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Abstract

Background: Renal cell carcinoma (RCC) is the most common cancer in adult kidney. The accuracy of current
diagnosis and prognosis of the disease and the effectiveness of the treatment for the disease are limited by the
poor understanding of the disease at the molecular level. To better understand the genetics and biology of RCC,
we profiled the expression of 7,129 genes in both clear cell RCC tissue and cell lines using oligonucleotide arrays.

Methods: Total RNAs isolated from renal cell tumors, adjacent normal tissue and metastatic RCC cell lines were
hybridized to affymatrix HuFL oligonucleotide arrays. Genes were categorized into different functional groups
based on the description of the Gene Ontology Consortium and analyzed based on the gene expression levels.
Gene expression profiles of the tissue and cell line samples were visualized and classified by singular value
decomposition. Reverse transcription polymerase chain reaction was performed to confirm the expression
alterations of selected genes in RCC.

Results: Selected genes were annotated based on biological processes and clustered into functional groups. The
expression levels of genes in each group were also analyzed. Seventy-four commonly differentially expressed
genes with more than five-fold changes in RCC tissues were identified. The expression alterations of selected
genes from these seventy-four genes were further verified using reverse transcription polymerase chain reaction
(RT-PCR). Detailed comparison of gene expression patterns in RCC tissue and RCC cell lines shows significant
differences between the two types of samples, but many important expression patterns were preserved.

Conclusions: This is one of the initial studies that examine the functional ontology of a large number of genes
in RCC. Extensive annotation, clustering and analysis of a large number of genes based on the gene functional
ontology revealed many interesting gene expression patterns in RCC. Most notably, genes involved in cell
adhesion were dominantly up-regulated whereas genes involved in transport were dominantly down-regulated.
This study reveals significant gene expression alterations in key biological pathways and provides potential insights
into understanding the molecular mechanism of renal cell carcinogenesis.
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Background

Renal cell carcinoma (RCC) accounts for 3% of all malig-
nancies with about 30,000 new cases and 12,000 deaths
each year in the United States. RCC is the most common
cancer in adult kidney and the most lethal cancer of the
urinary system. The incidence of RCC has been increasing
at a rate of 3% per year in the United States and Europe.
Histopathologically, RCC is a heterogeneous disease. The
five distinct types of RCC include clear cell (70-80%),
papillary (15-20%), chromophobe (4-5%), collecting
duct (<1%) and medullary cell (<1%) [1]. The most com-
mon RCC, clear cell RCC, is believed to originate from the
proximal tubule epithelium. It is mostly sporadic, unilat-
eral, and unifocal [2]. The main genetic alterations of clear
cell RCC have been identified to be chromosome 3 alter-
ations and Von Hippel-Landau gene mutations [2].

The diagnosis of RCC is often confirmed by imaging stud-
ies such as computed tomography and X-ray, but the pos-
sible existence of benign renal tumors can be a serious
challenge to the diagnosis. Previous studies have shown
that RCC is one of the most therapy-resistant cancers. It
responds very poorly or not at all to chemotherapy, hor-
monal therapy and radiation therapy [2,3]. Even for the
immunotherapy, the response rate is only 10-15% and
mostly the response is partial [2]. Surgery thus remains to
be the main method of treatment for RCC although it is
effective only in about 70% of early-stage and localized
RCC [2,4]. The prognosis of RCC is mainly based on the
clinical stage and pathological grade of the disease. A
review of the Cleveland Clinic Foundation's nephrectomy
database with a 10-year follow-up revealed that the size
and stage of tumor had the best prognostic value whereas
the surgical margin width was not significant [5,6]. This
suggests that patients' outcomes with surgery are primarily
dependent on tumor biology. Therefore, the advances in
our understanding of the genetics and biology of RCC are
essential to improve the current diagnosis, treatment and
prognosis of RCC.

