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Next-generation sequencing from 
bulked segregant analysis identifies 
a dwarfism gene in watermelon
Wei Dong1, Defeng Wu2, Guoshen Li1, Dewei Wu3 & Zicheng Wang1

Dwarfism is one of the most valuable traits in watermelon breeding mainly because of its contribution 
to yield as well as the decreased labor required to cultivate and harvest smaller plants. However, the 
underlying genetic mechanism is unknown. In this study, a candidate dwarfism gene was identified 
by applying next-generation sequencing technology to analyze watermelon plants. We completed a 
whole-genome re-sequencing of two DNA bulks (dwarf pool and vine pool) generated from plants in an 
F2 population. A genome-wide analysis of single nucleotide polymorphisms resulted in the detection 
of a genomic region harboring the candidate dwarfism gene Cla010726. The encoded protein was 
predicted to be a gibberellin 20-oxidase-like protein, which is a well-known “green revolution” protein 
in other crops. A quantitative real-time PCR investigation revealed that the Cla010726 expression level 
was significantly lower in the dwarf plants than in the normal-sized plants. The SNP analysis resulted 
in two SNP locating in the Cla010726 gene promoter of dsh F2 individuals. The results presented herein 
provide preliminary evidence that Cla010726 is a possible dwarfism gene.

Watermelon (Citrullus lanatus) is among the top five most consumed fresh fruits worldwide, accounting for 7% 
of the global area devoted to vegetable production1. Dwarfism is one of the most valuable traits in watermelon 
breeding because of its positive effect on yield as well as the associated decreased labor required for cultivating 
and harvesting the crop. In watermelon, two allelic genes, dw-1 and dw-1s, and two independent loci, dw-2 and 
dw-3, have been reported to confer dwarfism2–5. Additionally, the cucumber (Cucumis sativus L.) genes cp, cp-2, 
and scp have been identified as responsible for dwarfism-related plant architecture6–9. Meanwhile, in tropical 
pumpkin (Cucurbita moschata Duch.) and squash (Cucurbita pepo L.), the dwarfism of the vines is regulated by 
the Bu gene10–13. Although many studies have been conducted on dwarfism traits in cucurbitaceae plants, the 
responsible genes have not been cloned9,14,15.

Dwarf plant mutations have been important for elucidating the regulatory molecular mechanisms underlying 
plant growth and development16. The main causes of dwarfism have been mutations in hormone biosynthesis or 
signal transduction pathway-related genes affecting the production of gibberellin (GA)17–19, cytokinin20, brass-
inosteroids21,22, and other key hormones influencing plant growth and development. Additionally, abnormally 
developed plant cell membranes or walls can also lead to dwarfism in plants23,24.

With the release of sequenced genomes, the combined application of bulked segregant analysis (BSA) and 
next-generation sequencing technology represents a new way to accelerate the identification of candidate genes 
controlling important agronomic traits in various crops25–27. In 2013, a high-quality draft genome sequence of the 
Asian watermelon cultivar ‘97103’ (2n = 2 ×  = 22) was produced. The draft sequence included 23,440 predicted 
protein-coding genes1,28,29, and represented an important resource for plant researchers, particularly those inter-
ested in the genetic improvement of crops. The objective of this study was to identify the dwarfism gene in the dsh 
mutant watermelon line, which was derived from line ‘I911’ (Code I911; inbred hybrid selected in the seventh 
generation). Compared with the ‘I911’ plants, the dsh plants had short vines and stems, numerous branches and 
flowers, and small fruits. The ratio of long-vine to short-vine plants for the F2 and BC1 populations conformed to 
Mendel’s segregation ratios of 3:1 and 1:1, respectively30. Thus, we concluded that the dwarfism trait is a qualita-
tive characteristic (QC) controlled by a single gene. We re-sequenced the whole genome of two DNA bulks (i.e., 
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dwarf pool and vine pool) developed from plants in an F2 population. A genome-wide analysis of single nucleo-
tide polymorphisms (SNPs) enabled the detection of a genomic region harboring the dwarfism gene. Results from 
this study provide preliminary evidence that Cla010726 is a possible candidate gene encoding the dwarfism trait.

Methods
Plant materials and phenotyping for dwarfism.  Two watermelon inbred lines, dsh and ‘I911’, were 
used as the parents to generate the F1 and F2 populations. The dsh watermelon plant (female parent) is a bush with 
a short vine, short internodes, thin stems, numerous branches, and small leaves, flowers, and fruits. The 139 F2 
individuals and 20 parent plants were grown and evaluated at the Henan University Genetics and Breeding Base 
in the spring of 2016.

