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Abstract

Essential genes, those indispensable for the survival of an organism, play a key role in the emerging field, synthetic biology.
Characterization of functions encoded by essential genes not only has important practical implications, such as in
identifying antibiotic drug targets, but can also enhance our understanding of basic biology, such as functions needed to
support cellular life. Enzymes are critical for almost all cellular activities. However, essential genes have not been
systematically examined from the aspect of enzymes and the chemical reactions that they catalyze. Here, by
comprehensively analyzing essential genes in 14 bacterial genomes in which large-scale gene essentiality screens have
been performed, we found that enzymes are enriched in essential genes. Essential enzymes have overrepresented ligases
(especially those forming carbon-oxygen bonds and carbon-nitrogen bonds), nucleotidyltransferases and phosphotrans-
ferases, while have underrepresented oxidoreductases. Furthermore, essential enzymes tend to associate with more gene
ontology domains. These results, from the aspect of chemical reactions, provide further insights into the understanding of
functions needed to support natural cellular life, as well as synthetic cells, and provide additional parameters that can be
integrated into gene essentiality prediction algorithms.
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Introduction

Essential genes are those indispensable for the survival of an

organism under certain conditions. Studies on essential genes play

an important role in the emerging field, synthetic biology [1]. An

important concept of synthetic biology is the chassis, which is the

minimal genome capable of supporting a self-replicating organism.

The minimal gene set, composed of all essential genes for an

organism, is necessary to finally build a chassis in which

interchangeable standardized gene circuits can be placed to create

organisms with desirable traits [2,3,4,5,6]. Identification and

characterization of essential genes have important practical

implications, e.g., in identifying bacterial drug and vaccine targets;

they can also enhance our understanding of basic biology, such as

fundamental functions needed to support a cellular life.

There has been great advancement in gene essentiality studies

in the past few years. For instance, 5 years after we created

DEG, a database of essential genes [7], the number of

experimentally determined bacterial essential genes has in-

creased for more than tenfold [8]. This is mainly due to the

increased ability of genome-wide gene essentiality screens in

bacteria. So far, genome-wide or large-scale gene essentiality

screens have been performed in 14 genomes [8]. Many studies

have been performed to examine the characteristics of bacterial

essential genes. For instance, it has been found that, compared

to non-essential ones, bacterial essential genes tend to encode

functions such as transcription, translation and replication

[9,10], tend to reside in the leading strand [11], are more

evolutionarily conserved [12], and have different protein

interaction network degrees [13].

Enzymes are the catalysts of biological systems, and most of

them are proteins that catalyze specific chemical reactions.

Enzymes have two striking characteristics, catalytic power and

specificity. Enzymes can tremendously accelerate the rate of

chemical reactions, and are highly selective for the substrates by

only catalyzing very specific reactions. Therefore enzymes are

critical for almost all cellular activities. Nevertheless, essential

genes have not been examined systematically from the aspect of

enzymes.

Because of the critical functions of enzymes, we hypothesized that

bacterial essential genes are enriched with enzymes, and some

chemical reactions are preferentially catalyzed by essential enzymes.

To test this hypothesis, we examined enzyme proportions, and

enzyme type distribution in essential and non-essential genes, using

all the 14 genomes that have large-scale gene essentiality screens

performed. We found that essential genes have higher proportion of

enzymes, and that essential enzymes are enriched with ligases

(especially those forming carbon-oxygen bonds and carbon-nitrogen

bonds), nucleotidyltransferases and phosphotransferases, while have

underrepresented oxidoreductases. These results provide further

insights into the understanding of the functionalities of essential

genes, and provide useful parameters that can be incorporated into

gene essentiality prediction algorithms.

