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Abstract Accumulation of a large body of evidence during
the past two decades testifies to the complexity of the renin–
angiotensin system (RAS). The incorporation of novel
enzymatic pathways, resulting peptides, and their
corresponding receptors into the biochemical cascade of the
RAS provides a better understanding of its role in the
regulation of cardiovascular and renal function. Hence, in
recent years, it became apparent that the balance between the
two opposing effector peptides, angiotensin II and angiotensin-
(1-7), may have a pivotal role in determining different
cardiovascular pathophysiologies. Furthermore, our recent
studies provide evidence for the functional relevance of a
newly discovered rat peptide, containing two additional amino
acid residues compared to angiotensin I, first defined as
proangiotensin-12 [angiotensin-(1-12)]. This review focuses
on angiotensin-(1-7) and its important contribution to cardio-
vascular function and growth, while introducing angiotensin-
(1-12) as a potential novel angiotensin precursor.
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Introduction

It seemed for a long time that all components of the renin–
angiotensin system (RAS) and their physiological roles
were well defined. In this traditional view, the RAS is
viewed as a classical endocrine system with the octapeptide
angiotensin II (Ang II; Asp1-Arg2-Val3-Tyr4-Ile5-His6-Pro7-
Phe8) as an effector hormone expressing its vasoconstrictor,
sodium retention, mitogenic, and proliferative effects upon
its binding to Ang II type 1 receptors (AT1). Renin and
angiotensin converting enzyme (ACE) were thought to be
the only enzymes responsible for angiotensin I (Ang I;
Asp1-Arg2-Val3-Tyr4-Ile5-His6-Pro7-Phe8-His9-Leu10) and
Ang II synthesis, respectively. However, over the last two
decades, increasing evidence has accumulated that indicates
an exceeding complexity of the system, particularly in
tissues such as the heart and kidneys. The evidence for a
fully operational RAS in local tissues with tissue-specific
enzymatic pathways for the processing of Ang I and Ang II
has been detailed in a number of publications from this
laboratory [1–6]. Furthermore, the pleiotropic actions of the
resulting fragment of Ang I or Ang II, the heptapeptide
Ang-(1-7), have been gradually appreciated over the last
decade. In general, Ang-(1-7) [Asp1-Arg2-Val3-Tyr4-Ile5-
His6-Pro7] counterbalances biological actions of Ang II,
and in that way, an inadequate balance between these two
peptides may determine different cardiovascular pathophys-
iological states. Interestingly, the spectrum of novel
peptides within RAS continues to expand showing that a
peptide containing two amino acids more than Ang I, the
dodecapeptide angiotensin-(1-12) [Ang-(1-12); rat se-
quence: Asp1-Arg2-Val3-Tyr4-Ile5-His6-Pro7-Phe8-His9-
Leu10-Leu11-Tyr12], could also be a key player in the
regulation of cardiovascular function. This review will
therefore focus on Ang-(1-7), its important contribution to
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cardiovascular function and growth, while introducing
Ang-(1-12) as a potential novel angiotensin precursor.

Angiotensin-(1-7)

Biochemical pathways for Ang-(1-7) synthesis and
degradation Ang-(1-7) may be derived from either Ang I
or Ang II (Fig. 1). Different tissue-specific endopeptidases,
including neprilysin (NEP), thimet oligopeptidase (TOP),
and prolyl oligopeptidase (POP) catalyze the hydrolysis of
the decapeptide Ang-I at the Pro7-Phe8 bond to release the
three terminal amino acids and Ang-(1-7) [7–9]. Both POP
[10] and TOP [7] have been reported by us to mediate Ang-
(1-7) formation in cultures of vascular endothelial and
smooth muscle cells. Neprilysin has been shown to be
particularly abundant in the kidney [11]. Importantly, as
NEP is a membrane-bound enzyme, its localization on the
luminal side of the endothelium makes it accountable for
most of the Ang-(1-7) production in the circulation [12–
14]. Neprilysin degrades vasodilatory atrial natriuretic
peptide as well, but its high substrate specificity for Ang-
(1-7) formation in hypertensive humans may explain, at
least in part, the lack of significant beneficial effects of its
inhibitors in the treatment of hypertension [15]. However,
neprilysin also degrades Ang-(1-7) into Ang-(1-4) [11], and
further studies are necessary to clarify its role in hyperten-
sive disease.