Data generation.  Genomic DNA was extracted from fresh leaves collected from the 2 parent plants as well 
as the 30 dwarf and 30 vine plants using the CTAB method31 for a subsequent QC-sequencing (QC-seq) analysis. 
The degradation and contamination of the extracted DNA were monitored on 1% agarose gels, while the DNA 
purity was checked using the NanoPhotometer® spectrophotometer (IMPLEN, CA, USA). The DNA concen-
tration was measured using the Qubit® DNA Assay Kit and the Qubit® 2.0 Fluorometer (Life Technologies, CA, 
USA). For the QC-seq analysis, two DNA pools, namely the dwarf pool (D-pool) and vine pool (V-pool), were 
constructed by mixing an equal amount of DNA from the 30 dwarf and 30 vine F2 plants collected in the autumn 
of 2016. A total of 1.5 μg DNA per sample was used as the input material.

Sequencing libraries were generated using the TruSeq Nano DNA HT Sample Preparation Kit (Illumina, USA) 
following the manufacturer’s recommendations. Separate index codes were added to attribute sequences to differ-
ent samples. Briefly, DNA samples were sonicated to generate 350-bp fragments, which were then end-repaired, 
A-tailed, and ligated with the full-length adapter for Illumina sequencing by PCR amplification. Finally, the 
PCR products were purified using the AMPure XP system and the size distribution of the libraries was ana-
lyzed with the Agilent 2100 Bioanalyzer. The libraries were quantified by quantitative real-time (qRT)-PCR and 
then sequenced using the Illumina HiSeq 4000 platform to generate 150-bp paired-end reads, with an insert size 
around 350 bp.

Data analysis.  To ensure reads were reliable and to prevent any artificial bias in the following analyses, the 
raw reads underwent a series of quality control procedures using in-house C scripts. Raw reads were removed 
based on the following criteria: (1) reads with ≥10% unidentified nucleotides; (2) reads with >50% bases having 
a phred quality score <5; (3) reads with >10 nucleotides aligned to the adapter, allowing ≤10% mismatches; (4) 
putative duplicates generated by the PCR amplification during the library construction process. The BWA pro-
gram was used to align the D-pool and V-pool clean reads against the reference genome sequence32. Alignment 
files were converted to BAM files using the SAMtools program33. Additionally, potential PCR duplications were 
removed using the SAMtools command “rmdup”. If multiple read pairs had identical external coordinates, only 
the pair with the highest mapping quality was retained.

Analyses of quality traits with SNP and InDel markers.  All samples underwent variant calling using 
the Unified Genotyper function of the GATK program34. The SNPs and InDels were filtered using the Variant 
Filtration parameter of GATK. ANNOVAR, which is an efficient software tool, was used to annotate the SNPs or 
InDels based on the GFF3 files for the reference genome35. The homozygous SNPs/InDels between two parents 
were extracted from the vcf files. The read depth information for the homozygous SNPs/InDels in the D-pool and 
V-pool was obtained to calculate the SNP/InDel index25. We used the dwarf genotype of the parent as the refer-
ence and for analyzing the read number for the D-pool and V-pool. We then calculated the ratio of the number of 
different reads to the total number of reads, which represented the SNP/InDel index of the base sites. We filtered 
out those points in which the SNP/InDel index in both pools was <0.3. Sliding window methods were used to 
determine the SNP/InDel index of the whole genome. The average of all SNP/InDel indices in each window was 
used as the SNP/InDel index for that window. We usually used a window size of 1 Mb and a step size of 10 kb as 
the default settings. The difference between the SNP/InDel index of two pools was calculated as ΔSNP/InDel 
index.

Expression analysis of candidate dwarfism genes by quantitative real-time PCR.  We investi-
gated the expression patterns of Cla010721, Cla010725, Cla010726, and Cla010750 using qRT-PCR. The dsh 
and ‘I911’ tissue culture seedlings were grown for 10 and 30 days. Each collected sample represented one repli-
cate. Total RNA was extracted from all samples using the Trizol reagent (Invitrogen, Carlsbad, CA, USA). The 
PrimeScript™ RT reagent Kit with gDNA Eraser (TaKaRa, Dalian, China) was used to reverse transcribe cDNA 
from the extracted total RNA. The resulting cDNA samples were analyzed by qRT-PCR in a 20-μl reaction volume 
containing 10 μl SYBR Premix Ex Taq II (TaKaRa). The ClYLS8 gene (encoding yellow-leaf-specific protein 8) 
was included as a control for normalizing gene expression data (Kong et al., 2014). The qRT-PCR was completed 
using an ABI 7500 Fast Real-time PCR system. There were five biological repeats for dsh and ‘I911’. Each sample 
was analyzed three times (i.e., technical replicates). The primers used to detect the transcripts of structural and 
regulatory genes are listed in Table 1.