The emergence of DNA microarray technology made it
possible to investigate the expression of thousands of
genes simultaneously [7-13]. The large-scale analysis of
the gene expression levels can provide insights into the
underlying molecular mechanism of RCC and possibly
lead to the finding of molecular tumor markers that can
potentially be used for more accurate diagnosis, prognosis
and possibly can serve as drug targets for effective thera-
pies. Recently, microarray gene expression profiling has
been performed to identify gene expression patterns for
many solid and hematological malignancies such as colon
cancer, breast cancer, prostate cancer, leukemia, and lym-
phoma [14-20]. Molecular profiling of RCC using cDNA
microarrays has also been reported [21-26]. Using a
31,500-element cDNA array, Boer et al. identified 1,738
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differentially expressed genes in clear cell RCC. Three hun-
dred and twenty-one of them were annotated for biologi-
cal processes [22]. Takahashi et al. identified 109
differentially expressed genes in 29 clear cell RCC sam-
ples. Approximately 40 genes were then used in a simula-
tion to verify the clinical outcomes of 29 patients. The
accuracy of the prediction was reported to exceed that of
prediction based on staging [23]. Young et al. analyzed
the gene expression patterns of 7075 genes for four types
of RCC including clear cell RCC and identified 189 differ-
entially expressed genes among the four different types
[24]. More recently, Higgins et al. compared the gene
expression profiles of diverse histological types including
clear cell, papillary and chromophobe RCC. One thou-
sand five hundred and fifty differentially expressed genes
were identified [26].

To better understand the genetics and biology of clear cell
RCC, we profiled the expression of 7129 genes in two
pooled RCC tissue samples, two patient-matched normal
tissues and two pooled RCC cell lines using oligonucle-
otide arrays. The gene expression profiles were analyzed
and visualized using singular value decomposition analy-
sis. A subset of differentially expressed genes identified in
this study is common to those discovered previously.
Based on biological process ontology, selected genes were
annotated and clustered extensively. The analysis of the
expression profiles of genes in the annotated functional
groups provides insights into biological pathways of RCC.
Moreover, comparison of expression patterns in RCC tis-
sue samples and RCC cell lines reveals significant differ-
ences between the two types of samples.

Methods

Tissue samples and RCC cell lines

Six clear cell RCC tissue samples (four of them were Fuhr-
man grade 3, one Fuhrman grade 2, one Fuhrman grade
1) along with six corresponding patient-matched normal
kidney tissue samples were obtained from patients under-
going partial or radical nephrectomy at the Cleveland
Clinic Foundation. Institutional review board approval
and informed consent from patients were obtained and
tissue samples were frozen and stored at -80°C
immediately after surgery. All the RCC tumors were at the
early stages of development (five at stage 1 and one at
stage 2). The ages of patients were around sixty years old.
Five patients were white male and one was white female.
Metastatic RCC cell lines, RCC13 and RCC54 [27] were
obtained from Memorial Sloan-Kettering Cancer Center.

RNA extraction and microarray experiments

For microarray experiments, six pairs of RCC tissues and
patient-matched normal kidney tissues (total of twelve
frozen tissue samples) were mechanically disrupted in Tri-
Zol reagent (Life Technologies, Inc.) using a PowerGen 35
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tissue homogenizer (Fisher Scientific) and total RNA was
immediately isolated from each tissue sample following
the manufacturer's procedures (Invitrogen, Carlsbad, CA).
Six RCC tissue samples were divided into two groups with
three RCC tissue samples in each group. One group
includes two Fuhrman grade 3 RCC tissue samples and
one Fuhrman grade 1 RCC tissue sample. The other group
includes two Fuhrman grade 3 RCC tissue samples and
one Fuhrman grade 1 RCC tissue sample. Six correspond-
ing patient-matched normal samples were divided into
two groups accordingly. A total of four groups of tissue
samples were thus generated, two RCC tissue groups and
two normal kidney tissue groups. For each group, 10 pg of
total RNA from each tissue sample were pooled. Four
pooled total RNA samples from tissues were thus gener-
ated. Also, one pooled total RNA sample was generated by
pooling 10 ug of total RNA isolated from each of the two
RCC cell lines. Double-stranded cDNAs were synthesized
from 10 pg of each total RNA sample using SuperScript
Choice double-stranded cDNA synthesis kit from Invitro-
gen following the manufacturer's protocol. cDNAs were
purified by phenol/chloroform extraction and ethanol
precipitation. Biotin-labeled cRNAs were synthesized by
an in vitro transcription reaction using the BioArray
HighYield RNA Transcript Labeling Kit (Enzo Diagnostics,
Farmingdale, NY). cRNAs were purified from the in vitro
transcription reaction using RNeasy Mini kit (Qiagen,
Valencia, CA). The fragmentation of biotin-labeled cRNAs
and hybridization of the fragments to HuFL Oligonucle-
otide Arrays (Affymetrix, Santa Clara, CA) were performed
following the manufacturer's protocol. The Oligonucle-
otide Arrays were washed and stained according to the
Affymetrix protocol Midi-3 Euk2v3, and scanned using a
Hewlett-Parkard GeneArray scanner (Hewlett-Parkard,
Palo Alto, CA) with a 570 nM filter and a pixel size of 3
pM. For RT-PCR experiments, total RNAs were isolated
from eight additional pairs of RCC tissues and patient-
matched normal kidney tissues using the same methods
described above.

