
Infection-induced IL-10 and JAK-STAT
A review of the molecular circuitry controlling immune

hyperactivity in response to pathogenic microbes
Alison J. Carey, Chee K. Tan and Glen C. Ulett*

School of Medical Sciences; Centre for Medicine and Oral Health; Griffith University; Gold Coast, QLD Australia

Keywords: molecular and cellular biology, microbes, infection and immunity, microbial pathogenesis, host response, interleukin-10

Abbreviations: IL-10R, IL-10 receptor; JAK1, Janus kinase 1; TYK2, tyrosine kinase 2; MHC II, major histocompatibility complex class II;
STAT, signal transducer and activator of transcription; PI3K, phosphatidyl inositol 3-kinase; AKT/PKB, AKT/protein kinase B;

MAPK, mitogen-activated protein kinase; SOCS, suppressor of cytokine signaling; iNOS, inducible nitric oxide synthase; NO, nitric oxide;
TNF-a, tumor necrosis factor-a; IFN-c, interferon-c; NFkB, nuclear factor k-light-chain-enhancer of activated B cells;

IkB-a, inhibitory subunit of NFkB-a; P, phosphorylation; R, receptor; HIV, human immunodeficiency virus; CMV, cytomegalovirus;
ROP16, rhoptry kinase of T. gondii; PRR, pattern recognition receptor

Generation of effective immune responses against pathogenic
microbes depends on a fine balance between pro- and anti-
inflammatory responses. Interleukin-10 (IL-10) is essential in
regulating this balance and has garnered renewed interest
recently as a modulator of the response to infection at the
JAK-STAT signaling axis of host responses. Here, we examine
how IL-10 functions as the “master regulator” of immune
responses through JAK-STAT, and provide a perspective from
recent insights on bacterial, protozoan, and viral infection
model systems. Pattern recognition and subsequent molecular
events that drive activation of IL-10-associated JAK-STAT
circuitry are reviewed and the implications for microbial
pathogenesis are discussed.

Balanced Antimicrobial Defense Hinges
on the IL-10-JAK-STAT Module

Innate immune activation in response to microbial pathogens
occurs as a result of recognition of foreign microbes or their
products by phagocytes via pattern recognition receptor (PRR)-
dependent mechanisms. This leads to the activation of crucial
phagocyte effector functions to combat microbes including the
synthesis of reactive oxygen and nitrogen species, and generation
of phagolysosomal proteases that mediate killing of invading
microbes.1 Recognition of microbes by immune surveillance
cells such as macrophages using PRRs initiates a signaling cascade
that leads to the production of cytokines including interleukins
(IL) and chemokines that drive antimicrobial mechanisms and
regulate inflammatory responses to clear infection and achieve
convalescence.

The transition of macrophages into effector cells for anti-
microbial killing typically stems from the classical pathway of
activation by T cell- or NK cell-derived interferon (IFN)-c. This
largely occurs via the family of signal transducers and activators
of transcription known as the STAT proteins that relay activa-
tion messages from ligated cytokine receptors at the cell surface
to the nucleus for transcriptional activation.2 STAT1, after its
phosphorylation at the IFN-c receptor, is a starting point for
classical macrophage activation because it induces a broad
transcriptional program that includes many antimicrobial effector
mechanisms. STAT3, on the other hand, has been labeled “the
anti-inflammatory STAT.”1 These two opposing STAT signaling
mechanisms exist at the crossroads of immune activation and
suppression, and it is here that STATs influence microbial disease
pathogenesis. Interruption or interference to normal STAT
signaling mechanisms can dramatically alter the host response to
infection with various pathogens and predispose individuals to
disease as recently reviewed elsewhere.3