Results and Discussion

Enzymes are enriched in bacterial essential genes
Because of the critical functions of enzymes, we examined

whether enzymes are enriched in bacterial essential genes. Based

on the GenBank annotation, each enzyme has at least an Enzyme
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Commission number (EC code) [14], which specifies the chemical

reactions that the enzyme catalyzes. So far, in 14 bacterial

genomes, genome-wide or large-scale gene essentiality screens

have been performed (Table 1). We then calculated the

proportions of enzymes between essential and non-essential genes

in these 14 genomes. On average, essential genes had more than 2-

fold of enzymes than non-essential genes. The average percentages

of enzymes in essential and non-essential genes were 33.07% and

16.15%, respectively (Fig. 1A). The Student’s t test showed that the

difference is statistically significant (p = 2.561024). To confirm

this, we also performed Mann-Whitney U test, which showed

consistent result (p = 6.461024). For all the 14 genomes, the

enzyme proportions in essential genes were higher than those of

non-essential genes (Fig. 1B). These results suggest that enzymes

are enriched in bacterial essential genes.

Essential genes have underrepresented oxidoreductases
and overrepresented ligases

The EC number is specific to a chemical reaction, but does not

specify genes. All enzymes can be classified into 1 of the 6 classes.

EC 1: oxidoreductases, which catalyze oxidation and/or

reduction reactions.

EC 2: transferases, which transfer a functional group,

such as a methyl group.

EC 3: hydrolases, which catalyze the hydrolysis of

various bonds.

EC 4: lyases, which cleave various bonds by means other

than hydrolysis and oxidation.

EC 5: isomerases, which catalyze isomerization.

EC 6: ligases, which join two molecules with covalent

bonds.

We then examined the distribution of the 6 enzyme types

among essential and non-essential genes. Ligases were highly

enriched in essential genes (p = 4.161028). On average, essential

genes had more than 3 fold of ligases than non-essential genes.

The percentages of ligases for essential and non-essential genes

were 23.46% and 6.71%, respectively. Conversely, oxidoreduc-

tases were overrepresented in non-essential genes (p = 1.861024).

The percentages for oxidoreductases for essential and non-

essential genes were 12.78% and 20.61%, respectively. The

difference of proportions for other enzyme types, transferases,

lyases and isomerases, was less significant (Fig. 2A). Essential genes

tended to have lower proportion of hydrolases (p,0.05). Twelve of

the 14 genomes had a higher proportion of oxidoreductases in

non-essential genes (Fig. 2B), and in all the 14 genomes, the

proportions of ligases were higher in essential genes (Fig. 2C).

These results suggest that ligases are overrepresented and

oxidoreductases are underrepresented in essential genes.

Over and under-represented second level enzyme types
in essential genes

Enzymes are broadly classified into 6 classes, and within each

class, there are many subclasses. For instance, ligases are further

classified into 6 subclasses, which include reactions forming

carbon-oxygen bonds, carbon-sulfur bonds, carbon-nitrogen

bonds, carbon-carbon bonds, phosphoric ester bonds and

nitrogen-metal Bonds. We then examined the subclass distribu-

tion, and found that 4 subclasses were either over or under

represented with statistical significance in essential genes.

Essential genes had underrepresented enzymes of the following

types (Fig. 3). EC 1.1: oxidoreducatases acting on the CH-OH group

of donors (ratio between essential and non-essential genes = 0.49) and

EC 3.2: glycosylases (ratio = 0.15). Essential genes had overrepre-

sented enzymes of the following types. EC 6.1: ligases forming

carbon-oxygen bonds (ratio = 7.9) and EC 6.3: ligases forming

carbon-nitrogen bonds (ratio = 1.8). Essential genes also tended to

have higher proportion of transferases transferring phosphorus-

containing groups (EC 2.7) (p = 0.01). The overrepresentation and

underrepresentation of these enzyme types reveal important

characteristics of essential genes from the aspect of chemical

reactions.

Table 1. The data of essential genes used in the current study.

Organism RefSeq No. of total genes No. of essential genes References

Acinetobacter sp. ADP1 NC_005966 3307 499 [26]

Bacillus subtilis subsp. subtilis str. 168 NC_000964 4176 271 [10]

Escherichia coli K12 NC_000913 4144 700a [27,28]

Francisella tularensis subsp. novicida U112 NC_008601 1719 390 [35]

Haemophilus influenzae Rd KW20 NC_000907 1657 462 [32]

Helicobacter pylori 26695 NC_000915 1573 322b [36]

Mycobacterium tuberculosis H37Rv NC_000962 3988 614 [37]

Mycoplasma genitalium G37 NC_000908 475 378c [38]