It has been only recently that direct conversion of Ang II
into Ang-(1-7) by a newly discovered homolog of ACE,
angiotensin converting enzyme 2 (ACE2), was demonstrat-
ed (Fig. 1) [16, 17]. As a carboxypeptidase, ACE2 also
mediates the conversion of Ang I into Ang-(1-9), which can

be further metabolized into Ang-(1-7) by ACE. However,
the higher substrate preference of ACE2 towards Ang II
than Ang I underscores the significance of this enzyme in
the regulation of tissue Ang II/Ang-(1-7) balance [16, 17].
Consequently, higher cardiac Ang II level was associated
with genetic deletion of ACE2 in mice and resulted in the
development of severe cardiac dysfunction [18]. On the
other hand, local ACE2 overexpression by systemic
lentiviral delivery was followed by an attenuation of cardiac
remodeling in hypertensive rats [19]. Furthermore, a recent
report from our laboratory showed that the hypertensive
heart predominantly depends on ACE2 for the production
of Ang-(1-7) [20]. Together with evidence for increased
ACE2 expression in failing human [21] and rat [22] hearts,
our study suggests a preserved compensatory response of
injured hearts to maintain Ang-(1-7) levels even in the
advanced stage of the disease, although it was obviously
not sufficient to counteract the deleterious effects of Ang II.

Besides breaking down bradykinin and Acetyl-Ser-Asp-
Lys-Pro, ACE hydrolyzes Ang-(1-7) as well. It acts upon
the Ile5-His6 bond to form the inactive metabolite Ang-(1-
5) [23–25], and ACE inhibitors increase the short half-life
of Ang-(1-7) in the circulation [26]. On the other hand,
neprilysin hydrolysis of the Tyr4-Ile5 bond of Ang-(1-7) to
form Ang-(1-4) seems to be the predominant pathway for
Ang-(1-7) metabolism in the kidney [23, 27–29].

Ang-(1-7) receptor and signaling mechanisms Prior to the
identification of a specific Ang-(1-7) receptor, a modified
form of Ang-(1-7), D-Ala7-Ang-(1-7) was designed as a
selective antagonist for the putative Ang-(1-7) receptor.
Thus, D-Ala7-Ang-(1-7) inhibited Ang-(1-7)-induced sys-
temic and renal vasodilation, did not block pressor or
contractile response to Ang-II, and did not compete for
binding of 125I-Ang II to rat adrenal AT1 or AT2 receptors
[30]. Subsequent studies from our group identified specific
non-AT1/AT2 Ang-(1-7) binding sites on bovine aortic
endothelial cells [31] and endothelium of coronary artery
rings [1] that were selectively competed by D-Ala7-Ang-(1-
7). This finding was in agreement with nitric oxide (NO)
release from bovine aortic endothelial cells stimulated by
Ang-(1-7) that was blocked by D-Ala7-Ang-(1-7) [32]. It
was also consistent with previously demonstrated Ang-(1-
7)-induced vasodilation of endothelium-intact coronary
arteries through release of kinins and NO [33, 34].
However, it was not before the discovery that endotheli-
um-mediated vasodilation by Ang-(1-7) was abolished in
mas-knockout mice that the “orphan” mas proto-oncogene
receptor was linked to the intracellular signaling of Ang-(1-
7) [35–37]. More recent studies revealed that Ang-(1-7),
acting on this G protein-coupled receptor, activated endo-
thelial nitric oxide synthase and NO production via Akt-
dependent pathways [38]. Furthermore, we showed recently

