HIAA levels in the hippocampus of female mice
(Clarke et al., 2013), while another one found lower 5-HT
receptor 1A (HTR1A) in the hippocampal DG rather than in the
hippocampal CA1 of GF Swiss Webster female mice (Neufeld
et al., 2011). In a model of antibiotic-induced depletion of the gut
microbiota, one study revealed a greater display of depression-
like behavior in Sprague–Dawley male rats. In tandem with
the clear behavioral alteration, they also found lower 5-HT
and higher 5-HIAA/5-HT in the hippocampus, and reduced
5-HIAA/5-HT in the hypothalamus (Hoban et al., 2016).

Seven studies investigated the antidepressant and/or
anxiolytic effects of microbiota-based interventions on 5-HT
modulation in anxiety and/or depression (Desbonnet et al.,
2010; Liang et al., 2015; Sun et al., 2018; Li et al., 2019; Liao
et al., 2019; Tian et al., 2019). Two studies detected live and
heat-killed Lactobacillus paracasei PS23 in early life stress and
corticosterone-treated models, respectively, but showed different
results. For instance, both live and heat-killed L. paracasei
PS23 treatment did not change 5-HT, 5-HIAA and 5-HIAA/5-
HT in the hippocampus of early life stress induced model,
while live L. paracasei PS23 treatment increased the level of
5-HT in the hippocampus and striatum of corticosterone-
induced mice model rather than heat-killed PS23 treatment. In
addition, both live and heat-killed L. paracasei PS23 treatment
had no effect on the 5-HIAA in the prefrontal cortex and
striatum of corticosterone-treated model. Besides that, probiotic
Bifidobacterium infantis 35624 treatment resulted in reversal of
depression-like behavioral deficits, but unchanged for 5-HIAA/5-
HT in the hippocampus of early life stressed rat model. All the
other five strains conducted by four studies were able to increase
the brain 5-HT in stress-related rodent models. Regarding to
specific brain area, Lactobacillus helveticus NS8, Bifidobacterium
longum, and Lactobacillus rhamnosus increased the level of 5-HT
in the hippocampus of rodents. Administration of B. longum
subspecies infantis CCFM687, B. longum and L. rhamnosus
showed higher 5-HT content in the frontal cortex. In particular,
the study of B. longum subspecies infantis CCFM687 also found
higher expression of 5-hydroxytryptophan (5-HPT) and no
significant changes of HTR1A mRNA in the prefrontal cortex of
male mice. In another study, chronic unpredictable mild stress-
induced mice treated with B. longum and L. rhamnosus had
higher tryptophan hydroxylase (TPH) but lower indoleamine
2,3-dioxygenase (IDO) in the prefrontal cortex and hippocampus
compared with model group.

In the selected papers, only one study examined the effect
of certain microbiota strain in GF mice, the behavior outcome
showed live Lactobacillus plantarum PS128 had the anxiolytic
effect along with higher 5-HT and 5-HIAA in the striatum
without anti-depressant effects, rather the 5-HT, 5-HIAA, and
5-HIAA/5-HT in the prefrontal cortex and hippocampus as
well as the 5-HIAA/5-HT in the striatum had no changes
(Liu et al., 2016). In the same study, outcome of heat-killed
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FIGURE 1 | Flow chart of the selection process. Fifteen in vivo studies met the criteria and investigated the effect of gut microbiota in anxiety and depression, and in
which brain neurotransmitters are part of the pathophysiology.

L. plantarum PS128 tested in parallel has no statistical difference
compared with the GF group.

The evidence summarized in this section highlights the role
of gut microbiota in regulating 5-HT modulation in anxiety- and
depression-like behavior in models of stress.

Dopamine
Dopamine is the main catecholaminergic neurotransmitter,
synthesized centrally and peripherally, that plays a pivotal role
in multiple physiological processes such as emotion, memory,
attention, motivation, reward, and food intake (Klein et al., 2019;

Kleinridders and Pothos, 2019). DA system dysregulation has
been related to anxiety (Carpenter et al., 2012; Moraga-Amaro
et al., 2014), depression (Camardese et al., 2014; Belujon and
Grace, 2017), and gut microbes (Gonzalez-Arancibia et al., 2019).
In terms of crosstalk between gut and brain, the results (Han et al.,
2018) strongly support that the vagus nerve is the key mediator.

