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ABSTRACT: Recent desires to develop environmentally benign
procedures for electrophilic chlorinations have encouraged research-
ers to take inspiration from nature. In particular, the enzyme
chloroperoxidase (CPO), which is capable of electrophilic
chlorinations through the umpolung of chloride by oxidation with
hydrogen peroxide (H,0,), has received lots of attention. CPO itself
is unsuitable for industrial use because of its tendency to decompose
in the presence of excess H,0,. Biomimetic complexes (CPO active-
site mimics) were then developed and have been shown to
successfully catalyze electrophilic chlorinations but are too syntheti-
cally demanding to be economically viable. Reported efforts at
generating the putative active chlorinating agent of CPO (an iron
hypochlorite species) via the umpolung of chloride and using simple
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meso-substituted iron porphyrins were unsuccessful. Instead, a meso-chloroisoporphyrin intermediate was formed, which was shown
to be equally capable of performing electrophilic chlorinations. The current developments toward a potential method involving this
novel intermediate for environmentally benign electrophilic chlorinations are discussed. Although this novel pathway no longer
follows the mechanism of CPO, it was developed from efforts to replicate its function, showing the power that drawing inspiration

from nature can have.

B RELEVANCE OF ELECTROPHILIC CHLORINATIONS

Electrophilic chlorinations are essential chemical transforma-
tion steps as chlorinated organic compounds have an impact
on many aspects of society:"” they are found in natural
products (e.g, hapalindole A; Figure la),”~> pharmaceuticals
(e.g, the antibacterial drug clindamicine; Figure 1b),°”*
agrochemicals (e.g., the insecticide indoxacarb; Figure 1c),’

and organic materials.'’ Furthermore, they are important
reagents for cross-coupling reactions'' ~'* and intermediates in
industrial-scale epoxidations.'* Nevertheless, in both industry
and academia, methods for synthesizing these compounds via
electrophilic chlorinations still rely on the use of chlorine gas
or hypochlorite salts,”'*™'” which are toxic, corrosive, and
nonselective. Alternatively, organic chlorinating agents, such as
N-chlorosuccinimide or iodobenzene dichloride, are used."®™>°
These not only require hypochlorites or chlorine gas for their
synthesis’"*” but also generate stoichiometric amounts of
organic waste upon usage. Hence, there has been a recent push
to develop environmentally benign methods for electrophilic
chlorinations.”’

B HALOGENATIONS IN NATURE

One approach to developing a new catalytic method is to draw
inspiration from nature.”* Halogenating enzymes can be
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classified into two major types: halogenases and haloperox-
idases.”>™*” Halogenases use O, as their oxidant and perform
halogen transfers via a radical rebound mechanism, resulting in
a one-electron-oxidized halide.”® Haloperoxidases are hydro-
gen peroxide (H,0,)-dependent enzymes with the ability to
perform a two-electron oxidation of a halide.”® Hence, only
haloperoxidases perform true electrophilic halogenations.

Within the haloperoxidases, two types of metalloenzymes are
most common: vanadium-dependent bromoperoxidase and
heme-dependent chloroperoxidase (CPO).>~*' Despite its
natural function being the catalysis of brominations, the former
has been shown to have some chlorinating ability.”” Its
bioinspired halogenation has been extensively studied,” but
only a few examples of vanadium-catalyzed chlorinations have
been reported**~>*
has proven to be challenging.””*’ We will thus focus on CPO-
related chlorination reactions.

as the substitution of bromide for chloride

Inorganic Chemistry

-
5
A
&

Received: February 22, 2022
Published: May 15, 2022

https://doi.org/10.1021/acs.inorgchem.2c00602
Inorg. Chem. 2022, 61, 8105—8111


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sile%CC%80ne+Engbers"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ronald+Hage"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Johannes+E.+M.+N.+Klein"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.inorgchem.2c00602&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.2c00602?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.2c00602?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.2c00602?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.2c00602?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/inocaj/61/21?ref=pdf
https://pubs.acs.org/toc/inocaj/61/21?ref=pdf
https://pubs.acs.org/toc/inocaj/61/21?ref=pdf
https://pubs.acs.org/toc/inocaj/61/21?ref=pdf
pubs.acs.org/IC?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.inorgchem.2c00602?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/IC?ref=pdf
https://pubs.acs.org/IC?ref=pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://acsopenscience.org/open-access/licensing-options/

Inorganic Chemistry

pubs.acs.org/IC

(@) (b)

I,.

hapalindole A

clindamicine

(c)
cl
& O~CF,

indoxacarb

Figure 1. Structures of (a) a chlorinated natural product isolated from
the Stigonemataceae family of cyanobacteria, (b) a chlorinated
antibacterial drug, and (c) a chlorinated insecticide developed by
DuPont.