Fig. 1 Biochemical pathways for Ang-(1-7) formation. Adapted from
Trask and Ferrario [110]
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that the presence of an antisense probe directed against mas
abolished the Ang-(1-7)-induced inhibition of protein
synthesis in cardiomyocytes [39]. This study also revealed
that Ang-(1-7) decreased serum-stimulated ERK1/ERK2
mitogen-activated protein kinase activity, a response that
was blocked by D-Ala7-Ang-(1-7). These findings agree
with the observation that genetic deletion of mas elicits
cardiac dysfunction [37, 40]. Thus, it is clear that a
reduction in the counterbalancing arm of the renin–
angiotensin system via the ACE2/Ang-(1-7)/mas axis may
have a major influence in determining cardiac structural and
functional development [18, 37, 40]. In addition, a recent
report suggests another Ang-(1-7) receptor subtype sensi-
tive to the Ang-(1-7) antagonist [D-Pro7]-Ang-(1-7) but not
D-Ala7-Ang-(1-7) [41]. This finding, as well as an
intriguing interaction between AT1 and mas [42, 43],
clearly warrants further investigation.

Pleiotropy of Ang-(1-7) biological actions

Cardiovascular and renal effects of Ang-(1-7) A series of
studies after our initial characterization of Ang-(1-7)
actions in brain [44] established the basis for exploring
the systemic and regional vasodilatory and hypotensive
effects of this peptide [33, 34, 45]. In these studies, it was
demonstrated that the vasodilator effect of Ang-(1-7) was
mediated through different vasoactive autocoid release [2,
14, 46–52]. Moreover, it was also shown that Ang-(1-7)
potentiated bradykinin vasodilatory action [49, 53] and
that this interaction was exaggerated after ACE inhibition.
Although the precise mechanisms of this potentiation
remains controversial [54, 55], data suggest that the
release of prostaglandins, NO, endothelium-derived
hyperpolarizing factor [56–58] as well as the ability of
Ang-(1-7) to inhibit ACE activity [24, 25, 59] may be
involved.

Early studies from our laboratory strongly suggested that
Ang-(1-7) may represent an intrinsic counterbalancing factor
to the pressor and trophic actions of Ang II [1]. This unique
concept was confirmed in the experiments in which hyper-
reninemia was stimulated through induction of renovascular
hypertension [51] or a low-salt diet [47]. Despite increased
levels of Ang II during salt depletion, blood pressure
remained unchanged, at least in part, due to the opposing
actions of Ang-(1-7). Indeed, Ang-(1-7) blockade by either
the selective Ang-(1-7) receptor antagonist D-Ala7-Ang-(1-7)
or specific Ang-(1-7) antibodies caused a dose-dependent
increase in arterial pressure in salt-restricted rats [47], under-
scoring the importance of Ang-(1-7) in counterbalancing the
effects of Ang II.

The significance of the alternative arm of the RAS
comprising ACE2, Ang-(1-7), and mas in blood pressure
regulation was further underscored by the demonstration of
a considerable contribution of Ang-(1-7) to the hypotensive
effects of RAS blockade [14, 46, 48, 60–62]. Importantly,
chronic antihypertensive effects of captopril or omapatrilat
in hypertensive patients were also associated with increased
urinary levels of Ang-(1-7) [28, 63]. The importance of this
observation was magnified by the concurrent observation
that plasma and urinary excretion levels of Ang-(1-7) are
reduced in untreated essential hypertensive subjects [64].
More recently, we showed that chronic administration of
irbesartan to normotensive subjects was associated with
large increases in plasma Ang-(1-7) [65, 66]. These results
suggest an important contribution of Ang-(1-7) in mediat-
ing the antihypertensive effects of both ACE inhibitors and
AT1 receptor antagonists.

