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Background: Atrial fibrillation (AF) is the most common tachyarrhythmia in the clinic,

leading to high morbidity and mortality. Although many studies on AF have been

conducted, the molecular mechanism of AF has not been fully elucidated. This study

was designed to explore the molecular mechanism of AF using integrative bioinformatics

analysis and provide new insights into the pathophysiology of AF.

Methods: The GSE115574 dataset was downloaded, and Cibersort was applied to

estimate the relative expression of 22 kinds of immune cells. Differentially expressed

genes (DEGs) were identified through the limma package in R language. Weighted gene

correlation network analysis (WGCNA) was performed to cluster DEGs into different

modules and explore relationships between modules and immune cell types. Functional

enrichment analysis was performed on DEGs in the significant module, and hub genes

were identified based on the protein-protein interaction (PPI) network. Hub genes were

then verified using quantitative real-time polymerase chain reaction (qRT-PCR).

Results: A total of 2,350 DEGs were identified and clustered into eleven modules

using WGCNA. The magenta module with 246 genes was identified as the key module

associated with M1 macrophages with the highest correlation coefficient. Three hub

genes (CTSS, CSF2RB, and NCF2) were identified. The results verified using three other

datasets and qRT-PCR demonstrated that the expression levels of these three genes

in patients with AF were significantly higher than those in patients with SR, which were

consistent with the bioinformatic analysis.

Conclusion: Three novel genes identified using comprehensive bioinformatics analysis

may play crucial roles in the pathophysiological mechanism in AF, which provide potential

therapeutic targets and new insights into the treatment and early detection of AF.
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INTRODUCTION

Atrial fibrillation, themost common sustained arrhythmias in the
clinic (1), affects∼1 to 2% of the population (2), which increases
the morbidity, mortality, and medical burden worldwide (3).
The risk of stroke in patients with AF is approximately five-fold
higher than that in healthy people (4). AF is a complex disease
(5) associated with common risk factors, including advancing
age, male sex, hypertension, obesity, and diabetes (6). However,
the pathophysiological mechanism leading to AF is still unclear.
Increasing evidence demonstrates that immune cells play a
significant role in the pathogenesis of AF (7). Several immune-
mediated serum inflammatory markers such as CRP and IL-
6 have been confirmed to be elevated in patients with AF
(8, 9). Nevertheless, the association between immune cells and
the biological molecular mechanism of AF still needs further
research to clarify the pathogenesis of AF and find potential
therapeutic targets.

Weighted gene correlation network analysis (WGCNA) is
a system biology method used to cluster genes into modules
according to expression patterns among different samples (10).
Based on the interconnectivity of genes,WGCNA can explore the
relationships between gene modules and the clinical phenotypes
to identify candidate biomarkers or therapeutic targets. It has
been applied to numerous kinds of diseases (11–14).

In this study, we aimed to explore the association between
immune cells and AF using comprehensive bioinformatics
analysis. Cibersort was used to evaluate immune cell
composition, and WGCNA was used to identify the hub
gene module. We then analyzed the functional enrichment of
the genes in the hub module. Based on the protein-protein
interaction (PPI) network, hub genes were identified for further
analysis and validation. We hope that this research can provide
potential targets and new research ideas for the treatment of AF.

METHODS AND MATERIALS

Data Acquisition and Processing
The GSE115574 dataset, including fourteen gene expression
profiles from left atrial tissues of AF patients and fifteen gene
expression profiles from left atrial tissues of sinus rhythm (SR)
patients, were downloaded in the Gene Expression Omnibus
(GEO) database. The R language was used to process the
original expression profile of the GSE115574 dataset. Cibersort,
a bioinformatics algorithm that could estimate 22 immune cell
types, was applied to evaluate immune cell composition based
on the gene expression matrix (15). The Linear Models for
Microarray data (limma) package in the R language (16) was
utilized to identify differentially expressed genes (DEGs) with
a p < 0.05 between patients with AF and SR. The GSE31821,
GSE41177, and GSE79768 datasets were used for validation.
The batch effect was removed using the SVA package in the
R language.