Two studies observed the DA level in the hippocampus of
GF rodents; both of them did not found significant change in
comparison to specific pathogen-free (SPF) controls, although
they reported inconsistent anxiety-like behavior under different
stress (Crumeyrolle-Arias et al., 2014; De Palma et al., 2015).
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In GF F344 male rats, decreased DA, 3,4-dihydroxyphenylacetic
acid (DOPAC), homovanillic acid (HVA), and HVA/DA were
found in the frontal cortex, while reduced HVA and HVA/DA,
an index of DA turnover, were reported in the hippocampus
and striatum, but no statistic change of DA and DOPAC in the
hippocampus and striatum was found. In a study using antibiotic-
induced depletion of the gut microbiota in Sprague–Dawley male
rats, they found higher levodopa (LDOPA) and HVA in the
prefrontal cortex, lower HVA in the hippocampus, and lower
HVA/DA in the amygdala and striatum. DA content had no
significant changes in the above three brain regions compared to
control group (Hoban et al., 2016).

Out of the four studies investigating the beneficial role of
microbiota strain in DA system of depression models, all the
three strains had capability to reduce depression- and/or anxiety-
like behaviors. With respect to L. paracasei PS23 reported by two
studies (Liao et al., 2019; Wei et al., 2019), both live and heat-
killed L. paracasei PS23 administration decreased DOPAC and
HVA, but not (DOPAC + HVA)/DA, in the hippocampus of
early-life stress-induced male mice model. However, only heat-
killed PS23 increased DA in the hippocampus and prefrontal
cortex of corticosterone-treated mice model, and both live and
heat-killed L. paracasei PS23 showed no effect on DOPAC in the
prefrontal cortex of corticosterone-induced model. In the other
two studies, one showed that DA had not changed significantly
in the hippocampus and prefrontal cortex of chronic restraint
stress-induced model after L. helveticus NS8 administration
(Liang et al., 2015), while another study showed that treatment
with Bifidobacterium CECT 7765 decreased DA level in the
hypothalamus of early-life stress-induced male mice model
(Moya-Perez et al., 2017).

In one study examined the effect of certain probiotic in
GF mice, the behavior outcome showed that live L. plantarum
PS128 exhibited the anxiolytic effect accompanying with higher
DA and HVA in the striatum but not in the prefrontal cortex,
hippocampus, the DOPAC and HVA/DA in the prefrontal
cortex, hippocampus, and striatum did not change significantly
(Liu et al., 2016). In the same study, outcome of heat-killed
L. plantarum PS128 tested in parallel showed no effect on
behavior and brain DA system in GF mice.

Based on the literatures summarized above, the potential
of gut microbiota, to alleviate anxiety- and/or depression-like
behavior, would take place via DA modulation.

Noradrenaline
Noradrenaline has been known for its role in the pathogenesis
of anxiety (Kalk et al., 2011; Zheng et al., 2019) and depression
(Seki et al., 2018) for a long time. Interestingly, it appears NE
also controls satiation (Asarian and Bachler, 2014). In addition,
it has been reported that the microbiota influenced NE level in
the gut lumen of mice (Asano et al., 2012), but whether the
bacteria produce NE to alter behavior through an indirect path
was not determined.

Noradrenaline modulation of GF rodents was measured in
two studies, one in the context of increased anxiety-like behavior
(Crumeyrolle-Arias et al., 2014) and another in the context of
decreased depression-like behavior only in male mice under

early-life stress (De Palma et al., 2015); in both conditions,
NE was not affected in the brain. However, depletion of the
microbiota with non-absorbable antibiotics has been reported
to increase depression-like behavior; this effect was related to
elevated level of NE in the striatum, but not in the prefrontal
cortex, hippocampus, amygdala, or hypothalamus.