Data preprocessing

Raw data were acquired using Microsuite 5.1 software of
Aftymetrix and normalized following a standard practice
of scaling the average of all gene signal intensities to a
common arbitrary value. The 7,129 genes were preproc-
essed to eliminate the genes whose signal intensities were
not significantly different from their background levels
and thus labeled as "Absent" by MicroSuite 5.1. After
elimination, 3,145 genes remained for further analysis.

Functional clustering analysis

To analyze the expression profiles of genes in different
biological functional groups, 1340 of the 3145 selected
genes were annotated for biological process using the soft-
ware GeneSpring from Silicon Genetics. The ontology is
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based on the description of the Gene Ontology Consor-
tium [28]. The annotated genes were then categorized into
functional groups and analyzed based on the gene expres-
sion levels.

RT-PCR

cDNA was synthesized by reverse transcription of 2.5 pg
total RNA using oligo(dT),,_;5 and SuperScript I RNA H-
reverse transcriptase (Invitrogen). Using the same cDNA
preparation as template, DNA fragments of SLCGA3,
BIGH3 and vWF were amplified by 35 PCR cycles using
Taq polymerase (Invitrogen). Normalization was made
using a-tubulin. Primers used for the PCR amplifications
are as follows:

SLCO6AS3, sense: 5'-CACCGTGCGTGCCACATCAATAAC-3',
antisense: 5'-CTCCCACCGAGCATTACACT-3";

BIGHS3, sense: 5'-CACCCCGCACCATAATGAGATGTG-3',
antisense: 5'-GGCTGGATTGCTTGATTCAT-3";

vWF, sense: 5'-GTGACGGTGAATGGGAGACTGG-3/,
antisense: 5'-GTCATTGGCTCCGTTCTCATCAC-3%;
a-tubulin, sense:5'-CTGCCATTGCCACCATCAAAACCAA-3',
antisense: 5'-ATTCAGGGAGCATGACATGCAGCAG-3".

The PCR products were separated on 2% agrose gels,
stained with ethidium bromide and visualized using the
Flouro-Chem imaging system (Alpha InnoTech
Cooperation).

Singular value decomposition

Singular value decomposition is a very powerful method
to analyze and compare the subspaces associated with a
matrix. It has been widely used in data compression and
visualization [29]. Recently there have been many
applications of SVD to analyze microarray gene expres-
sion data [30-34]. Following the notation of van Loan
[29], the SVD of a real m-by-n (m>n) matrix A can be writ-
ten as:

A =UXVT,

where U = [u,u,,...u,]e Rmxnand V = [v,v,,...,v,]€ Roxn
are orthogonal matrices and X = diag(cy, ... ,0,)€ R™nis a
diagonal matrix and 6,2 ... 26,26,,; = ... = 6, = 0. The vec-
tors u; and v; are the ith left and right singular vectors
respectively, o; are the singular values of A, and r is called
the rank of A. Based on the structure of the decomposi-
tion, the SVD expansion can be readily obtained
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T
A= Z GiuiViT.

i=1
The magnitudes of singular values indicate how close a
given matrix A is to a matrix of lower rank. In gene expres-
sion data analysis, each column of A represents the expres-
sion profile of a corresponding sample and each row
represents the transcriptional response of a specific gene.
The singular values indicate how well a lower dimen-
sional linear projection of the expression data can repre-
sent the original data. The projection onto a subspace
spanned by the first p left/right singular vectors can be
described by

> T
Ap = Zoiuivi .
=1

Analyzing and visualizing a resulting lower dimensional
projection can provide a great insight into understanding
the inherent structure of the original data. In this study,
the gene expression data was projected onto a 2-D sub-
space spanned by the first two left singular vectors.

