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Aim. To elucidate the mechanism of action of berberine on ischaemic stroke based on network pharmacology, bioinformatics, and
experimental verification. Methods. Berberine-related long noncoding RNAs (lncRNAs) were screened from public databases.
Differentially expressed lncRNAs in ischaemic stroke were retrieved from the Gene Expression Omnibus (GEO) database.
GSE102541 was comprehensively analysed using GEO2R. 0e correlation between lncRNAs and ischaemic stroke was evaluated
by the mammalian noncoding RNA-disease repository (MNDR) database. 0e component-target-disease network and protein-
protein interaction (PPI) network of berberine in the treatment of ischaemic stroke were constructed by using network
pharmacology. We then performed gene ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment
analyses. Finally, according to the molecular docking analysis and the binding probability between the lncRNA and key proteins,
the effectiveness of the results was further verified by in vitro experiments. Results. After matching stroke-related lncRNAs with
berberine-related lncRNAs, four genes were selected as potential targets of berberine in the treatment of ischaemic stroke.
Subsequently, lncRNA H19 was identified as the potential crucial regulatory lncRNA of berberine. Here, 52 target proteins of
berberine in the treatment of ischaemic stroke were identified through database mining. 0rough topological analysis, 20 key
targets were identified which were enriched in inflammation, apoptosis, and immunity. Molecular docking results showed that
MAPK8, JUN, and EGFR were central genes. Finally, in vitro experiments demonstrated that lncRNA H19, p-JNK1/JNK1, p-c-
Jun/c-Jun, and EGFR expressions were significantly increased in hypoxia-treated SH-SY5Y cells and were restored by berberine
treatment. Conclusion. 0e potential targets and biological effects of berberine in the treatment of ischaemic stroke were predicted
in this study. 0e lncRNA H19/EGFR/JNK1/c-Jun signalling pathway may be a key mechanism of berberine-induced neuro-
protection in ischaemic stroke.

1. Introduction

Stroke is a type of cerebrovascular disease that causes a
disability and even death worldwide. Clinically, ischaemic
stroke is more common than haemorrhagic stroke, ac-
counting for 87% of all cases, and it has become the focus of
most research [1]. Ischaemic stroke is caused by cerebro-
vascular stenosis or occlusion, and it is characterised by high

complication and mortality rates [2, 3]. In recent years, with
rapid economic development and population ageing,
ischaemic stroke has become the fourth leading cause of
death worldwide [4]. At present, the clinical treatment of
ischaemic stroke mainly focuses on ultraearly thrombolysis,
acute neuroprotection, and restoration of neurovascular
structure and function in the recovery period. Intravenous
thrombolytic therapy is the most effective method to restore
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blood flow within 4.5 hours after stroke [5]. However, most
patients are still at risk of neurological deficits even if
thrombolysis is successful. 0erefore, it is urgent to find
potential drugs for ischaemic stroke.

Recent studies have shown that lncRNAs, as endogenous
small molecules, are extensively involved in the pathogenesis
of ischaemic stroke [6–8]. A clinical study has found that the
Rs217727 polymorphism of the lncRNA H19 gene is closely
related to susceptibility to ischaemic stroke and can be used
as a potential marker of ischaemic stroke [9]. At present, the
treatment of ischaemic stroke with traditional Chinese
medicine (TCM) targeting lncRNAs has also become a
hotspot in the research field [10, 11]. In addition, lncRNAs
regulated by berberine are involved in a variety of complex
pathophysiological processes, including inflammation, oxi-
dative stress, and apoptosis [12, 13]. All these processes may
be closely related to ischaemic stroke. 0erefore, it is rea-
sonable to expect that berberine-regulated lncRNAs may
play a crucial part in ischaemic stroke. However, the related
pathological mechanism is not clear.

Berberine, a natural isoquinoline alkaloid extracted from
Coptis chinensis, Phellodendron amurense, and other Chi-
nese herbal medicines, possesses various biological functions
[14–16]. Mounting evidence has shown that berberine can
easily penetrate the blood-brain barrier (BBB) and possesses
potent neuroprotective and anti-inflammatory effects
against a variety of neurological disorders, such as ischaemic
stroke, Alzheimer’s disease, and subarachnoid haemorrhage
injury [17–19]. Zhu et al. discovered that berberine may
improve functional recovery and promote angiogenesis
following transient middle cerebral artery occlusion via
AMPK-dependent microglial M2 polarization [20]. Clinical
studies have found that berberine improves the degree of
neurological deficit and the prognosis of patients with acute
cerebral infarction and that it has an important regulatory
effect on CXCL6, IL-33, and MMP9 levels [21–23]. Recently,
accumulating evidence has demonstrated that berberine has
good therapeutic effects on ischaemic stroke, but the specific
mechanism of berberine intervention needs to be further
clarified.

In the past few years, bioinformatics and microarray
techniques have been widely used to mine genetic targets for
a variety of diseases to help researchers identify differentially
expressed genes and potentially different signalling pathways.
Based on these approaches, more lncRNAs will be discov-
ered, which will expand our understanding of the molecular
mechanisms underlying ischaemic stroke. Network phar-
macology integrates the technology and content of systems
biology, multidirectional pharmacology, network analysis,
and other disciplines, and it systematically evaluates the
interaction mechanisms between diseases and drugs [24, 25].
0e main characteristics of network pharmacology include
integrity and systematic interconnection, which are consis-
tent with the overall concept of TCM, the basic characteristics
of syndrome differentiation and treatment, and the concept
of compatibility in TCM [26]. Network pharmacology reveals
the interaction network of drugs, targets, and diseases, which
aids in the preliminary understanding of the mechanism of
multitarget drug treatment of complex diseases [27].