Analysis of the SNP in the promoter of the candidate dwarfism gene.  Genomic DNA was 
extracted from fresh leaves collected from the 30 dwarf and 30 vine plants using the CTAB method31. The deg-
radation and contamination of the extracted DNA were monitored on 1% agarose gels, while the DNA purity 
was checked using the NanoPhotometer® spectrophotometer (IMPLEN, CA, USA). The fragments with SNP 
were amplified by PCR using the following primer pair: forward, 5′-TGTTGAAATTTGGTGACGAGGT -3′, and 
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reverse, 5′- TGAATTAAACGTTTCGGGCAC -3′ in a 20-μl reaction volume containing 0.2 μl Ex Taq (TaKaRa). 
And then the PCR products were sequenced.

Results
Morphology of dwarf watermelon plant.  After years of screening and cultivating, the dsh dwarf water-
melon plant was detected in an inbred watermelon line derived from ‘I911’ in July 2009. There were considerable 
morphological differences between dsh and ‘I911’ plants (Fig. 1). The dsh plants produced short vines and stems, 
many branches and flowers, and small fruit, which was unlike the ‘I911’ plants. Moreover, the leaf edges of dsh 
plants were curled. The results showed that F1 generation all developed long vines, whereas the ratio of long-vine 
to short-vine plants for the F2 populations conformed to Mendel’s segregation ratios of 3:1 (maximum χ2 value 
as 0.54, P > 0.05).

QC-seq identified four candidate genes controlling dwarfism on chromosome 7.  Illumina 
high-throughput sequencing resulted in 18,371,510,400 bp and 15,618,092,700 bp reads for the D-pool 
(45.94 × average depth coverage or 99.68% coverage) and V-pool (39.62 × average depth coverage or 99.65% 
coverage), respectively. These reads were aligned to the 355,247,419 bp reference watermelon genome and 352,235 
SNPs were identified which included homozygous SNP and heterozygous SNP1. We used the dwarf genotype 
of the parent as the reference to calculate the homozygous SNP index of 97,539 polymorphic markers between 
the two offspring. After screening, 97,186 polymorphic markers were obtained after filtration (Supplementary 
Table S1). An average SNP-index was computed in a 1 Mb window using a 10 kb step. The SNP-index graphs were 
generated for the D-pool (Fig. 2a) and V-pool (Fig. 2b) by plotting the average SNP-index against the position of 
each step in the genome assembly. By combining the information for the SNP-index in the D-pool and V-pool, 
the Δ (SNP-index) was calculated and plotted against the genome positions (Fig. 2c).

The Δ (SNP-index) value should be significantly different from 0 if a genomic region harbors a target gene. 
At the 95% significance level, 41 polymorphic marker loci were selected (Supplementary Table S2). At the 99% 
significance level, only one genomic region on chromosome 7 (27.66–30.61 Mb) had a Δ (SNP-index) value that 
was significantly different from 0 (Supplementary Table S3). The results of ANNOVAR’s annotation indicated 
that there were four candidate watermelon genes responsible for the dwarfism phenotype in the 27.66–30.61 Mb 
region on chromosome 7. The four candidate watermelon genes were Cla010721, Cla010725, Cla010726 and 
Cla010750. The SNP of Cla010721 located in exon which was nonsynonymous mutation. And the others located 
in the promoter (Supplementary Table S4). But they all did not change the sequence of amino acids. It was 

Primer name Forward primer sequence Reverse primer sequence

Cla010721 GAGCAACTGGGGATGGCGACAT GGCAAGCACCGGCATGAGTA

Cla010725 GGCCGCCAACGTCTACATGCTT CGCCAATTCCAACGCAGAGT

Cla010726 CGACTTAGGGTTTACGGAAC GCTCTCAAAATTATCTCCCA

Cla010750 CATACTCATCCTTTATCACC TATATGTTGCAGATCGCTTT

ClYLS8 AGAACGGCTTGTGGTCATTC GAGGCCAACACTTCATCCAT

Table 1.  Sequences of the quantitative real-time PCR primers

Figure 1.  Comparison of the morphological indices between the ‘dsh’ mutant and the wild-type ‘I911’.
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predicted that Cla010721 was an asparaginase-like protein, Cla010725 was a sugar transporter, Cla010726 was a 
GA20-oxidase-like protein and Cla010750 was a FAR1-related protein.