Results

Patterns of gene expression alterations in RCC tissue
samples

To analyze the expression profiles of genes in different
biological functional groups, 1340 of the 3145 selected
genes were annotated for their biological processes. The
gene ontology tree that describes the biological process is
shown in Figure 1. The 1340 annotated genes were associ-
ated with 72 nodes within the ontology. As shown in Fig-
ure 1, there are three numerical numbers following the
name of each category node. The first integer represents
the number of genes associated with the category. The first
percent number stands for the percentage of genes in the
category that are at least two-fold up-regulated in average.
The second number is the percentage of down-regulated
genes. Notably, 16% of the total 1340 genes are up-regu-
lated while only 9% of them are down-regulated. The
majority (75%) of the genes are not differentially
expressed. The biological process ontology includes two
major categories: cell communication and signal trans-
duction. Higher percentages of genes in signal transduc-
tion are up-regulated compared with that for cell
communication. In many functional groups such as cell
adhesion, cell motility, proliferation, stress response, G-
protein signaling, Ca++ dependent receptor signaling,
integrin receptor signaling, transduction, viral life cycle,
and pathogenesis, a majority of the differentially
expressed genes are up-regulated. This suggests that these
gene categories are in the up-regulated pathways and
likely play significant roles in carcinogenesis. On the other
hand, only very few categories such as biogenesis, gamma
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aminobutyric acid signaling, nitric oxide mediated signal
transduction, and respiration appear to be in the down-
regulated pathways. More notably, significant numbers of
genes in metabolism and transport are down-regulated,
although some important genes in these two groups, such
as manganese superoxide dismutase, are up-regulated and
its over-expression at protein level is also observed [35].
These interesting expression patterns reflection on ontol-
ogy suggest important functional gene regulation path-
ways and also reveal variations in the gene expression
levels even within a functional group such as metabolism.

Based on expression levels, 74 differentially expressed
genes with at least 5-fold change in expression level in
both pooled RCC tissue samples were identified and are
shown in Tables 1 and 2. Many of the gene expression pat-
terns revealed in the tables are consistent with those in
Figure 1, although more genes are down-regulated than
up-regulated when at least 5-fold change was used as a
selection criterion. Table 1 describes the 32 up-regulated
genes in RCC. The over-expression of 19 of them was
reported in the literature [22-24,26]. The expression alter-
ation of 3 of them, dopamine transporter (SLC6A3),
transforming growth factor-beta induced gene product
(BIGH3) and von Willebrand factor (vWF), were verified
here by RT-PCR. The results are shown in Figure 2. The
transcript levels of SLC6A3 and vWF were remarkably
higher in nearly all the RCC tissues than in the normal tis-
sues. The transcript levels of BIGH3 were also significantly
higher in almost all the RCC tissues examined. Table 2
describes 42 down-regulated genes, of which 29 were
reported previously [22-24,26]. This group of highly dif-
ferentially expressed genes may be useful as molecular
tumor markers that can potentially be used for more accu-
rate diagnosis, prognosis and possibly can serve as drug
targets for effective therapies.

Patterns of gene expression alterations in RCC cell line

We also performed a microarray experiment using total
RNA from RCC cell lines in parallel with those using total
RNA from tissue samples. The average gene expression
level of normal tissue samples was used as the normal ref-
erence. The same data preprocessing and analysis as
described above was performed. The ontology tree of 75
nodes together with the statistics of the 1383 selected
genes was generated (Ontology tree not shown). Table 3
compares the numbers of the differentially expressed
genes in the RCC cell lines and RCC tissues. It is clear that
a much higher percentage of genes in the RCC cell lines
are differentially expressed than that in the RCC tissue
samples. This finding suggests that the gene expression
profile in RCC cell lines is significantly different from that
in RCC tissue. Interestingly, two of the up-regulated genes
in the RCC cell lines, myosin heavy chain 11 and calponin
1 were also reported to be among the 17 signature genes
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Cell adhesion, 119 (26%, 2%)

Cell death, 34 (9%, 9%)

~ Cell communication, 907 (16%, 10%)

Biological process, 1340 (16%, 9%)

L Signal transduction, 738 (17%, 6%)

Figure |

 Cell surface linked , 186 (19%, 5%)

I Intracellular signalling, 135 (16%, 8%)

L Physiological Processes, 201 (16%, 6%)
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[Cell adhesion, 119 (26%, 2%)

Cell cell adhesion, 26 (15%, 0%)
Cell death, 19 (5%, 5%)

E Necrosis, 15 (13%, 7%)
Senescence, 1 (0%, 100%)

~ Biogenesis, 18 (0%, 22%)

I Cell cycle, 93 (12%, 3%)

I Cell growth, 98 (19%, 8%)

I Cell motility, 47 (36%, 2%)

I Heat shock response, 29 (7%, 3%)

Cell growth & maintenance, 794 (15%, 11%) |- Homeostasis, 19 (16%, 5%)