WGCNA
The WGCNA (10) was applied to construct the mRNA co-
expression network based on the DEGs. Briefly, an appropriate

TABLE 1 | Lists of primer sequences used for quantitative real-time PCR.

Genes Sequences

GAPDH Forward: GGAGCGAGATCCCTCCAAAAT

Reverse: GGCTGTTGTCATACTTCTCATGG

CTSS Forward: TGACAACGGCTTTCCAGTACA

Reverse: GGCAGCACGATATTTTGAGTCAT

CSF2RB Forward: CTCCTTTGGCCTATTCTACAAGC

Reverse: TGAACAGAGACGATGTATTGGC

NCF2 Forward: CCAGAAGCATTAACCGAGACAA

Reverse: CCTCGAAGCTGAATCAAGGC

soft-thresholding power β was determined to realize the scale-
free topology. Then DEGs were clustered into modules, which
were labeled with different colors using the average linkage
hierarchical clustering method. The minimum number of genes
in each module was twenty, and the threshold for module
merging was 0.25. Pearson’s correlation method was utilized to
calculate the correlation between each module and the relative
expression of immune cells identified by the Cibersort. The
module with the highest correlation coefficient was selected for
further analyses.

Functional Enrichment Analyses
The Database for Annotation, Visualization and Integrated
Discovery (DAVID, v6.8) (17) was used to perform the Gene
Ontology (GO) (18, 19) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analyses, which
revealed the biological processes (BPs), cellular components
(CCs), molecular functions (MFs), and pathways related to genes
in the module identified above. GO terms and KEGG maps with
a p < 0.05 were considered significant enrichment.

Construction of PPI Network and Hub
Genes Identification
The DEGs in the selected module were imported into the Search
Tool for the Retrieval of Interacting Genes (STRING, v11.0)
(20) to generate the PPI network identifying the interactions
between the genes with the threshold of interaction score >0.4.
Nodes represent proteins, and edges represent protein-protein
associations in the PPI network. The results downloaded from
the STRING database was then visualized utilizing Cytoscape
software (v3.8.1). CytoHubba (21), a plug-in of the Cytoscape
software, was used to identified hub genes. The intersection
of five algorithms in CytoHubba was generated for hub genes
identification to ensure the accuracy and robustness of the results.

Sample Collection
Adult patients with persistent AF undergoing cardiac surgery
in Zhongshan Hospital were included in this study. Persistent
AF is defined as AF which is continuously sustained beyond
7 days, including episodes terminated by cardioversion (drugs
or electrical cardioversion) after more than seven days (3).
Excluded from the research were patients with coronary artery
heart disease, hypertension, diabetes, or obstructive sleep apnea
syndrome, whose ejection fractions were <30%, and those who
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FIGURE 1 | The relative expression of 22 immune cell subtypes in each sample estimated using Cibersort. The relative expression was higher from blue to red.

FIGURE 2 | Correlation matrix of 13 immune cell subtype compositions. Blue dots represent negative correlation, and red dots represent positive correlation. The size

of the dot is positively correlated with the correlation coefficient. *p < 0.05 and ***p < 0.001.
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FIGURE 3 | Weighted genes correlation network analysis to cluster genes into different modules. (A) The selection of the soft-thresholding power β. (B) Dendrogram

of all differentially expressed genes. (C) The clustering heat map between modules. Red means closer similarity, and blue means farther similarity.

had contraindications to surgery. The left atrium tissues and
blood samples of twenty patients with persistent AF and ten
healthy donors with SR were collected during cardiac surgery.
The samples were then immediately preserved in liquid nitrogen
for the later experiment. This study was in full compliance with
the Declaration of Helsinki and approved by the Medical Ethics
Committee of Zhongshan Hospital, Fudan University (Approval
No. B2019-198R). All patients participating in this study have
signed written informed consent before surgery.

Quantitative Real-Time Polymerase Chain
Reaction (qRT-PCR)
Total left atrium tissue RNA was extracted with the RNeasyTM

Mini Kit (QIAGEN, Frankfurt, Germany) following the
manufacturer’s instruction. The PrimeScriptTM RT reagent Kit
(Takara, Otsu, Japan) was used to conduct reverse transcription.