B CHLOROPEROXIDASE (CPO)

In the 1930s, it was found that molds can metabolize chloride
and incorporate it into organic products.*’ In particular, the
fungus Caldariomyces fumago was extensively studied and
shown to produce caldariomycin in the presence of
chloride.*' ™" From this fungus, CPO was finally isolated
and characterized in 1966, which enabled further analysis of
its reactivity and mechanism.’*~’" Structurally, CPO is a
monomeric, heme-containing enzyme with a protoporphyrin
IX equatorial ligand coordinating the iron (Figure 2). The

¢l cl

Figure 2. Structure of the heme complex present in the CPO active
site and its model chlorination reaction with monochlorodimedone, a
commonly used test substrate for CPO.*°

active site bears polar residues on the distal side of the heme,
which form a peroxide-binding site. However, unlike most
peroxidases, it has a cysteine axial ligand, a feature common to
cytochrome P450.% Although it has been shown to perform a
wide range of reaction types, including those typical of
peroxidases, catalase, and P450s,”” its ability to catalyze
electrophilic chlorinations using chloride and H,0, at low
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pH
most.
From studies of the chlorination reactivity of isolated CPO
(for an example, see Figure 2), the involvement of two main
intermediates in the mechanism was inferred. H,O, was found
to react with the heme in CPO’s active site to form an iron(IV)
oxo radical 7-cation (Compound 1), of which the structure
was analyzed in detail by electron paramagnetic resonance
(EPR),59 Mi)'ssbauer,59 resonance Raman,64 and X-ray
absorption® spectroscopies. Compound I can also be
generated by using m-chloroperbenzoic acid (mCPBA).>*
Upon reaction with chloride, a subsequent intermediate is
suspected to be an Fe-OC1,>**"**%7 supported by Mossbauer
spectral®® and **Cl NMR studies,”® both of which suggest that
chloride does not coordinate directly to the iron center.

values has fascinated chemists the

50,51,53,55,56,58,60,61,63,67

B BIOMIMETIC COMPLEXES AND THEIR REACTIVITY

Active site analogues of CPO developed by the Woggon group
(Figure 3) were designed in order to mimic both the first and

By

Figure 3. Structure of the active-site analogues developed by the
Woggon group (R = H, CgF;).”""

N 71-74 .
second coordination spheres of CPO, which were

elucidated in the X-ray crystal structure reported in 1995.°°
By replicating CPO’s active site as closely as possible whilst
omitting the bulk of the enzyme, it was envisioned that its
mechanism of chlorination could be mimicked and further
understood through the use of additional reaction assays and
spectroscopic techniques.7l_74

In addition to bearing a porphyrin ligand similar to
protoporphyrin IX, the biomimetic complexes feature an
axial thiolate ligand to mimic the cysteine residue present in
CPO. This modification is essential because the thiolate ligand
has been shown to be crucial in regulating reactivity through its
redox-active nature.®” Furthermore, proton donors are
embedded close to the free axial position, which simulates a
glutamate residue in the active site of CPO that is conveniently
positioned to protonate intermediates in the reaction.®®”>

With the help of these complexes, the chlorination
mechanism was further investigated.”"’> The same species
was generated when the iron(III) complex was reacted with
either H,0, and subsequently chloride or a hypochlorite
source, further supporting the generation of an Fe'-OCI
intermediate.”"”” In addition, it was found that the Fe-OCl
intermediate is likely protonated prior to substrate chlorina-
tion, an aspect that is of relevance to the subsequent step
involving chlorination of the substrate.”"”> Moreover, these
complexes were shown to catalytically chlorinate monochlor-
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odimedone as well as other cyclic ketones and aromatic
compounds.”?

In combination with the data obtained from studying CPO,
the biomimetic complexes from the Woggon group enabled
the mechanism to be further understood (Scheme 1).”* The

Scheme 1. Proposed Mechanism of Chloride Oxidation by
croO*
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“The equatorial ligand, here schematically depicted as a horizontal
bold line, is protoporphyrin IX.

resting state is thought to be an iron(IIl) species that is
oxidized by H,0O, to Compound I. This can then react with a
chloride to form the putative Fe'-OCI species, which is likely
protonated before chlorination of the substrate occurs. It
should be noted that while some studies suggest that substrate
chlorination occurs directly from the (protonated) enzyme-
bound Fe-OCl adduct,®*>”* others have argued that, because
X-ray crystallography reveals an enzyme active site lacking a
substrate-binding pocket,”® HOCI must be released into the
solution prior to substrate chlorination.”” In either case, a two-
electron oxidation of chloride is achieved, thereby allowing the
transfer of a putative “Cl*” species to a desired substrate.”"