I Intracellular traffic, 14 (7%, 14%)
I Metabolism, 197 (14%, 22%)
I Proliferation, 154 (19%, 3%)
I Stress response, 34 (32%, 0%)
L Transport, 268 (12%, 15%)

. Serine threonine kinase signalling, 38 (5%, 0%)
 Enzyme Linked, 64 (9%, 3%) |:Tyroslne kinase signalling , 27 (15%, 7%)
Gamma aminobutyric acid signalling, 5 (0%, 40%)
Glutamate signalling, 8 (13%, 13%)
G-protein signalling, 56 (21%, 5%)
IP3(inositol triphosphate) signalling, 6 (17%, 0%)
Neuropeptide signalling pathway, 9 (56%, 0%)
Serotonin receptor signalling, 5 (0%, 20%)
Tachykinin signalling, 1 (100%, 0%)
I Ca++ dependent receptor signalling, 11 (36%, 0%)
L Integrin receptor signalling, 31 (29%, 3%)
 Follicle development & function, 1 (0%, 0%)
I Germ cell, 8 (25%, 0%)

I G-Protein dependent, 83 (19%, 8%)

Ectoderm development, 2 (0%, 0%)
I Histogenesis organogenesis, 11 (9%, 9%) EGunad development, 1 (0%, 0%)

Mesoderm development, 8 (13%, 13%)
I Mitotic cycle control, 20 (5%, 5%)

- Developmental processes, 410 (17%, 4%) - Morphogenesis, 33 (9%, 9%)

I Pattern formation, 2 (0%, 0%)
I Segment specification, 9 (22%, 0%)
I Sensory perception, 4 (0%, 0%)
I Sex determination, 4 (0%, 25%)
I Spermatogenesis, 12 (0%, 8%)
L Transduction, 324 (20%, 3%)
Jak cascade, 10 (10%, 10%)
o RO NF-kappaB cascade, 15 (20%, 0%)
- Protein kinase cascade, 47 (17%, 6%) E NIK cascade, 3 (33%, 0%)
STAT cascade, 35 (17%, 9%)
I GTPase mediated, 67 (18%, 6%)
I Nitric oxide mediated, 6 (0%, 50%)
+ Phosphorelay MAPKKK cascade, 5 (20%, 20%)
L Voltage-dependent signalling, 11 (0%, 9%)
Embryo-related, 32 (6%, 9%)

 Pregnancy, 43 (5%, 7%) L Pregnancy, 11 (0%, 0%)

- Viral life cycle, 84 (17%, 5%) - Virus-related, 84 (17%, 5%)
- Blood coagulation, 21 (29%, 10%)

- Digestion, 2 (50%, 0%)

I Lactation, 3 (33%, 0%)

I Pathogenesis, 41 (29%, 2%)

L Respiration, 17 (0%, 12%)

Biological process ontology tree of 1,340 genes associated with RCC tissues. The first integer following the name of each func-
tional group represents the number of genes associated with the group. The first percent number stands for the percentage of
genes in the group that are at least two-fold up regulated in average. The second number is the percentage of down-regulated

genes.

associated with metastasis in primary solid tumors of
lung, breast, prostate, colorectal, uterus and ovary [20].
The over-expression of the two genes in RCC tissues was
not observed. Despite the significant difference between
the expression profiles of the RCC cell lines and RCC tis-
sue samples, many important patterns were preserved.
Thirty-nine out of the 42 at least 5-fold down-regulated
genes in the RCC tissue samples are also found to be at
least 5-fold under-expressed in the RCC cell lines while 21
of the 32 at least 5-fold up-regulated genes in the RCC tis-
sue samples were also found to be at least 5-fold over-
expressed in the RCC cell lines.

Singular value decomposition analysis

To visualize and classify the gene expression profiles of
the tissue and cell line samples, the expression matrix of
the five pooled samples was analyzed. Based on the 3145
selected genes, the data were was decomposed using sin-

gular value decomposition (SVD). The resulting singular
values {0.588, 0.176, 0.128, 0.0656, 0.0428} form a spec-
trum. It is clear from the magnitude of the values that the
first two singular vectors account for more than 76% of
the total variance in the expression data. The projections
of the five expression profiles onto the first two singular
vectors are displayed in Figure 3. The gene expression pro-
files of the two normal tissue sample clustered together.
The difference between the two normal profiles reflects
the variations among different patients. The gene expres-
sion profiles of the two RCC tissue samples were clustered
into a distinct group. More notably, the profile of the RCC
cell lines is well separated from the tissue groups, indicat-
ing that the cell line gene expression profile is very differ-
ent from the profiles of either normal kidney or RCC
tissue samples.
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Table I: Commonly up-regulated genes in both RCC tissue samples