Here, to elucidate the pharmacological mechanism of
berberine, we adopted a systematic method based on bio-
informatics analysis, network pharmacology, and experi-
mental verification of berberine intervention on ischaemic
stroke. 0is approach provides an effective strategy to ex-
plore the molecular mechanism of berberine against
ischaemic stroke and to identify potential protein targets
with synergistic effects. A flowchart of the study is shown in
Figure 1.

2. Materials and Methods

2.1. LncRNA Prediction of Berberine in Ischaemic Stroke

2.1.1. Berberine-Related LncRNA Screening. As of October
20, 2021, we conducted literature searches in PubMed,
EMBASE, CNKI database, and Google Scholar database to
search for qualified studies detailing the biological effects of
berberine-related lncRNAs in diseases. 0e following MeSH
or free text terms were used to search the databases:
(“berberine” OR “BBR”) and (“long noncoding RNA” OR
“lncRNA”).

2.1.2. Retrieval of Ischaemic Stroke-Related LncRNAs.
Ischaemic stroke-related lncRNAs were obtained from the
GEO database (https://www.ncbi.nlm.nih.gov/geo/) [28, 29].
0e GSE102541 dataset comprised the lncRNA expression
data of acute cerebral infarction (ACI) (n� 6) and healthy
controls (Con) (n� 3), and it was processed using the
GEO2R online analysis tool. 0e diagram was plotted by an
online platform (https://www.bioinformatics.com.cn) for
data analysis and visualisation. 0e cut-off criteria in this
analysis were set as P value <0.05 and |log2(fold change)| >1.

2.1.3. Crucial Regulatory LncRNA Involving Berberine in
Ischaemic Stroke. 0e intersection of berberine-related
lncRNAs and ischaemic stroke-related lncRNAs was visual-
isedusing anonlinemapping tool (https://bioinformatics.psb.
ugent.be/ webtools/Venn/). MNDR is a database that curates
the associations between ncRNAs and disease [30]. To further
understand the relationship between lncRNAs and ischaemic
stroke, we evaluated their correlation using the MNDR3.1
database (https://www.rna-society.org/mndr/home.html).

2.2. Prediction of Target Proteins Involving Berberine in
Ischaemic Stroke

2.2.1. Target Proteins of Berberine. Berberine structure in-
formation was obtained from NCBI PubChem (https://
pubchem.ncbi.nlm.nih.gov/) [31]. 0erapeutic target genes
involving berberine in IS were acquired from the Swiss
Target Prediction (http://www.swisstargetprediction.ch/)
[32], SymMap (https://www.Symmap.org/) [33], Compar-
ative Toxicogenomics Database (CTD) (https://ctdbase.org/)
[34], STITCH (https://stitch.embl.de/) [35], SEA (https://
sea.bkslab.org/) [36], and Targetnet (https://targetnet.scbdd.
com/) [37]. STITCH selected the targets with scores ≥0.8,
and Targetnet selected targets with probabilities ≥0.85 in the
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prediction results for further analysis. With the help of the
UniProt database (https://www.UniProt.org/), the species
was limited to “human” [38].

2.2.2. Potential Targets in Ischaemic Stroke. All targets as-
sociated with ischaemic stroke were collected from the
0erapeutic Target Database (TTD) (https://db.idrblab.net/
ttd/) [39], DrugBank (https://www.drugbank.ca/) [40],
GeneCards (https://www.genecards.org/) [41], and Dis-
GeNET (https://www.disgenet.org/) [42]. After amalgam-
ation of the targets from the four databases, Venny 2.1.0
(https://bioinfogp.cnb.csic.es/tools/venny/) was used to map
the component targets of berberine to the disease targets of
ischaemic stroke [43].

2.2.3. PPI Data. 0e potential targets of berberine in the
treatment of ischaemic stroke were imported into the
STRING database (https://string-db.org/) [44], and the
protein interaction network of the target groups was con-
structed. 0e species was set as “Homo sapiens,” and the
minimum interaction threshold was set to 0.9. Cytoscape 3.8
software (https://www.cytoscape.org/) was used to draw a
PPI network diagram for visual analysis [45].

2.2.4. Screening of Crucial Target Proteins. Combined with
the related literature and with the help of topological pa-
rameters, such as closeness centrality (Cc), eigenvector
centrality (EC), network centrality (NC), local average
connectivity (LAC), betweenness centrality (BC), and degree
(DC), the CytoNCA network topology analysis plug-in [46]

was used to further analyse the PPI network topology
structure. 0e number of nodes was more than twice the
median value of the DC and BC, and the Cc, EC, NC, and
LAC nodes larger than the median value were considered to
be crucial target proteins in the protein interaction
networks.

2.2.5. Enrichment Analysis. To further explain the role of the
target proteins in the active components of TCM on gene and
pathway functions, we used the DAVID database (https://
david.ncifcrf.gov/) to perform GO and KEGG enrichment
analyses [47]. Enrichment P values <0.01 were considered the
screening condition to screen out the potential pathway of
berberine in the treatment of ischaemic stroke.