QRT-PCR was performed with the TB Green R© Premix Ex TaqTM

II (Takara, Otsu, Japan) on QuantStudioTM 5 System (Thermo
Fisher Science, Waltham, MA, USA). The expression data was
normalized by GAPDH, and the 2−11CT method was applied
to analyze the results. All sequences for RNA primers (Sangon
Biotech, Shanghai, China) are shown in Table 1.

RESULTS

Identification of DEGs
A total of 2,350 genes, including 1,115 upregulated and 1,235
downregulated, which were differentially expressed between AF
samples and SR samples, were identified in the GSE115574
dataset with the limma package.
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FIGURE 4 | The heatmap showing module-trait correlations. Blue represent negative correlation, and red represent positive correlation. The magenta module had the

strongest correlation with M1 macrophages.

FIGURE 5 | GO and KEGG enrichment analyses. (A) Biological process. (B) Cellular component. (C) Molecular function. (D) KEGG pathways.
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FIGURE 6 | The PPI network of genes in the magenta module.

Relative Immune Cells Expression
The Cibersort with 22 types of immune cell subtypes was applied
to estimate the putative relative expression of immune cells. The
results are shown in Figure 1. Naïve B cells, CD4 naïve T cells,
CD4 memory activated T cells, gamma delta T cells, resting NK
cells, M0 macrophages, activated mast cells, eosinophils, and
neutrophils were eliminated because most of the samples were
not inferred to express in these immune cells. The correlation
of remaining immune cells was calculated using the Pearson
correlation coefficient, as shown in Figure 2. M1 macrophages
were significantly negatively correlated with activated NK cells
(r = −0.42, p = 0.0247). CD4 memory resting T cells were
significantly negatively correlated with CD8T cells (r = −0.43,
p = 0.0191). Resting NK cells were significantly negatively
correlated with activated NK cells (r =−0.78, p < 0.001).

Construction of the Weighted
Coexpression Networks
Based on the DEGs identified above, a total of 2,350 genes were
subjected to WGCNA. We then established a scale-free (scale-
free R2 > 0.85) coexpression network with the soft-thresholding
power β = 8. Using the average linkage hierarchical clustering
method, DEGs were clustered into eleven modules with different
colors, including black, blue, brown, cyan, greenyellow, gray,
lightcyan, magenta, midnightblue, tan, and turquoise (Figure 3).

Correlation Between Modules and Immune
Cell Types
Correlation analysis was performed between each module and
immune cell types selected above, including memory B cells,
plasma cells, CD8T cells, CD4 memory T cells, follicular helper
T cells, regulatory T cells (Tregs), resting NK cells, activated
NK cells, monocytes, M1macrophages, M2macrophages, resting
dendritic cells, resting mast cells. The results demonstrated that
the magenta module (r = 0.67, p < 0.001) and the blue module
(r = 0.58, p = 0.008) were significantly positively correlated
with M1 macrophages, while the greenyellow module (r =

−0.62, p= 0.004) was significantly negatively correlated with M1
macrophages, as shown in Figure 4. The magenta module with
246 genes was identified as the key module associated with M1
macrophages with the highest correlation coefficient.

Functional Enrichment Analyses
Genes in the magenta module were selected to perform GO
and KEGG functional enrichment analyses utilizing the DAVID
online tool to investigate the biological effects, as shown in
Figure 5. The significant enriched BPs included immune
response, ureteric bud development, aorta development,
extracellular matrix organization, cyclic nucleotide biosynthetic
process, and calcium ion transmembrane transport. In addition,
extracellular matrix, extracellular space, extracellular region,
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TABLE 2 | Top ten genes calculated by five algorithms of CytoHubba.