Accession number Gene name* Avg. fold-change

M95167 Dopamine transporter (SLC6A3) 55.6
HG3044-HT3742 Fibronectin | 124 44.2
U29195 Neuronal pentraxin Il (NPTX2) 386
X51441 Serum amyloid A (SAA) (_s_at)! 374
J03474 Serum amyloid A (SAA)! 344
U90546 Butyrophilin (BTF4) 325
X51441 Serum amyloid A (SAA) (_at)' 29.2
M77349 Transforming growth factor-beta induced gene product (BIGH3)!34 284
X51956 Enolase2 (ENO2)24 26.2
U10485 Lymphoid-restricted membrane protein (Jawl) 259
D88667 Cerebroside sulfotransferase 21.3
ul7077 BENE# 17.3
M10321 von Willebrand factor (VWF)!23 15.5
U45878 Inhibitor of apoptosis protein | 14.4
X06256 Fibronectin receptor alpha subunit! 12.8
L27624 Tissue factor pathway inhibitor-2 12.1
M20902 Apolipoprotein C-I (VLDL)!.24 12.0
M24766 Alpha-2 collagen type IV (COL4A2)!4 11.8
X90908 I-15P (I-BABP) 1.7
M15796 Cyclin* 11.5
us210l YMP 11.4
X66839 MaTu MN for p54/58N 10.7
M35878 Insulin-like growth factor-binding protein-3!:24 10.0
U24577 LDL-phospholipase A2 9.4
L34155 Laminin-related protein (LamA3) 9.2
M16591 Hemopoietic cell protein-tyrosine kinase (HCK)* 9.1
U60644 HU-K44 8.9
X91911 RTVP-| 14 84
M94250 Retinoic acid inducible factor (MK) 6.6
X07743 Pleckstrin (P47)* 6.3
X51405 Carboxypeptidase E (EC 3.4.17.10) 6.0
X02761 Fibronectin 1124 5.9

*Over-expression also reported in clear cell RCC by !'Boer et al., 2Takahashi et al., 3Young et al., and/or #Higgins et al.

Table 2: Commonly down-regulated genes in both RCC tissue samples

Accession number Gene name* Avg. fold change
M10050 Liver fatty acid binding protein (FABPI)?2 118.8
M11437 Kininogen (KNG) (cds2)'23 64.9
X91220 Na/Cl electroneutral thiazide-sensitive cotransporter 51.0
u02388 Cytochrome P450 4F2 (CYP4F2)3 44.9
M95549 Sodium/glucose cotransporter protein! 43.9
J05257 Microsomal dipeptidase (MDP)! 42.0
L13258 Renal Na/Pi-cotransporter! 36.1
M29874 Cytochrome P450-11B (hlIBI) 26.7
M11437 Kininogen (KNG) (cdsl) '23 233
X53961 Lactoferrin (LTF) 23.0
Ul7418 Parathyroid hormone-related peptide receptor! 21.1
D31628 4-hydroxyphenylpyruvic acid dioxygenase (HPD)'3 15.6
D12620 Cytochrome P-450LTBV 13.9
M31153 Steroid |7-alpha-hydroxylase 13.5
MI13149 Histidine-rich glycoprotein! 13.4
HG2841-HT2969 Albumin 3 12.9
M34276 Plasminogen'-24 12.5
M21642 Antithrombin [Il (ATIIl) Utah gene* 11.9
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Table 2: Commonly down-regulated genes in both RCC tissue samples (Continued)