2.2.6. Molecular Docking between Target and Compound.
0e structure map of berberine was downloaded from the
PubChem database, and the crystal structure of the key
target proteins, based on DC, BC, Cc, EC, NC, and LAC, was
the ligand and the core target protein was used as the re-
ceptor for molecular docking downloaded from the RCSB
protein database (https://www.rcsb.org/) [48]. Berberine was
used as a ligand and core target protein as a receptor for
molecular docking. AutoDock tools-1.5.6 software was used
for molecular docking [49]. Ligplot + v.2.2 software and
Discovery Studio 4.5 were used to visualise the docking
results and establish the docking interaction pattern diagram
[50]. According to the docking results, the conformation
with lower binding energy and better conformation was
selected to evaluate the binding activity of berberine with the
target protein.
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Figure 1: Study flowchart. IS: ischaemic stroke; PPI: protein-protein interaction; GO: gene ontology; KEGG: Kyoto Encyclopaedia of Genes
and Genomes.
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2.3. LncRNA-Protein Interaction Prediction. We searched
the nucleotide sequences of lncRNA H19 and key targets of
molecular docking through the NCBI and UniProt data-
bases. Based on the nucleotide sequence, the interaction
probability between lncRNA H19 and key targets was
predicted by the RNA-Protein Interaction Prediction
(RPISeq) database (https://pridb.gdcb.iastate.edu/RPISeq/
index.html) [51].

2.4. Experimental Verification

2.4.1. Reagents. Sterile filtered dimethyl sulfoxide (DMSO)
was obtained from Gibco (USA). Berberine was purchased
from Yuanye (B21379, China) and was dissolved in DMSO
[52]. Dulbecco’s modified Eagle’s medium (DMEM, Gibco,
USA) and foetal bovine serum (FBS, Gibco, USA) were used
for cell culture. Rabbit monoclonal antibodies specific for
JNK1, p-c-Jun, c-Jun, EGFR, and β-actin were purchased
fromAbcam (USA), and rabbit polyclonal antibodies against
p-JNK1 were purchased from Cell Signaling Technology
(USA).

2.4.2. Cell Culture and Treatments. Human neuroblastoma
SH-SY5Y cells were obtained from the Cell Culture Centre at
the Institute of BasicMedical Sciences (IBMS) of the Chinese
Academy of Medical Sciences (CAMS) and cultured in
DMEM containing 10% FBS in an automatic CO2 incubator
(37°C, 5% CO2; Sanyo, Japan). 0e hypoxia model was
conducted according to previous studies [53, 54]. Cells were
cultured in a hypoxia (1% O2) condition to mimic ischaemia
stroke in vitro. Briefly, cells were seeded at a density of
5×104 cells/ml in culture dishes for 48 h. After reaching 80%
confluence, cells were randomly divided into control group,
model group, and different berberine groups. 0e medium
was replaced by serum-free DMEM in each group. 0e
berberine groups were treated with the final concentration of
10, 20, and 50 μM, respectively, before hypoxia. 0e model
group and different berberine groups were exposed to
hypoxia in a three-gas incubator (1% O2; Memmert, Ger-
many) at 37°C for 24 h. 0e control group was incubated in
normoxic conditions for the same time. 0e morphology of
SH-SY5Y cells in each group was observed under an inverted
microscope.

2.4.3. Cell Viability. Cell viability was detected by CCK8
assay according to the manufacturer’s instructions. Briefly,
cells were treated with berberine (10, 20, and 50 μM) in the
hypoxia model. After treatment, the culture medium was
removed from the wells, and 10 μl of CCK8 solution was
added to each well in 100 μl of medium followed by incu-
bation at 37°C for 2 h. 0e absorbance was subsequently
measured at 490 nm with a microplate reader (0ermo
Scientific, USA).

2.4.4. Western Blot Analysis. 0e concentration of protein
extracted from the cells was determined by a BCA protein
assay kit (Applygen, China). Equal amounts (30 μg) of

protein were then electrophoresed on a 10% gradient SDS-
PAGE gel and transferred to PVDF membranes (Millipore,
USA). After themembranes were blocked with 5% skimmilk
or 5% BSA for 1 hour at room temperature, they were in-
cubated at 4°C overnight with the following primary anti-
bodies: JNK1 (1 :1000), p-JNK1 (1 : 2000), c-Jun (1 : 5000),
p-c-Jun (1 : 2000), EGFR (1 : 5000), and β-actin (1 : 5000).0e
membranes were then incubated with secondary antibodies
at room temperature for 1 hour. Super ECL Plus (Beyotime,
China) was added to the membranes, and protein bands
were visualised on a chemiluminescence imaging system
(Bio-Rad, Canada). 0e optical density (OD) value of the
protein bands was determined by ImageJ software.

2.4.5. Quantitative Real-Time PCR (qRT-PCR). Total RNA
was isolated with an RNAprep Pure Cell/Bacteria Kit
(TIANGEN, Biotech, China). cDNA was synthesized using
FastKing gDNA Dispelling RT SuperMix (TIANGEN, Bio-
tech, China) according to the manufacturer’s instructions.
qRT-qPCR was performed with an Applied Biosystems 7500
using SuperReal PreMix Plus (TIANGEN, Biotech, China).
0e following primers were used: lncRNA H19 forward, 5′-
CGCTTTTGAACCAGCAGGG-3′; lncRNA H19 reverse, 5′-
TTCCCGAGGCTTT GGTGTG-3′; GAPDH forward, 5′-
GGAGTCCACTGGCGTCTTCA-3′; and GAPDH reverse,
5′-GTCATGAGTCCTTCCACGATACC-3′. GAPDH was
utilized as the reference gene.

2.5. StatisticalAnalysis. Dataareexpressedas themeans± SD.
GraphPad Prism 8.0 was utilized for visualisation of data.
Differences in multiple groups were analysed by ANOVA. P

values <0.05 were considered statistically significant.