Mycoplasma pulmonis UAB CTIP NC_002771 782 310 [39]

Pseudomonas aeruginosa UCBPP-PA14 NC_008463 5892 335 [40]

Salmonella enterica subsp. enterica serovar Typhi Ty2 NC_004631 4314 353 [41]

Salmonella typhimurium LT2 NC_003197 4423 230 [42]

Staphylococcus aureus subsp. aureus N315 NC_002745 2583 302 [29,30,31]

Staphylococcus aureus subsp. aureus NCTC 8325 NC_007795 2892 351 [43]

aNote that for the genome of NC_000913, ten essential genes without GI numbers and two essential genes with dead GI numbers (16129191 and 16130842) were
excluded.

bNote that for the genome of NC_000915, one essential gene with dead GI number (15644641) was excluded.
cNote that for the genome of NC_000908, two essential genes without GI numbers and one essential gene with dead GI number (13277519) were excluded.
doi:10.1371/journal.pone.0021683.t001
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Enriched third level enzyme types in essential genes
EC codes have 4 levels, with progressively finer classification of

enzyme types. For instance, EC 2.7.10.1 represents receptor

protein-tyrosine kinase, which is a kind of protein-tyrosine kinases

(EC 2.7.10), while the latter belongs to transferases (EC 2) that

transferring phosphorus-containing groups (EC 2.7). Therefore it

is necessary to examine further detailed enzyme classification for

the second level enzymes that showed significant differences.

However, with finer classification, the enzyme number becomes

lower, and it is more stringent to reach significance with statistical

tests. We found that following 3 enzyme types were especially

enriched in essential genes.

Compared to non-essential genes, ligases forming aminoacyl-

tRNA (EC 6.1.1) were enriched in essential genes. The proportion

of this kind of ligases in essential genes was about 8 times of that in

non-essential ones (p = 1.361027). Similarly, in essential genes, the

proportions of nucleotidyltransferases (EC 2.7.7) and phospho-

transferases with a phosphate group as acceptor (EC 2.7.4) were

both 2.5 times of those in non-essential genes, with highly

statistical significance (Fig. 4).

Essential enzymes are associated with more gene
ontology domains

Gene ontology (GO) describes gene products with controlled

vocabulary in a species-independent manner [15]. To describe

functions, GO uses 3 domains (structured vocabularies), cellular

components, molecular functions and biological processes. A

cellular component is the part of a cell or its extracellular

environment; the molecular function refers to the elemental

activities of a gene product at the molecular level and the

biological process refers to operations or sets of molecular events

with a defined beginning and end, pertinent to the functioning of

integrated cells [15].

A gene can be associated with 1 or more GO domains. We used

Blast2GO [16] to assign GO terms to all genes, and calculated the

proportion of genes with different GO domain numbers. We

found that essential enzymes tended to associate with all the 3 GO

domains. The percentages of 1 GO domain essential and non-

essential enzymes were 1.96% and 7.05% (p = 0.09); those of 2

GO domain were 35.54% and 51.33% (p = 2.661025). When

combined, the percentages of either 1 or 2 GO domain essential

and non-essential enzymes were 37.50% and 58.38%, respectively

(p = 6.661026) (Fig. 5A). In contrast, essential enzymes had higher

proportion of genes associated with all 3-GO domains

(p = 7.161026). The percentages of 3 GO domain essential and

non-essential enzymes were 62.50% and 41.48%, respectively

(Fig. 5A). The observations that compared to non-essential ones,

essential enzymes had lower proportion of genes associated with

either 1 or 2-GO domains, but higher proportion of 3-GO

domains, hold for all the genomes studied (Fig. 5B and C). The

observation that essential enzymes tend to be associated with more

gene ontology domains seems to reflect the multi-functional

features of essential enzymes, consistent with their lethality

phenotypes.

Every organism and the complex cellular activities that support

its survival is an end product of evolution of millions of years. Life,

to a large degree, can be regarded as a series of chemical reactions.

Then enzymes that catalyze these chemical reactions must play a

special role in the survival of an organism. By definition, essential

genes are those absolutely needed for the survival of an organism.