In the last few years, IL-10 has garnered renewed interest as
a key modulator of innate immune responses to pathogenic
microbes because several studies have revealed novel functions
of this cytokine in the control of infectious disease.4-8 An
emerging theme is to resolve how PRRs such as Toll-like receptors
(TLRs) coordinate their actions upon sensing foreign microbes
with Janus kinase (JAK)-STAT circuitry to link IL-10 with diverse
pathogen recognition events, microbial survival strategies, and
downstream effector mechanisms for host defense. Host responses
to microbes resulting from the ligation of TLRs such as TLR4 for
LPS,9 TLR2 for lipoteichoic acid,10 TLR5 for flagellin mono-
mers11 and TLR9 for CpG motifs12 are carefully regulated to
control the degrees of immune activation and suppression during
disease.13 The role of IL-10 as a major regulator that connects
these recognition events with appropriately balanced pro- and
anti-inflammatory responses is underscored by these recent
studies, which illustrates the complexity of IL-10 actions in
overall host defense at the axis of infection-immunity.4-8
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Molecular pathways of IL-10 signaling through JAK-STAT are
not only associated with antimicrobial defense against potential
pathogens but evidence is accumulating that these pathways are
also involved in tolerance to commensal flora. Lactobacillus
rhamnosus for example, as a normal microbe inhabitant of the
placental mucosa, triggers signaling pathways involving IL-10 and
JAK-STAT to control tumor necrosis factor (TNF)-a production,
which prevents pre-term birth.14 This example of moderation of
local inflammatory conditions by lactobacilli during pregnancy is
not the only commensal-host interaction that relies on the IL-10-
JAK-STAT circuitry for good human health outcomes. The role
of IL-10 and STAT3 in maintenance of tolerance and homeostasis
in the gut, for example, is evident from seminal papers describ-
ing the development of chronic enterocolitis in gene-deficient
mice.15,16 More recently, the identification of pediatric patients
with mutations in the IL-10 receptor who develop enterocolitis
shows the relevance of IL-10 for tolerance to gut commensals in
the human system.17 These observations show that commensals
interact with local immune surveillance mechanisms and IL-10
and its related JAK-STAT signaling module serves to safeguard
against potentially tissue-damaging inflammation. Importantly,
the underlying molecular mechanisms of immune signaling that
occur subsequent to commensal or pathogen detection and IL-10
production, including how IL-10 affects JAK-STAT circuitry,
how it deactivates pathogen-sensing cells and how this influences
microbial clearance during infection is an area of intense current
research. Here, we examine recent studies of IL-10 at the nexus
of infection immunity in the context of immune suppression
through JAK-STAT and consider the consequences of down-
stream signaling through this module for microbial pathogenesis.

Diverse Pathogens Induce IL-10
and Activate the IL-10 Receptor Complex

IL-10 is a prototypic anti-inflammatory cytokine that is pro-
duced in response to a multitude of pathogens18 and acts as the
master regulator of immunity to infection as recently reviewed
elsewhere.19 In acute infection, one of the central roles for IL-10
is to deactivate macrophages and terminate inflammatory res-
ponses in order to limit excessive release of tissue-damaging, pro-
inflammatory mediators that are synthesized by cells such as
macrophages to kill microbes. IL-10 is released from various cells
including macrophages, dendritic cells, subsets of CD4+ and
CD8+ T cells and B cells, and therefore functions as a vital
immune modulator at various stages of infection.19 The role of
IL-10 in limiting collateral tissue damage that arises from acute

inflammation in both infectious and non-infectious disease has
been increasingly characterized over the past 5 y.20-24 In addition
to acute infectious conditions and the aforementioned effects
mediated by commensal flora, the influence of IL-10 on micro-
bial pathogenesis is nuanced in states of chronic infection such
as with mycobacteria, for example, where the immune suppres-
sive effects of IL-10 can promote the survival of microorganisms
and contribute to persistent disease. In this regard, some patho-
gens appear to proactively induce IL-10 as a virulence strategy to
interfere with inflammation and proactively abrogate antimicro-
bial effector functions. Mycobacterium avium, for example, is one
of several pathogenic bacteria that induces IL-10, which, follow-
ing ligation of the IL-10 receptor complex and the triggering of
subsequent JAK-STAT signaling cascades, influences the progres-
sion of infection (Fig. 1).25 Similarly, M. avium-induced IL-10
prevents TNF-a production and macrophage apoptosis, and this
may represent one possible mechanism for increased pathogen
survival by providing an intracellular niche.25 Other examples of
IL-10 induction by pathogens leading to chronic infection include
Leishmania major26 and M. tuberculosis.27,28