Identification of the dwarfism gene.  We predicted the presence of four candidate dwarfism genes 
in a 27,800-kb region of watermelon chromosome 7. The highest Δ (SNP-index) value existed in the 1328 bp 
upstream region of the Cla010726 gene (Fig. 3a, Supplementary Table S3). The Cla010726 gene also appeared 
promising based on the gene annotation result. Cla010726 was predicted to be a GA20-oxidase-like protein that 
contains InterPro domain IPR005123 (oxoglutarate and iron-dependent oxygenase). The results of a BLAST 
alignment revealed that the identity between the Cla010726 and the C. sativus GA20-oxidase 2-like gene was as 
high as 86%. Additionally, the sequence identity of the encoded proteins was 82.55%. Moreover, the Arabidopsis 
thaliana GA20ox family includes GA20-oxidase 1 and GA20-oxidase 2. The results of a protein BLAST alignment 
indicated that the sequence identity between Cla010726 and AtGA20ox1 was 30.50% and between Cla010726 
and AtGA20ox2 was 29.60%. An important function of GA20ox in many plant species involves regulating GA 
concentrations. Thus, we proposed that Cla010726 is a GA20ox homolog in watermelon and named this gene 
ClaGA20ox (C. lanatus gibberellin 20-oxidase). This gene represents the most likely candidate gene responsible 
for the dwarfism of watermelon plants.

We examined the four candidate watermelon genes Cla010721, Cla010725, Cla010726 and Cla010750 expres-
sion patterns in the two parental lines by qRT-PCR to assess whether the genes expression level influences the 
development of the dwarfism phenotype (Fig. 3a). The Cla010726 expression level was considerably higher in 
‘I911’ plants than in dsh plants (P < 0.05), further suggesting that ClaGA20ox may be responsible for the dwarfism 
in watermelon plants. We examined the SNP of Cla010726 gene promoter in the F2 population by sequencing. 
The SNP analysis resulted in two SNP locating in the Cla010726 gene promoter of dsh F2 individuals (Fig. 3b).

Figure 2.  SNP-index graphs of the D-pool (a), V-pool (b), and Δ (SNPindex) (c) for the QC-seq analysis. 
The x-axis represents the position of seven chromosomes and the y-axis represents the SNP-index, which was 
calculated based on a 1 Mb window with a 10 kb step.
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Discussion
Dwarfism is an important trait in watermelon breeding. In this study, dsh was a dwarf mutant that had been iden-
tified in an inbred watermelon line derived from ‘I911’. Advantages of this dwarf mutant include its high growth 
efficiency, low soil fertility requirements, and the fact it can be grown at a high planting density. This relatively 
new germplasm resource should be further developed in the future. However, the genetic mechanism underlying 
the dwarfism phenotype remains unknown. We completed a QC-seq analysis to characterize the dwarfism in 
watermelon plants using an F2 mapping population. This method combined a high-throughput whole-genome 
re-sequencing with a bulked-segregant analysis, which represents a quicker and more efficient method of iden-
tifying a target gene. Functional orthologs of this gene with mutations have been selected as so-called “green 
revolution genes” in rice and barley.

Our analyses identified Cla010726 on watermelon chromosome 7 as a potential gene responsible for the 
observed dwarfism. This gene is a homolog of GA20ox genes found in many plant species. Thus, we designated 
this gene ClaGA20ox. A previous study revealed that GA20ox is a key oxidase enzyme that contributes to GA 
biosynthesis by catalyzing the conversion of GA12 and GA53 to GA9 and GA20, respectively, via a three-step oxi-
dation at C-20 of the GA skeleton19. Five copies of GA20ox genes have been detected in A. thaliana36. Mutations 
to this gene have different effects on overall plant growth. Specifically, the ga20ox1 line exhibits a semi-dwarf 
phenotype, whereas ga20ox2 plants are only slightly smaller than wild-type plants19. Additionally, AtGA20ox1 is 
an ortholog of the rice SD1 (semi-dwarf l) gene and barley sdw1/denso green revolution genes37. Four GA20ox-like 
genes have been identified in the rice genome18. OsGA20ox2 (or SD1) is a well-known gene that has been studied 
in green revolution rice varieties38,39. It is one of the most important genes deployed in modern rice breeding pro-
grams9,40. The sdw1/denso gene has been one of the most successful semi-dwarfing genes used in barley breeding 
worldwide41–43. Furthermore, one of the HvGA20ox2 genes was identified as a candidate gene for sdw1/denso, 
which is an ortholog of the rice sd1 gene44,45. The first GA20ox gene was isolated from pumpkin (Cucurbita 
maxima L.)46. The GA20ox gene associated with a dwarf vine was also anchored in pumpkin (C. maxima D.)15 
according to a high-density genetic map. Among the known GA20-oxidases, only that from developing pumpkin 
seeds has been shown to produce biologically inactive GA as the major product47. Transgenic lettuce carrying the 
pumpkin GA20ox exhibited a dwarfism phenotype in the T2 generation plants48. Therefore, it is reasonable to pos-
tulate that ClaGA20ox is a viable candidate gene responsible for dwarfism in watermelon plants. However, further 
evidence is needed to functionally validate this. Accordingly, we are currently generating ClaGA20ox overexpress-
ing and knock-out mutant lines for a subsequent examination of gene expression and function. Characterizing 
the mechanism underlying the dwarfism of dsh plants will likely be relevant for future molecular breeding efforts.
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