J03258 Vitamin D receptor 11.0
L12760 Phosphoenolpyruvate carboxykinase (PCK1)!:24 10.9
X92720 Phosphoenolpyruvate carboxykinase (PCK1)!24 10.9
U95090 Chromosome |9 cosmid FI1954! 10.5
J03910 Metallothionein-IG (MT1G)24 10.3
uol1120 Glucose-6-phosphatase 9.3
L47726 Phenylalanine hydroxylase (PAH) 23 9.2
L32961 4-aminobutyrate aminotransferase (GABAT) 8.6
M76180 Aromatic amino acid decarboxylase 8.6
X59766 Zn-alpha2-glycoprotein!# 85
U21931 Fructose-|,6-biphosphatase (FBPI)! 84
MI15656 Aldolase B (ALDOB)'2 83
Y07755 S100A2, exon |, 2 and 3! 7.8
U27333 Alpha (1,3) fucosyltransferase (FUT6) 77
X63359 UDP glucuronosyltransferase! 7.6
X01630 Argininosuccinate synthetase!-234 7.5
M24902 Prostatic acid phosphatase 6.8
HG3286-HT3463 Crystallin, Alpha A! 6.7
X59065 FGF, exon 3 6.5
D780l | Dihydropyrimidinase!-34 6.0
L07548 Aminoacylase-1 (ACY1)!4 5.9
LO5144 Phosphoenolpyruvate carboxykinase (PCKI)!24 5.7
U27326 Alpha (1,3/1,4) fucosyltransferase (FUT3) 57
U22961 Similar to L-glycerol-3-phosphate:NAD oxidoreductase and albumin! 5.6

*Under-expression also reported in clear cell RCC by 'Boer et al., 2Takahashi et al., 3Young et al., and/or 4Higgins et al.

1 2 3 4 5 6 7 8

C N N C N N C N

BIGH3

Figure 2

Semi-quantitative RT-PCR of SLC6A3, BIGH3 and vWF.
Total RNA was extracted from 8 pairs of RCC tissue (C) and
patient-matched normal kidney tissue (N). The over-expres-
sion of SLC6A3 was seen in all 8 tissue pairs and the over-
expression of BIGH3 and vWF was seen in 7 of the 8 tissue
pairs (sample I, 3, 4, 5, 6, 7, 8). Amplification of DNA frag-
ment of a-tubulin was used as quantitative control.

Discussion

We analyzed the gene expression profiles of both clear cell
RCC tissues and a RCC cell lines using functional cluster-
ing analysis and singular value decomposition. The
expression levels of the genes in certain functional groups,
such as cell adhesion and transport, were either mainly
up-regulated or down-regulated, while the expression lev-

Table 3: Numbers of differentially expressed genes in RCC tissues
and RCC cell lines

Fold change RCC tissue? RCC tissueb RCC cell line
>2 373 660 1472
>5 74 143 541
=10 23 47 300

a) commonly up-regulated/down-regulated b) based on average
expression level

els of many other groups such as metabolism, do not
show clear patterns. Interestingly, all of the five at least 5-
fold differentially expressed genes in the cell adhesion
group are up-regulated in RCC (Table 1). The five genes
are laminin A3, fibronectin 1, fibronectin receptor alpha
subunit, vVWF, and BIGH3. This greatly altered cell adhe-
sion expression is very likely associated with carcinogene-
sis, tumor invasion and metastasis. Laminin A3 is the
alpha 3 chain of laminin 5, which is an adhesive glycopro-
tein in the extracellular matrix. The laminins mediate the
attachment, migration and organization of cells into tis-
sues by interacting with other extracellular matrix compo-
nents [36]. The association of laminin A3 with
carcinogenesis has been reported for other types of can-
cers such as lung cancer [37]. Interestingly, the expression
of laminin A3 was suppressed in lung cancer in contrast
with its over-expression in RCC found in this study.
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Figure 3

SVD projections of the five expression profiles based on 3,145 genes. The horizontal axis represents the first singular vector.
The vertical axis is for the second singular vector. Normal tissue sample profiles are clustered together while RCC tissue sam-
ple profiles are grouped into a distinct group. The cell line profile is well separated from the tissue profiles.

Fibronectin 1 is another adhesive protein that binds to the
external face of the plasma membrane and enables cells to
interact with the extracellular matrix [38]. The cell-bind-
ing region of fibronectin 1 binds and releases integrin, a
complex of proteins that span the plasma membrane.
vWF is a plasma protein. It mediates platelet adhesion to

the injured vessel wall and carries and protects coagula-
tion factor VIII. At the site of vascular damage, vVWF binds
immediately to exposed collagens, thereby facilitating the
adhesion of platelets [39]. BIGH3 encodes a secreted
adhesion molecule, which is believed to be involved in
tumor progression by regulating integrin receptors [40].
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The over-expression of fibronectin 1, fibronectin receptor
alpha subunit, vWF, and BIGH3 have all been reported
previously in RCC and/or other types of cancers [22-
24,26,41,42]. Like many other genes, the five genes are
playing many different roles in biological processes. Lam-
inin A3, fibronectin receptor alpha subunit, and BIGH3
are also associated with integrin receptor signaling.
BIGHS3 is also involved in cell growth and proliferation,
while fibronectin 1 is also involved in cell motility and
transduction in developmental processes. VWF plays roles
in blood coagulation. The 27 remaining over-expressed
genes are mainly associated with cell growth, metabolism,
proliferation, and transduction in developmental
processes.