Functionally, IL-10 exerts its immune suppressive and other
effects by interacting with the IL-10-specific receptors, IL-10
receptor-a (IL-10R1) and -β (IL-10R2). These receptors partner
as a complex and are expressed only on hematopoietic cells
including B cells, T cells, NK cells, macrophages and mono-
cytes.29 Both are members of the class II cytokine receptor
family.30 IL-10R1 acts as the ligand binding chain while IL-10R2
functions as the accessory chain that recruits JAKs to the intra-
cellular domain.29 Activation of the IL-10 receptor complex
necessitates a tetramer consisting of two IL-10R1 and two
IL-10R2 chains, which bind homodimeric IL-10 to the extra-
cellular domains of IL-10R1 (Fig. 1).29 IL-10R2 does not bind
to IL-10 directly31 and binding of IL-10 to IL-10R1 without the
co-presence of IL-10R2 fails to initiate signal transduction and
relay of the immune regulatory message from IL-10. Successful
engagement of the IL-10 receptor complex subsequently activates
distinct JAK-STAT pathways and downstream signaling events
that converge through various mechanisms to influence nuclear
transcriptional events such as those mediated by NFkB (Fig. 1).32

IL-10 Biological Effects during Infection Occur
via JAK-STAT Signal Relay

Engagement of the JAK-STAT signaling circuit by ligation of the
IL-10 receptor complex occurs principally through STAT3. This
is most likely to involve mediator genes induced by STAT3

Figure 1 (See opposite page). Interactions between microbial pathogens and IL-10-JAK-STAT signaling pathway elements. Recent studies (reference
shown in parentheses) have shown C. burnetii, M. avium, S. agalactiae and other Gram-negative pathogens induce IL-10 synthesis in contrast to protozoa
such as L. major and commensal L. rhamnosus that inhibit its production. STAT3, normally recruited and phosphorylated at the IL-10 receptor complex,
are directly engaged by pathogens including S. enterica and T. gondii. Viruses such as HIV also affect STAT3 directly, or indirectly by producing homologs
that compete with IL-10 for receptor complex docking sites, as shown for CMV. Nuclear translocation of active STAT3 for contact with STAT binding
elements is a potential pathway element for pathogen-driven effects that has not yet been described. SOCS1 and SOCS3, induced as a result of IL-10
signaling through MAPK and AKT/PKB, suppress LPS/TLR4/CD14-induced IL-10, IL-6 biological activity from gp130 receptors, MHC class II, and STAT1-
induced mediators including NO, TNF-a and IFN-c. Microbes such as L. major hijack this element within the pathway to abrogate suppressive effects
of SOCS toward active STAT3 as a mechanism of interfering with antimicrobial responses in macrophages.
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transcriptional activity because the inhibitory effects of IL-10
require new protein synthesis. Recently, activated STAT3 was
shown to initiate the biological effects of IL-10 in a tristetraprolin
(TTP)-dependent manner.33 TTP removes certain cis-acting
A + U rich (ARE)-containing unstable mRNAs such as TNF-a
but is not the sole major mediator of IL-10-inhibitory effects
because of the emerging picture that there is no single master
mediator of IL-10-induced deactivation. Rather, multiple IL-10-
induced genes control certain aspects of macrophage activation/
deactivation and mediate distinct parts of the anti-inflammatory
effects of IL-10. These include, for example, Bcl-3, which controls
TNF-a but not IL-6, Dusp1, which blocks p38 mitogen-activated
protein kinase (MAPK) and inhibits IL-6 and several chemokines
(but not IL-12p40)34 and Nfil3, which inhibits IL-12p40
expression.35 STAT3-induced genes appear to act as transcrip-
tional suppressors, inhibiting the recruitment of activating
factors to target promoters, and may even induce secondary
mediators.1 Products from STAT3 target genes can impede signal
transduction from cell surface receptors and activate NFkB and
MAPK pathways that directly control pro-suppression and pro-
inflammatory transcriptional events in the nucleus (Fig. 1).
While some studies have shown that IL-10 can activate STAT1
directly36,37 this pathway of signaling has not been associated with
the anti-inflammatory effects of IL-10, and the precise outcomes
of IL-10 signal relay through STAT1 remain unclear. Moreover,
while IL-10 mediates its suppressive effects via the activation of
STAT3, it is not the only cytokine to do so. IL-6 family cyto-
kines including IL-6 and IL-11 also activate STAT3 and, to a
lesser extent, STAT1, as well as MAPK and phosphatidylinositol
3-kinase (PI3K) cascades through the gp130 receptor to bring
about its pleiotropic actions including anti-inflammatory effects,
as recently reviewed elsewhere.38,39