3. Results

3.1. Retrieval of Berberine-Related LncRNAs. Using “Ber-
berine” and “lncRNA” as the keywords for searching
PubMed, EMBASE, CNKI database, and Google Scholar
database, CASC2, RP5-1057I20.5, MIAT, LINC00943,
BACE1-AS, LASER, MRAK052686, H19, HOTAIR, and
MALAT1 were found to be associated with berberine (Ta-
ble 1). Furthermore, we explored the regulatory effects of
berberine on lncRNA expression and revealed the under-
lying molecular mechanisms. Berberine plays a role in
various pathological mechanisms by regulating lncRNAs,
such as inflammation, autophagy, and apoptosis.

3.2. LncRNA H19 Is the Crucial Regulatory LncRNA Influ-
enced by Berberine in Ischaemic Stroke. A total of 13011
differentially expressed lncRNAs were screened from the
GSE102541 dataset with 4732 upregulated genes and 8279
downregulated genes (Figures 2(a) and 2(b)). After
matching ischaemic stroke-related lncRNAs with berberine-
related lncRNAs (Figure 2(c)), four genes (H19, HOTAIR,
CASC2, and LINC00943) were selected as potential targets
for berberine in the treatment of ischaemic stroke. 0e
heatmap of these genes is shown in Figure 2(d). To further
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understand the relationship between these genes and
ischaemic stroke, the MNDR3.1 database was used by in-
tegrating experimentally supported and predicted ncRNA-
disease associations curated from literature and other re-
sources. As shown in Table 2, studies have shown that H19 is
highly expressed in stroke patients, rat cerebral ischaemic
reperfusion models, and cellular oxygen glucose depriva-
tion/reperfusion (OGD/R) models [66, 67] with a confidence
score between lncRNA H19 and ischaemic stroke >0.99,

indicating that lncRNA H19 has a strong correlation with
ischaemic stroke. LncRNA H19 may be the crucial regula-
tory lncRNA regulated by berberine in ischaemic stroke.

3.3. Target Proteins of Berberine in Ischaemic Stroke. For
compound target identification, 422 targets of berberine
were identified from the Swiss Target Prediction, SymMap,
CTD, STITCH, SEA, and Targetnet databases. 0e 3387

Table 1: Pathological mechanism of berberine-regulated lncRNAs.

LncRNA Mechanism Gene Ref.
CASC2 Apoptosis Bcl-2, Bax, Casp3, Casp9, Mcl1, Bad1, PARP2 [55, 56]
RP5-1057I20.5 Insistance ROS [57]
MIAT Autophagy p62, BNP, mTOR, AMPK, LC3 [58, 59]
LINC00943 Inflammation and cell apoptosis KPNA4, NF-κB, IL6, TNFa [12]
BACE1-AS Inflammation, oxidative stress, and cell apoptosis ROS, Ca2+, Bcl-2, Bax, Caspase3 [60]
LASER Cholesterol homeostasis HNF-1, PCSK9 [61]
MRAK052686 Inflammation and oxidative stress Nrf2 [62]
H19 Oxidative stress and inflammation NF-κB, NOX2, ROS [63]
HOTAIR Migration, invasion, and apoptosis E-cadherin, vimentin, snail [64]
MALAT1 Inflammation IL6, IL1β, TNFα, IL10 [65]
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Figure 2: Identification of differential lncRNAs and key lncRNAs. (a) Volcano plot of all the lncRNAs in GSE102541. (b) Heatmap depicting
the expression levels of differentially expressed lncRNAs in GSE102541. (c) Venn diagram of differentially expressed lncRNAs in GSE102541
and berberine-related lncRNAs. (d) Clustered heatmap of overlapping lncRNAs. ACI: acute cerebral infarction; Con: control.
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targets identified in ischaemic stroke were obtained after
sorting from the TTD, GeneCards, Drugbank, and Dis-
GeNETdatabases. By using Venny 2.1 drawing software, 248
treatment targets were selected as potential targets of ber-
berine in the treatment of ischaemic stroke (Figure 3(a)). A
PPI network diagram of potential targets of berberine in the
treatment of ischaemic stroke was generated using the
STRING database. 0e potential targets were imported into
Cytoscape software to build a compound-target-disease
network diagram (Figure 3(b)). CytoNCA was used to
calculate the topological parameter information, including
BC, Cc, EC, LAC, NC, and DC, according to the topological

attributes of the network nodes. 0e crucial target screening
strategy is shown in Figure 3(c). 0e results showed that 20
target proteins, including AKT1, MAPK1, MAPK3, RELA,
and TP53, were the core nodes of the entire network. 0e
network topology parameter information of the 20 key
targets of berberine in ischaemic stroke is shown in Table 3.

3.4. GO and KEGG Enrichment Analyses of Core Targets.
In the GO enrichment analysis, 162 items were obtained
from 20 core targets with a P value <0.01, including 117
biological process (BP) terms, 14 cell composition (CC)

Table 2: Correlation predictions between lncRNAs and ischaemic stroke.

