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A B S T R A C T   

Elemental fingerprint coupled with machine learning modelling was proposed for species authentication of the 
edible animal blood gel (EABG). A total of 25 elements were determined by inductively coupled plasma mass 
spectrometry (ICP-MS) and atomic absorption spectroscopy (AAS) in 150 EABG samples prepared from five 
species of animals, namely duck, chicken, bovine, pig, and sheep. Extreme learning machine (ELM) models were 
constructed and optimized. Principal component analysis and Fisher linear discriminant analysis were 
comparatively utilized for dimension reduction of the crucial input elements selected via stepwise discriminant 
analysis and one-way ANOVA. The optimal ELM model was obtained with the crucial elements selected by one- 
way ANOVA from the relative content of the measured elements, which afforded accuracies of 98.0% and 96.0% 
for the training and test set, respectively. All findings suggest that elemental fingerprint accompanied by ELM 
have great potential in authenticating the edible animal blood food.   

Introduction 

Animal blood is rich in protein with high biological value, so it is 
accepted as value-added component of foods or dietary supplements in 
many societies (Bah, Bekhit, Carne, & McConnell, 2013; Toldrá, Aristoy, 
Mora, & Reig, 2012). The high economic animal blood food, known as 
“blood tofu” usually made via simple heating of the fresh edible animal 
blood is widely distributed in the supermarkets or restaurants of China. 
Generally, blood from duck, pig and chicken are used for preparing 
blood tofu. However, in view of its unique taste and texture, duck blood 
tofu is most popular in China. Therefore, the price of duck blood tofu is 
usually higher than that of other animal blood tofu, which contributes to 
food fraud, adulteration, and mislabeling. 

Currently, the high economic value of duck blood tofu adulterated or 
replaced with other low-price animal blood is still a serious social 
problem implied by media reports and administrative punishment cases 
(Zhang, Wang, Ma, Li, & Li, 2020). Hence, a method for authentication 
of animal blood foods is needed. Specific biomarkers, such as DNA 
(Cheng, He, Huang, Huang, & Zhou, 2014; El-Sayed, Mohamed, Ashry, 
& Abd El-Rahman, 2010; Unajak et al., 2010) and peptide (Zhang et al., 
2020), have shown great potential for the aforementioned purpose. 
However, although the specific biomarker-based analytical techniques 

are accurate, these techniques can be practically problematic due to 
sample contamination and intentional addition/removal of the bio-
markers by the food counterfeiters. Therefore, it is urgent to develop a 
novel technology to authenticate animal blood foods. 

Elemental fingerprint showed a unique advantage to the specific 
biomarkers-based analytical techniques as it involves all chemical con-
stituents in foods making it difficult for the food counterfeiters to adjust 
such huge element species and content. Recently, the elemental finger-
print has been used to trace the origin of green coffee beans (Endaye 
et al., 2020), determine the geographic origin of salmonid (Han, Dong, 
Li, Wei, Zhou, & Gao, 2020), discriminate geographical origin and 
species of China’s cattle bones (Zhang et al., 2021), and authenticate the 
geographical origin of Australian Cabernet Sauvignon wines (Rana-
weera, Gilmore, Capone, Bastian, & Jeffery, 2021), to name but a few. 
Nevertheless, to the best of the authors’ knowledge, no studies investi-
gating the authentication of animal blood foods based on elemental 
fingerprints have been reported. Therefore, the present work aims to 
develop a novel technique for species authentication of the edible ani-
mal blood gel (EABG) using elemental fingerprint coupled with machine 
learning modelling. 
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Materials and methods 

Samples preparation 

Fresh animal blood samples were collected in Suzhou, China from 
July 20th to August 7th, 2021. Duck and chicken blood samples were 
purchased from the vendor for on-site slaughter at a local farmers’ 
market; a local slaughterhouse provided pig and bovine blood samples; 
the sheep blood samples were purchased from a local hotpot restaurant. 
All the fresh animal blood samples were transported to the laboratory in 
an ice-filled box and then sterilized under high temperature at 121 ◦C for 
30 min after natural sedimentation. All blood samples were homoge-
nized separately, and then frozen at − 20 ◦C. Eventually, thirty blood 
samples for each species of the animals were collected, thus yielding a 
total of 150 EABG samples for multi-element measurements. 