Of note, experimentally determined essential genes rely on specific

conditions, such as minimal medium [17]. In this study, we

calculated the enzyme proportions in essential genes comprehen-

sively in 14 bacterial genomes that have large-scale gene

essentiality screens performed. Indeed, essential genes had a

higher proportion of enzymes.

Figure 1. Enzymes are enriched in bacterial essential genes. (A) Averaged percentage of enzymes in essential and non-essential genes. (B)
Percentages of enzymes in the 14 genomes in which large-scale gene essentiality screens have been performed.
doi:10.1371/journal.pone.0021683.g001
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A caveat in interpreting the results is the annotation bias, e.g.,

in the GenBank. To minimize the annotation bias, we analyzed

the dataset by only keeping well-characterized genes and

removing genes with the annotations of ‘putative’, ‘probable’,

‘possible’, ‘uncharacterized’, ‘conserved’, ‘hypothetical’, ‘un-

known’ and ‘predicted’ functions. In 13 of the 14 genomes,

essential genes had higher enzyme proportions than non-essential

genes. On average, enzyme percentages were 41.27% and

29.52% for essential and non-essential genes, respectively

(P = 0.019). Therefore, enzymes were still enriched in essential

genes after largely correcting the annotation biases, which did

seem to exist.

Enzymes encoded by essential genes are essential enzymes.

Therefore, enzymes can be classified as either essential enzymes or

non-essential enzymes. The two types of enzymes have distinct

distributions in terms of chemical reactions that they catalyze.

Essential enzymes are enriched with ligases (EC 6), while non-

essential enzymes are enriched with oxidoreductases (EC 1). There

are many kinds of ligases, and the essential ligases were mainly the

ones forming carbon-oxygen bonds (EC 6.1) and carbon-nitrogen

bonds (EC 6.3). The main ligases responsible for the enrichment of

the former are those forming aminoacyl-tRNA (EC 6.1.1), most of

which are various tRNA synthetases; the ones mainly responsible

for the enrichment of the latter (EC 6.3) are acid-amino-acid

Figure 3. Significantly over- and under-represented second level enzyme types in essential genes. Significantly over- and under-
represented second level enzyme types of (A) EC 1.1: oxidoreducatases acting on the CH-OH group of donors (B) EC 3.2: glycosylases (C) EC 6.1:
ligases forming carbon-oxygen bonds and (D) EC 6.3: ligases forming carbon-nitrogen bonds, in essential genes.
doi:10.1371/journal.pone.0021683.g003

Figure 2. Distribution of enzyme classes for essential and non-essential genes. (A) Enzymes are classified into 1 of the 6 classes,
oxidoreductases, transferases, hydrolases, lyases, isomerases and ligases. The proportion of oxidoreductases is significantly lower, while that of ligases
is significantly higher in essential than in non-essential genes. (B) Percentages of oxidoreductases and (C) ligases in the 14 genomes studied.
doi:10.1371/journal.pone.0021683.g002
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ligases (EC 6.3.2), which are involved in peptide synthases.

Essential genes had higher proportion of transferases transferring

phosphorus-containing groups (EC 2.7), and this was mainly due

to the enrichment of nucleotidyltransferases (EC 2.7.7) and

phosphotransferases (EC 2.7.4). The enriched nucleotidyltransfer-

ases are mainly DNA-directed RNA polymerase (EC 2.7.7.6) and

DNA-directed DNA polymerase (EC 2.7.7.7). The enriched

phosphotransferases are mainly cytidylate kinases (EC 2.7.4.14),

guanylate kinases (EC 2.7.4.8) and dTMP kinases (EC 2.7.4.9),

which are involved in metabolisms of purine and pyrimidine.

Indeed, by using the DAVID database [18], we found that in

pathways of aminoacyl-tRNA biosynthesis, purine and pyrimidine

metabolism, essential genes were especially enriched. In E. coli, for

example, most essential genes in the pyrimidine metabolism

pathway belong to EC 2.7.7 and EC 2.7.4 (Fig. 6).