B TOWARD INDUSTRIAL RELEVANCE: BIOINSPIRED
DEVELOPMENTS

Although CPO has been shown to chlorinate a wide variety of
substrates, including those featuring alkene, alkyne, and aryl
groups,””’®”” the large-scale industrial application of CPO as a
catalyst for electrophilic chlorinations appears challenging. Not
only do most relevant substrates have low solubility in water,
but CPO, like most 7peroxidases, suffers from peroxide-
dependent inactivation.”® Efforts have been made to find
ways around these challenges.”*™®' However, significant
developments are still required before CPO becomes
industrially relevant as a catalyst for electrophilic chlorinations.
The Woggon complexes have, of course, been shown to be
suitable CPO mimics and are capable of performing electro-
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philic chlorinations catalytically, with turnover numbers
ranging from 10 to 1500 in the presence of Lewis acids (for
example, ZnCl,).”"”*”* Unfortunately, their syntheses are also
length_?r and thus unlikely to be suitable for industrial
usage. L7% The use of a simpler ligand framework, however,
may yield a fruitful method for electrophilic chlorinations.
The Fujii group employed simple meso-substituted iron
porphyrin complexes in attempts to mimic the chlorination
reactivity of CPO.**~** Compound I was initially generated by
the reaction of (TPFPP)Fe-NO,, where TPFPP = meso-
tetra(pentafluorophenyl)porphyrin, with ozone in dichloro-
methane (DCM) at —90 °C. The subsequent addition of
chloride to the newly formed Compound I led to a one-
electron transfer from chloride to the iron complex, yielding
back an iron(IV) oxo species (Compound II) and a chloride
radical (Scheme 2, top).** Hence, only a one-electron

Scheme 2. Reactivity of Compound I with
Tetrabutylammonium Chloride (TBACI) in the Absence
(top) and Presence (bottom) of TFA, Studied by the Fujii
Group®”** as well as their Chlorination Reactivity of 1,3,5-
Trimethoxybenzene®
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“Reactions are performed in DCM at —90 °C. X depicts either
trifluoroacetate or NO;™ as the axial ligand.

oxidation of chloride occurred rather than the expected two-
electron oxidation. Complexes bearing more electron-donating
meso substituents were later screened, and none were found to
form the desired iron hypochlorite either.’

Interestingly, when chloride was added to (TPFPP*)(NO;)-
Fe=O0 in the presence of excess trifluoroacetic acid (TFA) in
DCM at —90 °C, a two-electron oxidation was observed.
However, rather than an iron hypochlorite being formed, the
active chlorinating species in CPO, a meso-chloroisoporphyrin,
was generated (Scheme 2, bottom). This species was observed
by UV—vis spectroscopy and further characterized by NMR,

https://doi.org/10.1021/acs.inorgchem.2c00602
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Scheme 3. Mechanism of (porphyrin)Fe-OCl Formation and Decomposition™®*
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“EW = electron withdrawing. The equatorial ligand, here schematically depicted as a horizontal bold line, is a meso-substituted porphyrin.

Scheme 4. Identification of the z-Dication Intermediate in the Pathway toward an Isoporphyrin®
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“Ar = 2,6-difluorophenyl. Nuc = a nucleophile (e.g., 4,5-dimethylimidazole or chloride). X represents any anionic coordinating ligand present in

solution.

EPR, and electrospray ionization mass spectrometry.84
Recently, the crystal structure of a similar meso-chloroisopor-
phyrin was published by the McDonald group.*> Upon
reaction with cyclohexene, 1,3,5-trimethoxybenzene, and
anisole, the isoporphyrin was shown to be capable of
electrophilic chlorinations (Scheme 2), yielding back an
iron(III) porphyrin complex in the process.** Thus, although
these simple complexes show reactivity that largely deviates
from that of CPO and the biomimetic complexes from the
Woggon group, they can form transient species that bear
promise as electrophilic chlorinating agents.

It should be noted that (TPFPP)Fe-OCl can be generated
from (TPFPP)Fe-OH by ligand exchange with tetrabutylam-
monium hypochlorite (TBAOCI) in DCM/acetonitrile (1:1)
at —60 °C.*° At room temperature though, this species rapidly
decomposes to Compound II. At first glance, this would
indicate that the FeO—Cl bond has a tendency to cleave
homolytically, generating only a one-electron-oxidized chlorine
species. However, upon further inspection and screening of
complexes with more electron-donating meso substituents, it
appeared that the FeO—CIl bond breaks heterolytically to form
Compound I In the presence of excess TBAOCI, complexes
for which Compound I has a reduction potential larger than
that of the hypochlorite anion are reduced from Compound I
to Compound II by an electron-transfer process. This is true
for complexes bearing strongly electron-withdrawing meso
substituents, such as 2,6-dichlorophenyl and 2,4,6-trichlor-
ophenyl (Scheme 3).** The fact that heterolytic cleavage of the
O—Cl bond occurs, forming Compound I and chloride,
indicates that, by microscopic reversibility, biomimetic
formation of an Fe-OClI should be possible. It might just not
be energetically accessible.