Upon binding of IL-10 to its receptor complex, phosphoryla-
tion of the receptor-associated protein tyrosine kinases, JAK1 and
TYK2 occurs (Fig. 1). JAK1 is recruited to the intracellular
domain by the IL-10R1 chain, while TYK2 is recruited to the
receptor complex by IL-10R2.40 These kinases serve as a tem-
porary docking site for inactive cytosolic STAT1 and/or STAT3,41

which are recruited by JAK1 and TYK2 to the site upon
phosphorylation of the IL-10R1 chain at two tyrosine residues.29

The STATs bind to the IL-10R1 chain via the Src homology 2
(SH2) domain and are tyrosine-phosphorylated by the receptor-
associated JAKs. Activation of STAT3 leads to its homodimeri-
zation (similar to STAT1) and, although STAT1:STAT3
heterodimers have been described, evidence for these in IL-10
signal transduction is lacking.37,41 Translocation of activated
STATs to the nucleus enacts high affinity binding with STAT-
binding elements (SBEs), which promotes transcription of IL-10
responsive genes, including, for example, transcriptional regula-
tors (Bcl-3 and Nfil3), signaling modulators (Dusp1), and those
that can contribute to alternative macrophage activation.42

Regulation of JAK-STAT signal transduction downstream of
the IL-10 receptor complex occurs at both the extracellular and
intracellular interface to prevent excessive immune suppression or
alternative macrophage activation that can impede efficient anti-
microbial activity. Several regulators antagonize the translocation

of signal transducers that induce the transcription of various IL-10
responsive genes within the nucleus such as those aforementioned.
The most studied regulators in this regard are the suppressors of
cytokine signaling (SOCS) proteins. SOCS1 and SOCS3 are both
produced in response to IL-10, and both function to suppress
JAK-STAT signaling, but via different mechanisms.43 In this
manner, SOCS1 and SOCS3 regulate pro-inflammatory
responses including TNF-a, IFN-c, IL-6 and nitric oxide
production via negative feedback loops that operate alongside
IL-10 signaling.43-48 Where SOCS1 suppresses JAK activity
directly by binding of its SH2 domain to tyrosine-phosphorylated
JAK, SOCS3 necessarily binds to the activated receptor to inhibit
JAK activity.43 Both SOCS also indirectly affect IL-10-associated
JAK-STAT signaling through the MAPK system.49,50 With regard
to pro-IL-10 responses, SOCS3 is produced in an LPS-dependent
manner in macrophages as a result of TLR4 signaling, which
activates the MAPK signaling cascade of ERK1/2, p38 and JNK.51