One important feature of the EC code is that it is specific to

chemical reactions, but independent of species and genes. In other

words, different genes from different species can have the same EC

code. Therefore, it is an ideal platform to compare chemical

reactions between essential and non-essential enzymes across

species. Because it is labor-intensive and time-consuming to identify

essential genes experimentally, in the past years, much effort has

been devoted to developing algorithms for gene essentiality

prediction [9,13,19,20,21,22,23,24,25]. Gene features that have

been used include, for instance, expression levels [19], evolutionary

rates [20], connectivity in protein interaction networks [25] and

codon usage [13]. Nevertheless, enzyme annotation, to the best of

our knowledge, has not been used for predicting essential genes.

Therefore, the results that essential genes are enriched with enzymes

and that certain chemical reactions are either over or under-

represented in essential enzymes will provide additional parameters

for in silico identification of essential genes.

In summary, by comprehensively analyzing essential genes in

bacterial genomes in which large-scale gene essentiality screens

have been performed, we found that enzymes are enriched in

essential genes. Essential enzymes have overrepresented ligases

(especially those forming carbon-oxygen bonds and carbon-

nitrogen bonds), nucleotidyltransferases and phosphotransferases,

while have underrepresented oxidoreductases. Furthermore,

essential enzymes tend to associate with more GO domains.

These results, from the aspect of chemical reactions, provide

further insights into the understanding of functions needed to

support natural cellular life, as well as synthetic cells, and provide

additional parameters that can be integrated into gene essentiality

prediction algorithms.

Materials and Methods

Essential-gene records in DEG 6.0 were used in the current

study. Fourteen genomes in which genome-wide or large-scale

gene essentiality screens that have been performed were used

(Table 1). Among the 14 genomes, in Acinetobacter sp. ADP1 [26]

and B. subtilis str. 168 [10], essential genes were obtained by

targeted gene deletions. In E. coli K12, two genome-wide gene

essentiality studies were performed. One study generated com-

prehensively single gene knockout mutants [27], and other study

obtained essential genes by transposon mutagenesis [28]. The

results from both studies were pooled in the current analysis. For

the genome of S. aureus subsp. N315, results from 3 large scale

studies [29,30,31] were pooled. For the genome of H. influenzae Rd

KW20 [32], we only included genes with no transposon insertions

as essential genes, to be consistent with the definition of other

studies. In other genomes, F. tularensis subsp. U112, H. pylori

26695, M. tuberculosis H37Rv, M. genitalium G37, M. pulmonis UAB

CTIP, P. aeruginosa PA14, S. enterica Typhi Ty2, S. typhimurium LT2

and S. aureus NCTC 8325, gene essentiality screens were

performed by transposon mutagenesis.

The GenBank annotation files were downloaded from the

NCBI FTP server (ftp://ftp.ncbi.nih.gov/genomes/Bacteria) on

Figure 4. Significantly enriched third level enzyme types in essential genes. Significantly enriched third enzyme types of (A) EC 6.1.1:
ligases forming aminoacyl-tRNA (B) EC 2.7.7: nucleotidyltransferases (C) EC 2.7.4: phosphotransferases with a phosphate group as acceptor, in
essential genes.
doi:10.1371/journal.pone.0021683.g004
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August 21, 2010. The EC code annotation available in GBK files

were used to assign enzyme types. Student t tests were performed

to compare the average proportions of enzymes or enzyme classes

between essential and non-essential genes, unless indicated

otherwise. Blast2GO [16] was used to assigned GO terms to all

genes. Annotations for E. coli by Blast2GO and EcoCyc [33] were

found to be consistent. The database for annotation, visualization

and integrated discovery (DAVID) [18] was used to identify

pathways in which essential genes are enriched. The pyrimidine

metabolism pathway map (Fig. 6) was modified from the one

available at KEGG [34]. Values are presented as mean 6 s.e.m. P

values less than 0.05 were considered statistically significant.

Figure 5. Essential enzymes are associated with more gene ontology domains. Based on gene ontology, genes can be assigned 3 GO
domains, molecular function, biological process and cellular component, which are independent of each other. (A) Essential enzymes have higher
proportion of 3-GO-domain and lower proportion of 1&2-GO-domain containing genes. (B) Percentages of 1&2-GO-domain and (C) 3-GO-domain
containing genes in essential and non-essential enzymes.
doi:10.1371/journal.pone.0021683.g005
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