Similar to meso-chloroisoporphyrin, (TPFPP)Fe-OCl is
capable of chlorinating 1,3,5-trimethoxybenzene (Scheme 2).
However, it epoxidizes cyclohexene rather than chlorinating it,
as shown for the isoporphyrin.®® Hence, the isoporphyrin not
only is more accessible than the iron porphyrin hypochlorite
but appears to be a superior chlorinating agent. The challenge
remains to transform the stoichiometric chlorination, which
employs a preformed meso-chloroisoporphyrin, into a function-
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ing catalytic pathway. For this, a further understanding of the
possible mechanism is required.
The generation of Compound I for meso-substituted iron
porphyrin complexes is relatively well understood.*” =" On the
contrary, the conversion of Compound I to an isoporphyrin
under acidic conditions remains largely understudied. How-
ever, a recent study by the Karlin group does elucidate one of
the intermediates. When (TDFPP)Fe(SbF,), where TDFPP =
5,10,15,20-tetrakis(2,6-difluorophenyl)porphyrin, was oxidized
to Compound I and subsequently reacted with TFA, a
transient iron(III) z-dication species was formed. This was
then shown to react with nucleophiles (mcludmg chloride) to
generate an isoporphyrin (Scheme 4).”> Hence, we expect the
formation of a meso-chloroisoporphyrin to proceed through an
iron(III) complex bearing a doubly oxidized porphyrin ligand.
These iron(II) z-dication species, first characterized in
1993 by UV—vis, 'H NMR, and EPR,” are rather uncommon,
and only a few examples of 7z-d1cat10n metalloporphyrm
complexes have been reported in general.”*™*® Interestingly,
however, it was already proposed in 1970 that isoporphyrins
could be synthesized by an electrochemical 2-fold oxidation of
a zinc(II) species in the presence of a nucleophile.””

B POTENTIAL BIOINSPIRED CATALYTIC APPROACH

From the aforementioned data available in the literature, we
can infer a potential catalytic cycle for bioinspired iron-
catalyzed electrophilic chlorinations employing simple iron
porphyrin complexes (Scheme S). An iron(III) species is first
oxidized to Compound I. Commonly, this is done through the
use of mCPBA or ozone.”® However, the use of the more
enwronmentally benign oxidant H,0, is possible under certain
conditions.*”*" As was elucidated by the Karlin group,
Compound I converts to a z-dication by reaction with
acid.”® Chloride can then attack the porphyrin ring, forming
a meso-chloroisoporphyrin, which is capable of electrophilic
chlorinations. Upon chlormatlon from an isoporphyrin, an
iron(III) species is recovered,”* allowing the catalytic cycle to
be closed. Although each of the transformations has been
performed sequentially, no attempts at catalysis have been
reported. Thus, we emphasize that the proposed catalytic cycle
is for now purely hypothetical and has yet to be shown

https://doi.org/10.1021/acs.inorgchem.2c00602
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Scheme §. Possible Catalytic Cycle for Bioinspired Iron-
Catalyzed Electrophilic Chlorinations Employing Simple
Iron Porphyrin Species®
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“[Ox] refers to any oxidant capable of oxidizing to Compound L. X
represents any anionic coordinating ligand in solution. The equatorial
ligand, here schematically depicted as a horizontal bold line, is a meso-
substituted porphyrin.

experimentally viable. We are hopeful though that, with further
research, it could lead to a novel method for environmentally
benign electrophilic chlorinations.

B CONCLUSION

Although the proposed direction outlined here has deviated
largely from the mechanism of CPO, we believe that the
hypothetical bioinspired approach, composed from several
experimental observations, holds promise. In contrast to the
biomimetic route, the proposed alternative does not form
(toxic and corrosive) hypochlorites at any point in the cycle,
possibly making it even more environmentally benign.
Moreover, the meso-chloroisoporphyrins could be more
specific because they are unlikely to yield epoxidation products
instead of the desired chlorinations, which has been reported
to occur for iron hypochlorite species.”® Furthermore, we hope
to have demonstrated how drawing inspiration from nature can
be a powerful tool and open up novel avenues in the pursuit of
exploring chemical reactivity.
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