LncRNA Disease name LncRNA
expression Evidence support Confidence

score
PubMed

ID

H19 Ischaemic stroke Upregulated ELISA//flow cytometry//IF//qRT-PCR//western
blot 0.999999 28630232

H19 Cerebral ischaemia-
reperfusion injury Upregulated Cell transfection//cell viability assay//flow

cytometry//IF//qRT-PCR//western blot 1 28203482

CASC2 Brain ischaemic N/A Computational predicted 0.073106 N/A
LINC00943 N/A N/A N/A N/A N/A
HOTAIR Brain ischaemic N/A Computational predicted 0.073106 N/A
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Figure 3: Target proteins of berberine in ischaemic stroke. (a) Common target network of berberine and ischaemic stroke. (b) Regulatory
network of component-disease-targets. (c) Target screening strategy for key nodes in berberine. 0e yellow nodes represent the crucial
targets of the entire network. IS: ischaemic stroke; DC: degree; BC: betweenness centrality; Cc: closeness centrality; EC: eigenvector
centrality; NC: network centrality; LAC: local average connectivity.
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terms, and 31molecular function (MF) terms.0e top 10 BP,
CC, and MF terms are screened and are represented by a bar
chart in Figure 4(a). 0e protein-encoding was found to be
involved in biological processes, such as positive regulation
of transcription from the RNA polymerase II promoter,
negative regulation of apoptotic processes, and signal
transduction. 0e molecular functions of these proteins
included protein binding, transcription factor binding, and
enzyme binding. 0ese findings suggested that berberine
may have various biological functions through multiple
targets to protect against ischaemic stroke. KEGG enrich-
ment analysis identified 92 signalling pathways, and the top
20 pathways are shown in the bubble chart (Figure 4(b)). As
shown in Table 4, the enrichment results demonstrated that
the “MAPK signalling pathway,” “Toll-like receptor sig-
nalling pathway,” “Prolactin signalling pathway,” “TNF
signalling pathway,” “ErbB signalling pathway,” and “HIF-1
signalling pathway” were closely related to the onset and
progression of ischaemic stroke. 0ese results indicated that
berberine regulates multiple inflammation, immunity,
metabolism, and apoptosis pathways to prevent ischaemic
stroke. 0e details of the top 20 pathways and core targets of
berberine in the treatment of ischaemic stroke are shown in
Figure 5.

3.5. Molecular Docking. To further validate candidate ber-
berine targets in ischaemic stroke, we tested the precision of
docking between berberine and the following potential
target proteins: MAPK8, JUN, EGFR, STAT3, MAPK1, SRC,
MAPK14, MAPK3, AKT1, and MYC. 0e stable docking
model has a negative binding energy, lower energy score,
stronger ligand-receptor binding ability, and a more stable
structure [68]. In the present study, the binding energy of
berberine with 10 core targets ranged from −3.08 to
−5.77 kJ·mol−1 (Table 5). Figure 6 shows the following

interaction points: JNK1 mainly interacted with berberine
via amino acid residues Ala33, Glu58, Gly35, Lys53, Lie54,
Met36, Ser55, 0r66, Tyr34, and Tyr62; JUN mainly inter-
acted with berberine via amino acid residues Ala0, Ala4,
Arg16, Asn17, He3, Glu7, Glu15, Gln12, Leu13, and Lys14;
and EGFR mainly interacted with berberine via amino acid
residues Asp984, Arg977, Gln974, Glu985, Gly983, He981,
and Val980. 0ese results suggested that berberine is closely
bound to core target protein residues through multifaceted
interactions. Overall, these results provide further evidence
that these proteins act as crucial targets of berberine in the
treatment of ischaemic stroke.

3.6. Prediction of LncRNA H19-Protein Interactions. To
further investigate the potential role of lncRNA H19, we
evaluated the binding probability between lncRNA H19 and
key proteins through random forest (RF) or support vector
machine (SVM). As shown in Figure 7, the RF and SVM
between lncRNA H19 and JNK1 and EGFR were both
greater than 0.5, indicating that lncRNA H19 may have a
direct regulatory relationship with both JNK1 and EGFR.

3.7. Berberine Attenuated Ischaemic Stroke via Regulation of
the LncRNA H19/EGFR/JNK1/c-Jun pathway in SH-SY5Y
cells. To explore the neuroprotective effects of berberine by
regulating lncRNA H19, we induced hypoxia injury in SH-
SY5Y cells. As shown in Figure 8(a), berberine (10 and
20 μM) reduced morphological damage and maintained the
normal morphology of SH-SY5Y cells during cell hypoxia,
and it had a significant protective effect on SH-SY5Y cell
injury. 0e CCK8 assay indicated that cell viability was
significantly enhanced after berberine treatment at con-
centrations of 10 μM and 20 μM (Figure 8(b)). According to
the CCK8 experiment and cell morphology analysis, the
lowest effective concentration of berberine (10 μM) was

Table 3: Network topology parameter information of 20 key targets of berberine in the treatment of ischaemic stroke.