It was then in our laboratory that the effects of RAS
blockade on the Ang-(1-7)-forming enzyme, ACE2, were
evaluated for the first time [67]. From the preceding study,
we knew that heart failure due to coronary artery ligation
was associated with compensatory increase in cardiac Ang-
(1-7) levels [68]. It was in this experimental model that we
subsequently showed that AT1 receptor antagonism further
augmented plasma Ang-(1-7)/Ang II ratio suggesting
increased formation of Ang-(1-7) from Ang II [67]. Indeed,
AT1 receptor antagonism attenuated cardiac remodeling and
dysfunction, and these changes were associated with a
threefold increase in ACE2 mRNA expression in the left
ventricle. The changes in the cardiac ACE2 gene activity
and the profile of plasma angiotensin peptides after RAS
inhibition were confirmed in following experiments includ-
ing different strains of normotensive and hypertensive
animals [60–62]. The pathophysiological relevance of
Ang-(1-7) in the heart was further highlighted by studies
demonstrating that chronic infusion of either Ang-(1-7) [69]
or its stable non-peptide analog AVE-0991 [70] was
cardioprotective in experimental heart failure. Finally,
several studies demonstrated that Ang-(1-7) was protective
against cardiac ischemia-induced injury and arrhythmias
[71–73]. The beneficial antiarrhythmic effects of Ang (1-7)
on the failing heart result from the combined effect of the
peptide on the sodium pump, hyperpolarization of cardiac
cell membranes, and increased conduction velocity [74].
However, in isolated hearts, supra-pharmacological con-
centrations of Ang-(1-7) enhanced reperfusion arrhythmias
[75]. We also showed that Ang-(1-7) at higher concen-
trations (10−7 M), induces early-after depolarization [74];
therefore, an optimal tissue concentration of Ang (1-7) must
be achieved to permit a protective role of the heptapeptide
on cardiac arrhythmias.

Numerous studies indicate that the Ang-(1-7) effects on
the kidney are opposite to those of Ang II. Thus, Ang-(1-7)
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infusion induced vasodilation of pre-constricted afferent
arterioles [45], increased glomerular filtration rate, and
induced natriuresis and diuresis [76–78] by inhibiting the
Na+–K+–ATPase [79]. These vascular and tubular effects
were attenuated by the selective Ang-(1-7) antagonist D-
Ala7-Ang-(1-7). Interestingly, these counterbalancing
effects of Ang-(1-7) were noticeable under conditions of
RAS activation, such as during salt depletion or renal
hypertension, but not in the salt-replete state [80].

Ang-(1-7) functions in the brain Ang-(1-7) is present in
brain tissue, and its distribution throughout the hypothala-
mus, medulla oblongata, and amygdala underlines its
importance in the regulation of blood pressure, fluid
balance, and osmoregulation [81]. Although the action of
Ang-(1-7) in the brain sometimes mimics the action of Ang
II, such as stimulation of vasopressin release [44], their
overall effects are in general opposite. The involvement of
different receptors, neurotransmitter pathways, and com-
plex integrative regulatory brain mechanisms implicated in
the action of the two angiotensins have been already
reviewed elsewhere [4]. In brief, intracerebroventricular
administration of an Ang-(1-7) antibody elevated arterial
pressure, while endogenous neutralization of Ang II had an
opposite effect [50]. Ang-(1-7) at the nucleus of the solitary
tract evoked bradycardic and depressor response [82],
augmented baroreceptor reflex control of heart rate [83–
85], and these effects were enhanced in hypertensive
animals when compared to the controls [86, 87]. In the
rostral ventrolateral medulla, Ang-(1-7) elicited pressor
responses [88]; however, in the caudal ventrolateral
medulla, Ang-(1-7) lowered arterial pressure by inhibiting
the pressor action of the rostral ventrolateral medulla [89,
90]. More unexpected actions of Ang-(1-7) include its
ability to enhance long-term potentiation, a process thought
to be involved in learning and memory [91].