This induces IL-10, which drives JAK-STAT by activating
STAT3, and this triggers further SOCS3 production.51 IL-10
induces STAT3 activation in monocytes52 thereby suppressing
pro-inflammatory responses including TNF-a and NO produc-
tion.45,46 SOCS3 is also the main negative feedback regulator for
IL-6-mediated activation of the JAK-STAT pathway.53 However,
it is important to note that SOCS3 is not a mediator of
macrophage deactivation per se, although it is induced strongly by
IL-10. Instead, SOCS3 controls STAT activation by IL-6.54-56 In
the absence of SOCS3, IL-6 causes persistent STAT3 activation
that correlates with an anti-inflammatory effect similar to the one
induced by IL-10. IL-10 signaling appears to be insensitive to
SOCS3 as a feedback inhibitor probably because the IL-10
receptor complex has no phosphotyrosine motifs to act as a
SOCS3 recruitment site.53 SOCS1, the main function of which is
the negative control of IFN-c signaling,57 is also produced in an
IL-10-dependent manner, and is thought to be responsible for the
negative feedback inhibition of IL-10.53 Thus, both SOCS are
involved in negative feedback inhibition of JAK-STAT signaling
through distinct mechanisms, which enables them to contribute
to fine-tuning IL-10 signaling and aid the balance of pro-
inflammatory responses during infection.

Another regulatory mechanism in place to control the IL-10-
JAK-STAT circuit is post-translational modification of STATs
(including STAT3) by acetylation and serine phosphorylation.
These effects provide some late-stage signal control to modulate
the circuit after initiation of signaling, but also, some early control
since, for example, STAT3 serine727 phosphorylation occurs
rapidly after IL-10 or IL-6 stimulation and can influence STAT
activity and cell differentiation.58 Other late-stage regulatory
mechanisms include the protein inhibitors of activated STATs
(PIAS), such as STAT3-specific PIAS3.59 The extent to which
these late-stage mechanisms exert control over IL-10 signaling
subsequent to STAT3 activation, however, remains unclear.60

One other class of negative regulators of cytokine secretion also
impacts IL-10 activity: the so-called SH2-containing protein
tyrosine phosphatases (SHPs).61 While PIAS proteins inhibit
STAT dimerization and prevent STATs interacting with DNA,
which restricts their availability,62 SHPs, in contrast, inhibit
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signaling by recruitment to phosphorylated tyrosine residues
after JAK activation and dephosphorylate signaling components
essential to kinase activation.61,62 Together, these composites of
late-stage regulatory mechanisms illustrate the balance of IL-10-
JAK-STAT signaling that is required to manage successful
antimicrobial responses.

Finally, several accessory molecules influence the modulation
of antimicrobial function in response to IL-10 through STAT3.
One pathway that influences the IL-10 JAK-STAT circuit is
through the kinases PI3K-Akt-glycogen synthase kinase 3 (GSK3)
(PI3K-Akt-GSK3). This module was recently shown to positively
regulate STAT3 signaling in macrophages.63 SOCS1 and SOCS3
positively regulate kB-containing promoter activity in a NFkB
subunit p65/RelA-dependent manner in macrophages, leading to
modulation of NFkB signaling and transcriptional responses.47,64

The exact mechanism behind this is not yet clear however it may
be that the SOCS proteins inhibit the activation of STATs,
which, in turn alleviates the competition between STATs and
RelA for binding p300 in the nucleus, leading to activation of
RelA-dependent transcription.65 IL-10 also induces Bcl-3,66,67

which interacts with the p50 subunit of NFkB, to bind to the
TNF-a promoter and inhibits its production in response to LPS.
Bcl-3 can boost NFkB-dependent gene transcriptional activation,
so it may contribute to the inhibition of cytokines by upregulating
IL-10-induced genes.1

Microbes Influence Pathogenesis Directly
through the IL-10-JAK-STAT Circuit

The best-studied microbial product in relation to IL-10 synthesis
and JAK-STAT signal transduction is LPS. Overall, IL-10 causes
the downregulation of a number of LPS-inducible genes that
encode pro-inflammatory mediators including IL-1 and IL-6,67,68