Table 2 shows the genes that are at least 5-fold down-reg-
ulated in RCC tissue. These include five of the six at least
5-fold differentially expressed genes involved in transport
are found in the table. They include the renal Na/Pi
cotransporter, Na/Cl electro-neutral thiazide-sensitive
cotransporter, sodium/glucose cotransporter, liver fatty
acid binding protein (FABP1), and lactoferrin (LTF).
Notably, the cotransporters are all remarkably down-reg-
ulated. The renal Na/Pi-cotransporter is localized at the
apical membrane of the proximal tubular cells [43]. It is
believed to play an important role in the maintenance of
phosphate homeostasis in the kidney. Reabsorption of
phosphate in the kidney occurs predominately in the
proximal tubule. This process is mediated mainly by Na+
dependent Na/Pi cotransporter in the brush border mem-
brane and is regulated by a variety of hormones, including
insulin-like growth factor. Na/Cl electro-neutral thiazide-
sensitive cotransporter is highly and specifically expressed
in epithelial cells of distal convoluted tubule of the kidney
[44]. Tt drives the movement of chloride across the
membrane of epithelial cells and thus maintains to the
chloride homeostasis. The sodium/glucose cotransporter
is located in the early proximal convoluted tubule. It is
involved in the reabsorption of D-glucose in the kidney
[45]. The remarkable under-expression of the cotransport-
ers clearly indicates that the disruption of electrolyte
homeostasis maintained by ion transport systems is asso-
ciated with RCC carcinogenesis. FABP1 is in a family of
small, highly conserved, cytoplasmic proteins that bind
long-chain fatty acids and other hydrophobic ligands. LTF
is an important member of the transferrin family that
plays an essential role in the transport of iron to all tissue
cells. Since LTF is carried in the bloodstream, its level can
be easily monitored, with the gene expression alteration
of LTF having a greater potential to be used for early diag-
nosis of RCC.

The comparison of gene expression profiles in RCC tissues
and the cell lines shows significant differences between
the expression patterns of the two different types of sam-

http://www.biomedcentral.com/1471-2490/4/9

ples. Three factors that might contribute to these differ-
ences include (1) the RCC cell lines were derived from
metastatic RCC. Therefore, possibly more gene mutations
were accumulated and thus more genes were differentially
expressed; (2) the RCC cell lines are a pure population of
cancer cells in contrast to the RCC tissue samples that con-
tain many other different types of cells besides cancer
cells. Thus the expression intensity of differentially
expressed genes was magnified in the RCC cell lines; (3)
the in vitro culture of the RCC cell lines may have intro-
duced changes in the gene expression profile as compared
with in vivo cancer cells in the RCC tissue samples. On the
other hand, many important genes were consistently
expressed in both types of samples, suggesting that some
of the gene expression patterns in RCC tissues can be rec-
ognized through the study of the gene expression in RCC
cell lines. In this study, all the genes associated with cell
adhesion that were discussed above, laminin A3, fibronec-
tin 1, fibronectin receptor alpha subunit, and BIGH3
except VWF were consistently up-regulated in the RCC cell
lines. The expression intensity of vWF in the RCC cell lines
was not significantly different from the background, thus
vWF was not selected for the analysis of the cell line pro-
file. We note that the up-regulation of vWF in RCC tissue
samples has been reported [22-24]. The five genes
involved in transport, renal Na/Pi cotransporter, Na/Cl
electro-neutral thiazide-sensitive cotransporter, sodium/
glucose cotransporter, FABP1 and LTF are all remarkably
down-regulated in the RCC cell lines, which is consistent
with the results from the RCC tissue samples.

Conclusions

This study has identified 74 gene expression alterations in
clear cell RCC. The majority (~64%) of these alterations
has been reported in RCC previously. Extensive annota-
tion, clustering and analysis of a large number of genes
based on the gene functional ontology revealed many
interesting gene expression patterns in RCC. Most nota-
bly, genes involved in cell adhesion were up-regulated
whereas genes involved in transport were down-regulated.
The identified alterations of gene expression will likely
give insight into RCC carcinogenesis and tumor progres-
sion. Our initial, detailed comparison of gene expression
profiles in RCC tissue and cell lines revealed significant
differences of gene expression patterns between the two
types of samples.
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