Swiss-Prot Genes Description Validated or predicted BC Cc EC LAC NC DC
P45983 MAPK8 Mitogen-activated protein kinase 8 Predicted 1.77 1 0.23 16.84 19 19
P05412 JUN Transcription factor AP-1 Predicted 1.77 1 0.23 16.84 19 19
P00533 EGFR Epidermal growth factor receptor Validated 1.77 1 0.23 16.84 19 19
P40763 STAT3 Signal transducer and activator of transcription 3 Predicted 1.77 1 0.23 16.84 19 19
P28482 MAPK1 Mitogen-activated protein kinase 1 Validated 1.77 1 0.23 16.84 19 19
P12931 SRC Proto-oncogene tyrosine-protein kinase Src Predicted 1.77 1 0.23 16.84 19 19
Q16539 MAPK14 Mitogen-activated protein kinase 14 Validated 1.77 1 0.23 16.84 19 19
P27361 MAPK3 Mitogen-activated protein kinase 3 Predicted 1.77 1 0.23 16.84 19 19
P31749 AKT1 RAC-alpha serine/threonine-protein kinase 1 Validated 1.77 1 0.23 16.84 19 19
P01106 MYC Myc proto-oncogene protein Predicted 1.77 1 0.23 16.84 19 19
P04637 TP53 Cellular tumour antigen p53 Validated 0.57 0.95 0.23 16.56 17.88 18
P01100 FOS Proto-oncogene c-Fos Predicted 0.57 0.95 0.23 16.56 17.88 18
Q04206 RELA Transcription factor p65 Validated 1 0.95 0.22 16.33 17.76 18
P05231 IL6 Interleukin-6 Predicted 0.57 0.95 0.23 16.56 17.88 18
P03372 ESR1 Oestrogen receptor Predicted 0.57 0.95 0.23 16.56 17.88 18
P01375 TNF Tumour necrosis factor Predicted 1 0.95 0.22 16.33 17.76 18
Q92793 CREBBP CREB-binding protein Predicted 0 0.90 0.22 16 17 17
Q09472 EP300 Histone acetyltransferase p300 Validated 0 0.90 0.22 16 17 17
P29353 SHC1 SHC-transforming protein 1 Validated 0 0.79 0.18 13 14 14
P63000 RAC1 Ras-related C3 botulinum toxin substrate 1 Predicted 0 0.73 0.15 11 12 12
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Figure 4: GO and KEGG enrichment analyses for berberine in the treatment of ischaemic stroke. (a) GO enrichment analysis. (b) KEGG
enrichment analysis. BP: biological process; CC: cell composition; MF: molecular function; GO: gene ontology; KEGG: Kyoto Encyclopaedia
of Genes and Genomes.
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selected for subsequent signalling pathway studies. 0e
expression levels of lncRNA H19, EGFR, p-JNK1/JNK1, and
p-c-Jun/c-Jun in SH-SY5Y cells were then evaluated. 0e
results indicated that the expression levels of lncRNA H19,
EGFR, p-JNK1/JNK1, and p-c-Jun/c-Jun were significantly
increased in SH-SY5Y cells after hypoxia injury and were
normalised by berberine treatment (Figures 8(c)–8(f)).
0ese data suggested that berberine attenuates ischaemic
stroke via regulation of the lncRNA H19/EGFR/JNK1/c-Jun
pathway in hypoxia-treated SH-SY5Y cells.

4. Discussion

Ischaemic stroke remains a main cause of death and dis-
ability worldwide, and more effective drug treatment is

urgently needed [69, 70]. Berberine is an alkaloid isolated
from the Chinese herbal medicine, Coptis chinensis, which is
widely used as a hypoglycaemic, lipid-lowering, anti-in-
flammatory, and anticancer drug in China [71–74]. Recent
studies have demonstrated that berberine has a good effect
on ischaemic stroke [20]. In the present study, we sys-
tematically revealed the protective mechanism of berberine
from ischaemic stroke by means of bioinformatics analysis,
network pharmacology analysis, molecular docking, and
experimental verification.

0is study investigated the synergistic effect of berberine
on ischaemic stroke from four aspects. First, after matching
stroke-related lncRNAs with berberine-related lncRNAs,
four genes were selected as potential targets for berberine in
the treatment of ischaemic stroke.We further evaluated their

Table 4: List of enrichment pathways of the main targets of berberine.

Gene-pathway network No. of
genes

Fold
enrichment P value Bonferroni

method Gene names

Hepatitis B 15 35.58103448 1.91E− 20 2.72E− 18
CREBBP, JUN, SRC, STAT3, FOS, TNF, RELA,
IL6,MAPK8, MYC, AKT1, EP300, MAPK1, TP53,

MAPK3
Prolactin signalling
pathway 11 53.28802817 6.06E− 16 7.88E− 14 MAPK8, SHC1, SRC, STAT3, MAPK1, AKT1, FOS,

MAPK14, ESR1, RELA, MAPK3

Pathways in cancer 15 13.1278626 2.82E− 14 4.00E −12
CREBBP, JUN, STAT3, FOS, EGFR, RELA, IL6,

MAPK8, MYC, AKT1, EP300, MAPK1, RAC1, TP53,
MAPK3

Toll-like receptor signalling
pathway 11 35.69292453 4.03E− 14 5.72E− 12 IL6, JUN, MAPK8, MAPK1, AKT1, FOS,

RAC1,MAPK14, TNF, RELA, MAPK3

MAPK signalling pathway 13 17.67332016 1.90E− 13 2.70E− 11 JUN, FOS, MAPK14, TNF, EGFR, RELA, MAPK8,
MYC, AKT1, MAPK1, RAC1, TP53, MAPK3

Proteoglycans in cancer 12 20.637 5.89E− 13 8.36E− 11 SRC, MYC, STAT3, MAPK1, AKT1, RAC1, MAPK14,
ESR1, TNF, TP53, EGFR, MAPK3

Colorectal cancer 9 49.92822581 1.91E− 12 2.71E− 10 JUN, MAPK8, MYC, MAPK1, AKT1, FOS, RAC1,
TP53, MAPK3

Chagas disease (American
trypanosomiasis) 10 33.07211538 2.37E− 12 3.36E− 10 IL6, JUN, MAPK8, MAPK1, AKT1, FOS, MAPK14,

TNF, RELA, MAPK3

Pancreatic cancer 9 47.62384615 2.84E− 12 4.03E− 10 MAPK8, STAT3,MAPK1, AKT1, RAC1, TP53, RELA,
EGFR, MAPK3

TNF signalling pathway 10 32.14485981 3.08E− 12 4.37E− 10 IL6, JUN, MAPK8, MAPK1, AKT1, FOS, MAPK14,
TNF, RELA, MAPK3

Influenza A 11 21.74396552 6.29E− 12 8.93E− 10 IL6, CREBBP, JUN, MAPK8, EP300, MAPK1, AKT1,
MAPK14, TNF, RELA, MAPK3

Tuberculosis 11 21.37542373 7.47E− 12 1.06E− 09 IL6, CREBBP, MAPK8, SRC, EP300, MAPK1, AKT1,
MAPK14, TNF, RELA, MAPK3