Ranks MCC DMNC MNC Degree EPC

1 TYROBP ALOX5AP TYROBP INS TYROBP

2 FCER1G F13A1 LCP2 TYROBP LCP2

3 CTSS MS4A7 FCER1G LCP2 LAPTM5

4 LCP2 VSIG4 LAPTM5 LAPTM5 FCER1G

5 CSF2RB CTSS FCGR2B FCER1G CSF2RB

6 LAPTM5 CORO1A CD53 FCGR2B CD53

7 CD53 ARHGAP30 CTSS CD53 FCGR2B

8 NCF2 CSF2RB CSF2RB NCF2 CTSS

9 FCGR2B NCF2 FGL2 CSF2RB NCF2

10 ALOX5AP C1QC NCF2 CTSS C1QC

basement membrane, and actin filament were significant
enriched in CC. For MF, the most significant entries were
heparin binding, extracellular matrix structural constituent,
calcium channel activity, protein complex binding, and
calcium ion binding. Furthermore, the KEGG pathway analysis
suggested that DEGs were mainly enriched in staphylococcus
aureus infection, MAPK signaling pathway, mTOR signaling
pathway, calcium signaling pathway, and complement and
coagulation cascades.

Construction of the PPI Network and Hub
Genes Identification
DEGs in the magenta module were imported into the STRING
online tool to evaluate the interaction between these genes,
and a total of 167 nodes and 393 edges were identified from
the PPI network, as shown in Figure 6. Five algorithms of the
CytoHubba, including MCC, DMNC, MNC, Degree, and EPC,
were then applied to process the PPI network to identify the
top ten genes, which are shown in Table 2. A Venn diagram
(Figure 7) was generated to establish the intersection of genes
identified by five algorithms, and CTSS, CSF2RB, and NCF2
were determined as hub genes. These three genes may play
considerable roles in the pathophysiology of AF.

Validation of the Hub Genes
The expression levels of three hub genes were detected in LAs
and blood samples, respectively, by qRT-PCR. The results showed
that the expression levels of CTSS, CSF2RB, and NCF2 in AF
were significantly higher than those in SR both in LAs and blood
samples, which were consistent with the bioinformatic analysis
(Figure 8). Moreover, we combined three datasets, GSE31821,
GSE41177, and GSE79768, to verify the expression levels of these
three genes between AF and SR. The results also demonstrated
that the expression levels of CTSS, CSF2RB, and NCF2 were
significantly higher in AF than those in SR (Figure 9).

DISCUSSION

AF is the most common tachyarrhythmia in the clinic. The
typical clinical manifestations of AF are palpitations, fatigue,
chest tightness, and decreased exercise tolerance, which seriously

FIGURE 7 | A Venn diagram between five algorithms of CytoHubba. The

coincident part represents the three genes (CTSS, CSF2RB, and NCF2)

identified by all five algorithms.

affect the life quality of patients (22). AF increases the risk of
ischemic stroke by five times higher than healthy people and leads
to high morbidity and mortality (23). Despite the fact that lots of
efforts have been made, however, the molecular mechanism of
AF development is still not completely understood. Therefore, it
is significant urgent to clarify the pathogenesis of AF and find
potential therapeutic targets.

In this study, we downloaded the GSE115574 dataset from
the GEO database and estimated the composition of the immune
cells using Cibersort based on the expression matrix. WGCNA
was performed to determine the module with the most robust
relationship between genes in the module and immune cell types.
A total of eleven modules were identified, and the magenta
module was significantly correlated with M1 macrophages. To
the best of our knowledge, it is the first time that WGCNA
has been used to analyze the relationships between immune cell
types and AF. We then performed enrichment analysis on genes
in the magenta module. According to GO analysis, genes were
mainly enriched in immune response, ureteric bud development,
aorta development, and extracellular matrix organization. KEGG
pathway analysis demonstrated that genes were mainly enriched
in staphylococcus aureus infection, MAPK signaling pathway,
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FIGURE 8 | The relative expression of three hub genes between atrial fibrillation (AF) and sinus rhythm (SR). (A–C) The relative expression of CSF2RB, CTSS, and

NCF2 in left atriums. (D–F) The relative expression of CSF2RB, CTSS, and NCF2 in blood samples. ****p < 0.0001.

FIGURE 9 | The relative expression of three hub genes verified by three datasets. (A) The relative expression of CSF2RB. (B) The relative expression of CTSS. (C) The

relative expression of NCF2. *p < 0.05, **p < 0.01.

and mTOR signaling pathway. Based on the PPI network and
CytoHubba, we identified three hub genes, including CTSS,
CSF2RB, andNCF2. As we know, the relationships between these
three genes and the molecular mechanism of AF has not been
studied, which is worth further research. Finally, qRT-PCR was
performed to verify the expression of CTSS, CSF2RB, and NCF2.
The expression levels of these three genes in patients with AF
were significantly higher than those in patients with SR, which
were consistent with the bioinformatic analysis. The expression
levels of these three genes were also verified in three other
datasets, GSE31821, GSE41177, and GSE79768.