Ang-(1-7) relevance in cardiovascular and cancerous
growth Similar to their actions in the circulation and the
control of blood pressure, Ang II and Ang-(1-7) elicit
opposing effects on tissue growth as well. Ang-(1-7)
inhibited proliferation of aortic vascular smooth muscle
cells in culture [92], and this antiproliferative effect was
later confirmed in in vivo studies. Indeed, Ang-(1-7)
infusion reduced neointimal proliferation after vascular
injury in rat carotid arteries [93]. Recent reports demon-
strated that Ang-(1-7) also inhibited Ang II-induced protein
synthesis in neonatal cardiomyocytes by activating mas
[39]. Consistently, Ang-(1-7) infusion reduced myocyte
surface area in rats subjected to coronary artery ligation
[94]. These results are in keeping with the beneficial effects
of RAS blockade on cardiac remodeling and dysfunction
after myocardial infarction where activation of ACE2/Ang-

(1-7) system has been verified [67]. In addition, Ang-(1-7)
inhibited collagen synthesis in adult rat cardiac fibroblasts
acting on receptors that are distinct from the AT1 and AT2

receptors [95]. Subsequent studies confirmed that Ang-
(1-7) prevented an excessive accumulation of cardiac colla-
gen fibrils in different models of experimental hypertension
[69, 96]. Excitingly, the antiproliferative and antiangiogenic
ability [97] of Ang-(1-7) found an important application in
inhibiting cancerous growth as well. Thus, experimental
evidence that Ang-(1-7) inhibited lung [98] and breast
cancer growth in vitro [99] as well as in vivo [100] now
provides a solid foundation for the initiation of clinical
trials in which the chemotherapeutic potential of Ang-(1-7)
is being tested.

Ang-(1-7) in pregnancy All components of the RAS are
expressed in placenta including Ang-(1-7) and ACE2 [101],
and activation of the RAS during normal pregnancy has
been described in plasma and urine [102, 103]. Adequate
balance between the two opposing arms of RAS might be
of extreme importance in normal pregnancy, as the
predominance or deficit of either one might lead toward
adverse outcomes. For example, unopposed antiangiogenic
properties of Ang-(1-7) may have a harmful effect,
particularly in early pregnancy during which vasculariza-
tion of tissue beds is critical. On the other hand, decreased
plasma levels of Ang-(1-7) were associated with pre-
eclamptic pregnancies characterized by elevated arterial
pressure and proteinuria [102]. To further confirm this
relationship, the most recent study from our group related
an experimental model of preeclampsia with failure to
increase Ang-(1-7) in kidney as well [104].

Further expansion of the complexity of the renin–
angiotensin system: angiotensin-(1-12)

In line with expanding data on the newer angiotensin peptide,
Ang-(1-7), Nagata and colleagues [105] recently identified
another new angiotensin peptide, the dodecapeptide Ang-(1-
12). The authors were probing for analogs of Ang II when
they discovered an unidentified immunoreactive peak by
high-performance liquid chromatography (HPLC), which the
authors found to be a 12-amino acid derivative of angiotensi-
nogen, two amino acids larger than the traditional interme-
diate peptide Ang I. The dodecapeptide produced pressor
responses both in isolated rat aorta and acutely in intact
Wistar rats—a finding that was abrogated by coadministration
of both an ACE inhibitor or an angiotensin receptor blocker
(ARB). These data suggested that “proangiotensin-12,” as the
authors named it, was exerting its actions through rapid
metabolism into Ang II.
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Recent data from our laboratory provided further
evidence for a biological role of Ang-(1-12) as a new
endogenous peptide of the RAS. Because Ang-(1-12) was
identified endogenously by RIA in different organs and
tissues [105] (Fig. 2), we first undertook studies that
investigated the immunolocalization of the dodecapeptide
in the hearts and kidneys of normal Wistar–Kyoto (WKY)
and spontaneously hypertensive rats (SHR). Jessup et al.
[106] found that Ang-(1-12) was localized by immunohis-
tochemistry predominantly in cardiac myocytes, while
staining in the medial and endothelial layers of the coronary
arteries appeared more faint (Fig. 3) and failed to be
detected in all vessels examined. The distribution of Ang-
(1-12) within the hearts of SHR was more robust than that
found in WKY. This observation was confirmed by tissue
content analysis, which revealed significantly higher levels
of cardiac Ang-(1-12) in SHR compared to WKY. Renal
Ang-(1-12) was localized to the proximal and distal tubules
and the collecting duct, but it was scantily observed in
glomeruli or intra-renal vessels. These data, in accordance
with those from Nagata and colleagues [105] show that

Ang-(1-12) is indeed localized endogenously within tissues,
and the distribution of the new angiotensin peptide may
reflect the state of the health of that tissue, as shown by
differences in distribution between WKY and SHR.