Administration of L. helveticus NS8, heat-killed Enterococcus
fecalis (EC-12), and Bifidobacterium CECT 7765 improved
anxiety-like behavior under different stress-related models (Liang
et al., 2015; Moya-Perez et al., 2017; Kambe et al., 2020). NE
is released via activation of central adrenoceptor β3 (Adrb3)
(Claustre et al., 2008), while heat-killed E. fecalis (EC-12)-
treated male mice expressed higher Adrb3 in the prefrontal
cortex compared with control mice. In an early-life stress-
induced model, Bifidobacterium CECT 7765 effectively reduced
the content of NE in the hypothalamus of C57BL/6J male
mice. Antidepressant effect was also demonstrated, in respect of
L. helveticus NS8 treatment showing elevated NE in the striatum
but not in the prefrontal cortex of chronic restraint stress-induced
male rats (Liang et al., 2015), whereas B. infantis 35624 treatment
did not alter NE in the amygdaloid cortex of early-life stress-
induced male rats (Desbonnet et al., 2010).

The limited evidence available on NE in anxiety- and
depression-like behavior suggests that they could be influenced
by gut microbiota.

Overall, modifications of gut microbiota can affect brain
systems of 5-HT, DA, and NE in various rodent models of stress,
as well as their anxiety- and depression-like behaviors.

DISCUSSION

This review summarizes the impacts of gut microbiota on the
serotonergic, dopaminergic, and noradrenergic modulation in
anxiety and depression. One way to address the effects of
gut microbiota on the brain is to destroy the gut microbial
ecology. Therefore, GF rodents provide a good tool to test the
gut microbial colonization from early to adulthood (Gonzalez-
Arancibia et al., 2019). While at first glance similar to the GF
model, antibiotics represent another unique model to study the
gut microbiome. Since destroying the microbiome can negatively
affect the host, supplementation of the microbiome has been used
as a strategy to optimize host performance. The introduction
of known or suspected beneficial probiotic microorganisms is
an intuitive way to study the relationship between the host and
the microbiome. In this regard, it has been shown that levels of
5-HT, DA, and NE, and their respective precursor, metabolites,
or receptors have significant variations across different brain
regions in rodents with altered gut microbiota compared with
their controls. However, it should be kept in mind that it may not
only be a specific microbiota that is beneficial to microorganisms,
but fundamentally provide nutrients that promote the growth
of beneficial microorganisms (Duran-Pinedo and Frias-Lopez,
2015). A limitation of this review is that we did not include
studies of prebiotics and fecal microbiota transplantation which
are also general ways to alter microbiome composition, as there
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is little control over which microorganisms will metabolize or
proliferate the prebiotics (Ford et al., 2014), and what kinds of
fecal microbiota will be transplanted.

When considering how the bacteria may affect the brain
neurotransmitters, one possible mechanism is that metabolite
produced by the intestinal flora can be used as precursors for
the synthesis of neurotransmitters in the central nervous system;
for instance, B. infantis has been found to increase plasma
tryptophan levels, thereby affecting the transmission of brain 5-
HT (Desbonnet et al., 2010). Even though bacteria have been
shown to have the capability to produce a series of major
neurotransmitters including 5-HT, DA, and NE (Strandwitz,
2018), it is unlikely to influence brain directly because they
cannot cross the blood–brain barrier. Besides, it must be taken
into account that release of neurotransmitters is also regulated
by other neural circuits (Russo and Nestler, 2013), and the
influence of intestinal microbes on other networks cannot be
excluded, which raises an open question: the regulation of brain
neurotransmitters by gut microbes is direct, or indirect? Up
to this review, this is still an unsolved question; moreover, the
potential mechanisms of how the gut microbiota can affect
the anxiety- and depression-like behavior via neurotransmitters
are required to validate. Nevertheless, the studies reviewed
indicated a close connection between intestinal symbionts and
neurotransmitters in neuropsychiatric diseases, and it seems to
be a possible way to communicate along the gut–brain axis.
In addition, since most of the existing work has been done in
animals, more well-designed human clinical trials are needed.

Finally, more and more evidence supports that treatment for
anxiety and depression could take advantage of intervention at
the gut microbiota, either through reasonable use of antibiotics
or via identification of novel microbial strains that influence the
brain serotonergic, dopaminergic, and noradrenergic activity.
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