Previous studies have shown that macrophages are associated
with atrial fibrosis, leading to structural remodeling in the

process of AF (2, 7, 24). Cytokines released by macrophages
such as tumor necrosis factor-α (TNF-α) and interleukin-1β
(IL-1β) can activate fibroblast proliferation, leading to fibrous
tissue formation (25). However, few studies have investigated
the precise role of these cytokines in the molecular mechanism
of AF.

CTSS is a lysosomal cysteine proteinase, playing a crucial
role in the degradation of antigenic proteins on major
histocompatibility complex (MHC) class II molecules (26).
CTSS is associated with many inflammatory and autoimmune
diseases. CTSS expressed by intimal macrophages was
involved in atherogenesis, and deficiency of CTSS could
reduce atherosclerosis in LDL receptor-deficient mice
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(27). miR4498/CTSS might polarize macrophages into pro-
inflammatory phenotype and accelerate chronic atherosclerotic
inflammation (28). CTSS participated in the abdominal aortic
aneurysm (AAA) formation, and inhibition of CTSS suppressed
AAA formation in mice (29). A previous study showed that
CTSS-mediated induction of CX3CL1 might contribute to the
ocular surface and lacrimal glands inflammation in Sjögren’s
syndrome with a 4.5-fold increase in CX3CR1-expressing
macrophages (30). In chronic obstructive pulmonary disease,
reduction in CTSS expression prevents loss of lung function,
reduces inflammation, and slows the lung tissue remodeling
(31). Moreover, CTSS was identified as novel biomarkers for
diseases and physiological processes, including triple-negative
breast cancer, sarcoidosis, and particulate-induced lysosomal
disruption in macrophages (32–34).

CSF2RB is the common beta chain of the high affinity
receptor for interleukin-3, interleukin-5, and colony-stimulating
factor. The role of CSF2RB has been studied in many
diseases. Runt-related transcription factor 1 directly bound
to the promoters of CSF2RB, which regulated apoptosis
of neuroblastoma (35). The activating hotspot mutation in
CSFR2B was identified in myeloid leukemia in Down syndrome
(36). The mutation in CSF2RB can also cause hereditary
pulmonary alveolar proteinosis (PAP) (37). In CSF2RB-/- mice,
statin therapy reduces cholesterol accumulation in alveolar
macrophages and ameliorates PAP (38). Moreover, CSF2RB was
found overexpressed on monocytes from Alzheimer’s disease
patients, which contributed to granulocyte-macrophage colony-
stimulating factor-induced monocyte migration (39). However,
the role of CSF2RB has never been studied in AF. Further
research is required to determine whether CSF2RB can become
a novel therapeutic target for AF.

NCF2, encoding neutrophil cytosolic factor 2, mainly results
in autoimmune diseases. In a previous case-control study, four
single-nucleotide polymorphisms within the NCF2 gene were
genotyped, and the rs10911362 variants were associated with
a decreased TB risk in the Western Chinese Han population
(40). NCF2 deficiency resulted in granulomas, and the NCF2
mutation caused diverse and unusual clinical phenotype of
chronic granulomatous disease (41, 42). In multiple sclerosis,
NCF2was identified to be associated with eleven single nucleotide
polymorphisms (43). Nevertheless, the relationship between
NCF2 and AF has not been elucidated.

There are some limitations to our study. First, the data we used
was from public databases, which were limited in the sample size.

Further prospective studies on more patients should be carried
out to support our results. Second, although we have performed
qRT-PCR to verify the expression levels of genes, mechanistic
studies need to be conducted.

CONCLUSION

In this study, we performedWGCNA to analyze the relationships
between immune cell types and AF for the first time. Three
novel genes (CTSS, CSF2RB, and NCF2) which have never been
studied in AF were identified. These three genes are worthy
of further study and may become potential therapeutic targets
in AF.
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