Further enhancements towards the understanding for a
biological role for Ang-(1-12) were made by studies from our
laboratory which illustrated the metabolic capacity for Ang-
(1-12) to yield known downstream bioactive angiotensin
peptides. Intriguingly, Chappell et al. [107] found that serum
exclusively formed Ang II from Ang-(1-12) by ACE, and
renal neprilysin activity converted Ang-(1-12) to Ang-(1-7).
Both of these pathways were independent of renin activity.
Moreover, we [108] showed that Ang-(1-12) could be
metabolized into Ang I, Ang II, and Ang-(1-7) in isolated
hearts from five different normotensive and hypertensive rat
strains. Collectively, these data provide strong evidence that
Ang-(1-12) may be an alternate precursor substrate for the
formation of bioactive angiotensin peptides in the heart,
kidney, and circulation that may depend on the localization
of one of its processing enzymes, ACE, but not renin.

Conclusions

In conclusion, a large body of evidence emerging from
experimental and human studies clearly reveals pathophys-
iological importance of novel peptides and related enzymes
incorporated recently into the biochemical RAS cascade.
The consequences of an altered ACE2/Ang-(1-7)/mas axis
in hypertensive disease and heart failure is now well
recognized. In addition to the potential therapeutic applica-
tion in the treatment of cardiovascular disease, the ACE2/
Ang-(1-7)/mas axis emerges further as a prospective
therapeutic target in cancer and preeclamptic patients.
Thus, there is a great potential for genetic and pharmaco-
logical modulation of the ACE2/Ang-(1-7)/mas axis in the
treatment of various diseases that, however, warrants
further meticulous investigation. Future studies will cer-
tainly provide us with better understanding of the relevance

Fig. 2 Ang-(1-12) peptide levels by radioimmunoassay in several
tissues from male Wistar rats. Adapted from Nagata et al. [105]

Fig. 3 Immunohistochemical
localization of Ang-(1-12) in
the heart of WKY and SHR rats.
Note the more robust distribu-
tion of Ang-(1-12) within the
hearts of SHR than that assessed
in WKY. This observation was
confirmed by tissue content
analysis, which revealed signifi-
cantly higher levels of cardiac
Ang-(1-12) in SHR compared to
WKY. Adapted from Jessup et
al. [106]
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of ACE2 function as a receptor for severe acute respiratory
syndrome (SARS) virus. They will also expand our
comprehension of the signaling mechanisms and a potential
angiotensin receptor interaction.

Building upon the complexity unveiled thus far on the
RAS as documented by data on the ACE2/Ang-(1-7)/mas
axis, the demonstration of endogenous Ang-(1-12) is
indeed novel and important. Although the data are still
limited to the rat, forthcoming research may provide insight
onto anomalies within RAS physiology that we cannot yet
explain. Conceptually, Ang-(1-12) may serve as an alternate
substrate for the production of bioactive angiotensin
peptides as shown in our preliminary studies. Moreover,
in lieu of the specific sequence requirements for the
generation of Ang I by renin, Ang-(1-12) may be formed
directly from angiotensinogen in a renin-independent
manner. In support of this notion, Oparil and colleagues
[109] found that coadministration of aliskiren and the ARB
valsartan produced additive reduction in blood pressure in
patients when compared to each drug administered alone—
a finding not expected if renin is the limiting step in the
formation of angiotensin peptides from angiotensinogen.
Identification of a biological role for Ang-(1-12) requires
further work; however, expression of the peptide through-
out the body argues strongly that this angiotensin interme-
diate may add further unrecognized complexity to the
renin–angiotensin system.
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