Neurotrophin signalling
pathway 10 28.6625 8.82E− 12 1.25E− 09 JUN, MAPK8, SHC1, MAPK1, AKT1, RAC1,

MAPK14, TP53, RELA, MAPK3

Pertussis 9 41.274 9.36E− 12 1.33E− 09 IL6, JUN, MAPK8, MAPK1, FOS, MAPK14, TNF,
RELA, MAPK3

Osteoclast differentiation 10 26.25572519 1.97E− 11 2.79E− 09 JUN, MAPK8, MAPK1, AKT1, FOS, RAC1, MAPK14,
TNF, RELA, MAPK3

Salmonella infection 9 37.29578313 2.16E− 11 3.07E− 09 IL6, JUN, MAPK8, MAPK1, FOS, RAC1, MAPK14,
RELA, MAPK3

Hepatitis C 10 25.86090226 2.26E− 11 3.20E− 09 MAPK8, STAT3, MAPK1, AKT1, MAPK14, TNF,
TP53, RELA, EGFR, MAPK3

FoxO signalling pathway 10 25.66791045 2.42E− 11 3.43E− 09 IL6, CREBBP, MAPK8, STAT3, EP300, MAPK1,
AKT1, MAPK14, EGFR, MAPK3

ErbB signalling pathway 9 35.58103448 3.18E− 11 4.52E− 09 JUN, MAPK8, SHC1, SRC, MYC, MAPK1, AKT1,
EGFR, MAPK3

HIF-1 signalling pathway 9 32.2453125 7.13E− 11 1.01E− 08 IL6, CREBBP, STAT3, EP300, MAPK1, AKT1, RELA,
EGFR, MAPK3
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Figure 5: Bubble map of enrichment pathways of the main targets in berberine. 0e red node represents the potential core target of
berberine in ischaemic stroke, and the blue node represents the target-related KEGG pathway.

Table 5: 0e results of molecular docking analysis.

Target name PDB ID Drug Main binding sites with the amino acid Binding energy
(kJ/mol)

MAPK8 2OJG

Berberine

ALA-33, TYR-34, GLY-35, MET-36, LYS-53, ILE-54, SER-55,
GLU-58, TYR-62, THR-66 −5.77

EGFR 5GNK GLN-976, ARG-977, VAL-980,ILE-981, GLY-983, ASP-984, GLU-985 −5.53

SRC 4MXO CYS-483, PRO-484, PRO-485, GLU-486, CYS-487, PRO-488, GLU-489,
TYR-527, GLN-528, −4.87

JUN 5FV8 ALA-0, ILE-3, ALA-4, GLU-7, GLN-12, LEU-13, LYS-14, GLU-15,
ARG-16, ASN-17 −4.43

MAPK14 3KF7 HIS-228, HE-229, SER-254, ASN-257, TYR-258, LEU-195 −4.14
AKT1 3MVH SER-378, SER-381, LYS-385, GLY-382, LEU-392, GLU-401, GLN-404, ARG-406 −4.03
MAPK3 4QTB LFU-93, ILE-103, ARG-370, PHE-371 −3.86
MAPK1 5BUJ ARG-89, PHE-346, GLU-347, ALA-350, GLN-353, PRO-354, GLY-355, TYR-356 −3.74
STAT3 4E68 DT-1001, DG-1002, DC-1003, DA-1004 −3.6
MYC 6G6K HIS-207, LEU-951, GLN-954, GLA-955, GLN-958, LYS-959, SER-962 −3.08
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correlation using the MNDR3.1 database and found that
lncRNA H19 may be the crucial regulatory lncRNA of
berberine against ischaemic stroke. Second, Venny drawing
software and the PPI network identified 248 treatment
targets as potential targets of berberine against ischaemic
stroke. 0e PPI network recognised MAPK8, JUN, EGFR,
STAT3, MAPK1, SRC, MAPK14, MAPK3, AKT1, MYC,
TP53, FOS, RELA, IL6, ESR1, TNF, CREBBP, EP300, SHC1,

and RAC1 as hub genes. 0e PPI network revealed the in-
teractionofberberinewith ischaemic stroke-related targets and
identified possible essential targets from a more detailed per-
spective according to the topological attributes of the network.
GO and KEGG analyses illustrated that the main signalling
pathways related to these targets were as follows: MAPK sig-
nalling pathway, Toll-like receptor signalling pathway, pro-
lactin signalling pathway, TNF signalling pathway, and HIF-1
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Figure 6: Structural interactions between active proteins and berberine.
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Figure 7: LncRNA H19-protein interaction prediction. Interaction probabilities generated by RPISeq range from 0 to 1. In performance
evaluation experiments, predictions with probabilities >0.5 were considered “positive,” that is, indicating that the corresponding RNA and
protein are likely to interact. RF: random forest; SVM: support vector machine.
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signalling pathway. 0ese pathways are closely related to in-
flammation, immunity, and oxidative stress. Molecular
docking analysis between the compound and targets further
validated thatberberinehadgoodbindingabilitywith thesekey
proteins, and the JNK1/c-Jun signalling pathway may be the
crucial functional pathway. 0ird, we evaluated the binding
probability between lncRNA H19 and key proteins, and we
found that lncRNA H19 may have a direct regulatory rela-
tionship with both JNK1 and EGFR. Finally, in vitro experi-
ments confirmed that berberine may have a good therapeutic
effect on ischaemic stroke by regulating the lncRNA H19/
EGFR/JNK1/c-Jun signalling pathway.