IFN-c-inducible genes including the nitric oxide synthase gene,69

and IL-4-inducible genes including those encoding MHC class
II.70 The products of these genes contribute to effective anti-
microbial responses against several pathogens, which helps to
explain the deleterious effects of IL-10 on immune control of
these infections.71 In contrast, IL-10 is essential to the control of
fatal hyperactive immune stimulation caused by the over-
production of these mediators during systemic LPS challenge.72

This is illustrated in Figure 1 where systemic LPS drives exces-
sive STAT1-triggered pro-inflammatory responses after initial
signaling through TLR4, resulting in responses that cannot be
controlled by SOCS-regulated immune suppression. Here,
IL-10 determines the transition from reversible sepsis to
irreversible shock by counterbalancing pro-inflammation with
pro-suppression.73

For some pathogens, the LPS effects on IL-10 responses play
an important role in pathogenesis. In Bordetella pertussis infection,
for example, innate resistance hinges on TLR4 recognition of
LPS and subsequent synthesis of IL-10, which inhibits inflam-
matory pathology that contributes to disease.74 Additional pro-
tective roles for IL-10 in reversing the lethal effects of LPS were
recently shown in a lung injury model that examined IL-18
supplementation and the requirement of IL-10 in immune

protection.75 Further evidence of the beneficial biological impact
of IL-10 in specific infection involving LPS comes from studies
in conditional STAT32/2 mice, where mice develop endotoxemia
from excessive TNF-a, IL-1β and IFN-c and succumb to septic
peritonitis and multiple organ failure during systemic infec-
tion.16,76 These observations demonstrate the essential link
between IL-10 and STAT3 for moderation of immune hyper-
activity in response to Gram-negative pathogens and control of
acute disease. Finally, a recent study showed that mice are
protected from lethal endotoxic shock by liposomal delivery of
SOCS3 plasmid DNA, which inhibits the development of macro-
phage LPS tolerance, although these observations need to be
confirmed.77 Such endotoxin tolerance and refractory phenotypes
in monocytes, which are associated with systemic Gram-negative
infection and the progression of sepsis, are associated with a failure
to upregulate inflammatory cytokines as a result of IL-10
synthesis.78 Thus, liposomal delivery of SOCS3 might represent
an attractive means of controlling hyperactive immune responses
at the level of systemic infection. In models of immune
protection, prevention of LPS-induced TNF-a through IL-10-
mediated JAK-STAT signaling via STAT3 probably represents
the major mechanism of counter-acting brutal inflammatory
responses that mediate collateral tissue pathology.32 Separate
from TLR4, however, there are numerous other bacterial factors
that influence JAK-STAT signaling events associated with IL-10
following activation of TLRs. For example lipoteichoic acid,
which signals through TLR2, and CpG-ODN that signals
through TLR9, are both able to inhibit the ability of IL-10 to
induce the phosphorylation of STAT3 in macrophages through
suppression of IL-10R function.79 There are also reports of other
specific virulence-associated bacterial molecules effecting IL-10
activities following TLR ligation, separate from TLR4 engage-
ment by LPS. For example, LcrV protein from Yersinia pestis
specifically hijacks the TLR2/6 pathway to stimulate IL-10
production, and this impedes host protective inflammatory
responses.80-82 The role of defined JAK-STAT signaling mechan-
isms in these IL-10 responses however, including those responses
triggered by LcrV remains largely uncharacterized.