LncRNAs have been reported to actively participate in
many important biological processes through cell cycle
regulation, splicing regulation, RNA degradation, gene

imprinting, and chromatin remodelling [75, 76]. LncRNA
H19, as a crucial member of the lncRNA family, plays an
important regulatory role in the pathophysiological processes
of ischaemic stroke, such as oxidative stress, the inflam-
matory response, apoptosis, autophagy, and neurogenesis. A
recent study has demonstrated that lncRNAH19 knockdown
ameliorates cell apoptosis and inflammatory cytokine con-
centrations by regulating the microRNA-29b/SIRT1/ PGC-
1α axis [77]. LncRNA H19 inhibition activates the IGF1-
mediated mTOR pathway and promotes axon sprouting and
functional recovery [78]. Gao et al. showed that lncRNAH19
acts as a competing endogenous RNA (ceRNA) of miR-19a-
3p to target PTEN, inducing oxidative stress, increasing
lactate dehydrogenase levels, increasing malondialdehyde
levels, and decreasing superoxide dismutase activity, thus
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Figure 8: Berberine prevented ischaemic stroke by inhibiting the lncRNA H19/EGFR/ JNK1/c-Jun pathway. (a) 0e morphology of SH-
SY5Y cells in each group was observed under an inverted microscope (scale bars: 100 μm). (b) Viability of SH-SY5Y cells after berberine
treatment as evaluated by a CCK8 assay (n� 5). (c) Validation of lncRNA H19 expression by qRT-PCR analysis (n� 4-5). ((d–f)) Western
blot analysis was used to detect the protein expression levels of EGFR, p-JNK1/JNK1, and p-c-Jun/c-Jun in SH-SY5Y cells (n� 5). Note:
model versus control, ∗P< 0.05; berberine versus model, #P< 0.05.
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aggravating cerebral I/R injury [79]. A clinical study has
shown that the expression levels of lncRNA H19 in patients
increase within the first 24 h of stroke onset, which is closely
related to the rs217727 functional polymorphism [80]. 0ese
data suggest that lncRNA H19 may be a potential biomarker
for the diagnosis and treatment of ischaemic stroke. In this
study, the expression of lncRNA H19 in SH-SY5Y cells in-
creased with hypoxia-induced injury.

At present, there are relatively few studies on lncRNAs in
TCM. Previous studies have shown that resveratrol, cur-
cumin, and other active components of TCM attenuate
oxidative stress, inflammation, and apoptosis by regulating
lncRNAs [81, 82]. Emerging evidence also suggests that
berberine-regulated lncRNA H19 markedly inhibits in-
flammation by reducing neutrophil activation and inhibiting
immune cell infiltration and inflammatory gene expression
[63]. In this work, lncRNA H19 was significantly decreased
after berberine treatment.

Based on molecular docking and the correlation of
lncRNAH19-proteins, we investigated the role of berberine-
regulated lncRNA H19 in hypoxia-induced SH-SY5Y cells,
focusing on the EGFR/JNK1/c-Jun signalling pathway.
EGFR activates a variety of downstream signalling pathways,
such as the JNK1/c-Jun pathway and PI3K/Akt pathway,
which participate in the regulation of cell proliferation,
differentiation, and angiogenesis [83–85]. Studies have in-
dicated that blockade of the EGFR pathway may attenuate
reactive astrogliosis by inhibiting cell cycle progression and
protect against ischaemic brain injury in rats [86]. After
ischaemic stroke, the release of various inflammatory fac-
tors, increased ROS production, and endoplasmic reticulum
stress stimulate the activation of JNK, which phosphorylates
the downstream protein, c-Jun. 0e JNK1/c-Jun pathway is
closely related to apoptosis, autophagy, and inflammation,
and it plays an important role in various nervous system
diseases [87, 88]. Under hypoxic conditions, many drugs
improve SH-SY5Y cell apoptosis and autophagy by inhib-
iting the JNK signalling pathway [89]. In addition, related
studies have demonstrated that JNK/c-Jun signalling
pathway activation may regulate neuronal apoptosis, in-
crease the permeability of the BBB, and enlarge cerebral
infarction size [90]. In addition, studies have demonstrated
that EGFR activates the JNK/c-Jun signalling pathway and
promotes JNK/c-Jun phosphorylation, which regulates the
redistribution of ZO-1 and occluding, ultimately reducing
the permeability of the BBB [91]. 0erefore, the EGFR/
JNK1/c-Jun signalling pathway is critical to the pathological
processes of ischaemic stroke. Consistent with the above
findings, the expression levels of p-JNK1/JNK1, p-c-Jun/c-
Jun, and EGFR were significantly increased in SH-SY5Y cells
after hypoxia-induced injury and were restored by berberine
treatment.

5. Conclusion

In conclusion, this study utilized network pharmacology,
molecular docking, and bioinformatics analysis to elucidate
the relationship between complex diseases, such as ischae-
mic stroke, and TCM intervention. We confirmed that

berberine has an excellent neuroprotective effect via regu-
lation of the lncRNA H19/EGFR/JNK1/c-Jun pathway in
hypoxia-induced SH-SY5Y cell injury, making it a possible
drug candidate for ischaemic stroke. 0is study provides a
novel strategy for a comprehensive understanding of the
mechanism of berberine in ischaemic stroke. However, in
vivo experiments need to be conducted in the future to verify
these results. In addition, various high-throughput se-
quencing screening methods, such as sequencing and pro-
teomic analysis, should be combined with target screening to
provide more reliable evidence for these screening results.
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