The relevance of observations of the effects of bacterial
molecules beyond LPS on the signaling activity of the IL-10-
JAK-STAT module is exemplified in infections involving strict
intracellular pathogens such as Coxiella burnetii and leishmania.
Here, the pathogenesis of infection is dramatically influenced by
the dynamics of IL-10 and downstream JAK-STAT signaling
through STAT3. In Q fever, for example, the genes for both
IL-10 and STAT3 are highly upregulated by C. burnetii in
males.83 This response has been correlated with IL-10-associated
bacterial survival in monocytes where the immune suppressive
effects of STAT3 activation may dampen cellular antimicrobial
effector mechanisms and lead to poor microbe killing.84 In
macrophages engineered to overexpress IL-10, C. burnetii survival
has been associated with a non-microbicidal transcriptional pro-
gram consisting of increased expression of arginase-1, mannose
receptor and Ym1/2. This contrasts with a phenotype of indu-
cible NO synthase and inflammatory cytokines needed to kill
the bacteria, which occurs in the absence of high level IL-10
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synthesis.85 These findings illustrate the importance of the
level of activation of the IL-10-JAK-STAT circuitry based on
engineered cell lines, which are impossible to gauge in IL-10-
deficient or STAT32/2 mice. Similarly, transgenic mice over-
expressing IL-10 can be good models with which to study the
effects of IL-10 in chronic infections.42,86-88 Analogous to the
pathogenesis of C. burnetii infection, IL-10 blocks bacterial killing
in Mycobacterium tuberculosis-infected human macrophages by
inhibiting phagosome maturation. In this case, the effect of IL-
10 was shown to be STAT3-dependent, but independent of
MAPKp38 and ERK1/2 activity in a recent study.89 In contrast
to the pathogenesis of Q-fever, the production of SOCS3 in
certain protozoan diseases appears to represent an essential
negative feedback mechanism for driving immunity against
intracellular parasites. For example, during Leishmania major
infection, the production of SOCS3 diminishes IL-10 synthesis,
which contributes to effective protozoan clearance (Fig. 1).90,91

Leishmania donovani, on the other hand, induces IL-10, and the
subsequent STAT3 activation that drives the expression of IL-
4Ra and arginase 1 enables these intracellular pathogens to
circumvent NO-dependent killing by macrophages.92 The dif-
ferential effects of IL-10 during infection with intracellular
pathogens such as these may depend on the cellular source of
IL-10 during infection and its interaction with infected vs. non-
infected cells, as recently reviewed.49

Recent studies on classical extracellular pathogens that display
intracellular lifestyle traits such as E. coli93-95 and streptococci96,97

have also revealed roles for IL-10-JAK-STAT signaling in disease
pathogenesis. Uropathogenic E. coli (UPEC) are a primary
cause of urinary tract infections whereas Streptococcus agalactiae
mediates infections during pregnancy, and in neonates and elderly
individuals.98 Observations that UPEC can invade and replicate
within epithelial cells suggest that this organism may occupy an
intracellular niche within the host. UPEC is also able to survive
within primary mouse bone marrow-derived macrophages and a
recent study suggested that some UPEC might subvert macro-
phage antimicrobial pathways similar to intracellular pathogens.93

S. agalactiae also displays some intracellular lifestyle straits such
as survival in macrophages and induction of apoptosis in host
cells.99 Both of these microbes trigger upregulation of IL-10
during infection of the urinary tract, and for UPEC this is
associated with JAK-STAT signaling and SOCS3.7 In fact, JAK-
STAT signaling was among the most highly activated canonical
pathways triggered by UPEC during cystitis.7 Thus, IL-10 and
related JAK-STAT signaling appears to be important in early
immune responses in the bladder to these pathogens that display
some traits of intracellular lifestyles within the host.

Viral-host pathogen studies have also provided important
insights into the role of IL-10 in antimicrobial responses at the
JAK-STAT axis. In co-infection models of HIV, for example,
the virus stimulates infected cells to produce IL-10, which
activates STAT3 to impede autophagy of bystander macrophages
and monocytes (Fig. 1). The inhibition of phagocytic cell death
has a direct impact of the pathogenesis of co-infection with
other intracellular pathogens, whereby macrophages are pre-
vented from normal killing of co-infecting M. tuberculosis and

Toxoplasma gondii.100 Cytomegalovirus (CMV), which is typically
associated with disease in the immune-compromised such as
HIV-infected persons, synthesizes its own IL-10 homologs.
These viral-derived IL-10 homologs interact with the IL-10
receptor complex on human cells, and thereby, directly compete
with human IL-10 for receptor binding. As a result, CMV IL-10
homologs interfere with downstream signaling events stemming
from ligation of the IL-10 receptor complex during immune
responses to the virus (Fig. 1), which circumvents elimination of
the virus and leads to chronic infection.101 In the pathogenesis
of acute CMV infection, however, IL-10R signaling has been
implicated in promoting the survival of NK cells, which con-
tribute to innate responses and effective clearance of the virus.102

Together, the nuanced effects of IL-10 signaling through JAK-
STAT during HIV and CMV infection emphasize the varied
outcomes that can result from viral interference with this circuit
in acute and chronic disease depending on the virus and
circumstances of infection.

Some Pathogens Can Activate STAT3
Independent of IL-10

Many immune suppression signals in response to microbes occur
as above through engagement of the IL-10 receptor complex
and activation of the cognate downstream JAK-STAT module.
However, not all mechanisms of immune suppression during
infection are absolutely dependent on these signaling pathways
through the IL-10-JAK-STAT module. For example, the
intracellular pathogen T. gondii activates JAK-STAT signaling
including anti-inflammatory STAT3 in an IL-10-independent
manner103 to bring about suppression of TNF-a synthesis during
infection and macrophage apoptosis (Fig. 1). Interference with
host cell death is important in pathogenesis since enhanced
microbe clearance related to the induction of apoptosis is a
known effector mechanism in combating some intracellular
pathogens.104 The suppressive effects of Toxoplasma on LPS-
induced cytokine synthesis and IFN-c-induced nitric oxide are
mediated by the microbes’ rhoptry kinase, ROP16, which is
injected into the host cell. Here, the enzyme activates STAT3,
as well as STAT6 to bring about immune suppression that
includes direct effects on arginase-1.105,106 Mice harboring a
deletion of SOCS3 in macrophages succumb to toxoplasmosis,
but their resistance is restored by anti-IL-6 administration,
suggesting that in the absence of SOCS3, macrophages are
hypersensitive to the anti-inflammatory properties of IL-6.107

These signaling events involving STAT3 and SOCS3 during
T. gondii infection directly impact the pathogenesis of disease but
do so independently of IL-10. Similar to T. gondii, Salmonella
enterica induces IL-10-independent STAT3 activation in macro-
phages via an unknown mechanism. Immune suppression
prevents severe inflammatory consequences at the gut epithelium
associated with this infection.108 Thus, both of these organisms
provide examples of microbes that induce immune suppression
via STAT3 activation in an IL-10-independent manner, which
influences microbe survival and pathogenesis. It will be impor-
tant to determine the mechanisms of how these pathogens

164 JAK-STAT Volume 1 Issue 3



induce STAT3-driven immune suppressive effects independent
of IL-10. For example, are there homologs of ROP16 that can
activate STAT3 as observed for the protozoan T. gondii in other
bacterial pathogens? What role, if any, do other cytokines such
as IL-6 have in IL-10-independent activation of STAT3 during
infection for immune suppression in response to pathogens like
T. gondii and S. enterica?

Conclusions

The interplay that occurs between signaling pathways in response
to IL-10 and antimicrobial outputs has emerged as a complex
series of activating and inhibitory regulatory molecules that
function through JAK-STAT. How pathogens hijack the JAK-
STAT module through IL-10-dependent and -independent
mechanisms in a manner that benefits their survival within the

host is an intriguing area of current research. There are many
other questions in addition to those above related to what gene
targets are activated by pathogens that utilize the IL-10-JAK-
STAT module for subversion of host immune responses. How
such targets might be exploited for therapeutic benefit will be
an important area for future exploration. In light of the recent
studies these areas of research are primed for investigation.
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