Multi-element analysis of the EABG 

According to Chinese standard GB 5009.268–2016 (National Health 
and Family Planning Commission of the People’s Republic of China, 
2016a), trace elements such as lithium (Li), beryllium (Be), boron (B), 
aluminum (Al), titanium (Ti), vanadium (V), chromium (Cr), manganese 
(Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), arsenic 
(As), selenium (Se), rubidium (Rb), strontium (Sr), cadmium (Cd), 
barium (Ba), thallium (Tl), and lead (Pb) were determined by using 
inductively coupled plasma mass spectrometry (ICP-MS). The atomic 
absorption spectroscopy (AAS) was utilized for the macroelement 
measurements, potassium (K) and sodium (Na) were tested according to 
GB 5009.91–2017 (National Health and Family Planning Commission of 
the People’s Republic of China, 2017a), calcium (Ca) and magnesium 
(Mg) were analyzed according to GB 5009.92–2016 (National Health 
and Family Planning Commission of the People’s Republic of China, 
2016b) and GB 5009.241–2017 (National Health and Family Planning 
Commission of the People’s Republic of China, 2017b), respectively. All 
elemental analyses were carried out according to Chinese national 
standards, which is convenient for potential users to follow. 

Chemometrics and software 

Herein, the absolute and relative contents of the measured elements 
were used as the original dataset for machine learning modelling. 
Because of the big differences in contents of the microelements and 
macro-elements, Z-score normalization was performed firstly on the 
original datasets to eliminate the data orders. Then, the stepwise 
discriminant analysis (SWDA) was compared with one-way analysis of 
variance (ANOVA) for selecting crucial elements; principal component 
analysis (PCA) and Fisher linear discriminant analysis (Fisher LDA) were 
implemented comparatively to reduce dimension; eventually, extreme 
learning machine (ELM) was selected for modeling due to its simple 
network structure, good generalization ability and less time consuming 
(Han, Zhang, Aheto, Feng, & Duan, 2020; Huang, Zhu, & Siew, 2006). 

During ELM modelling, the number of hidden neurons and the 
activation function of the hidden layers were optimized. As the strategy 
of cut-and-trial was used, the optimal number of hidden neurons was set 
at a range of [1, 100]. Also, the frequently used activation functions for 
the hidden layers are depicted in the following formulas:. 

Sig : S(x) =
1

1 + e− x (1)  

Sin : S(x) = sin(x) (2)  

Hardlim : S(x) = (
1χ > 0
0x < 0

) (3)  

where: x means the inputs of these formulas. 
Performance of the constructed ELM model was evaluated by using 

the recognition accuracy, which is calculated by dividing the number of 
correctly predicted samples by the total number of samples in the 
training or test set. All algorithms in this work were implemented with 
Windows 10 in Matlab version 7.14 (Mathworks, Natick, USA). 

Results and discussions 

Elements content in different species of EABG 

Results of the elemental analysis for the EABG samples are shown in 
Table 1. According to the results, there was no significant difference in 
the contents of Li, Be, Ti, Co, As, Cd, Tl, and Pb in EABG from different 
species of animals. Elements were different between only two species of 
EABG, but no significant differences with other remaining three species 
of EABG were B, Al, Mn, and Na, and more details are shown as follows: 
B content in bovine blood gel was significantly higher than that in sheep 

Table 1 
The absolute content of the elements measured in blood gels prepared from 
duck, chicken, bovine, pig, and sheep.   

Duck (mg/ 
kg) 

Chicken 
(mg/kg) 

Bovine 
(mg/kg) 

Pig (mg/kg) Sheep (mg/ 
kg) 

Li 0.0473 ±
0.0252a 

0.043 ±
0.0191a 

0.0418 ±
0.0312a 

0.0357 ±
0.0195a 

0.0426 ±
0.0137a 

Be 0.0798 ±
0.1812a 

0.1876 ±
0.3958a 

0.236 ±
0.5341a 

0.0946 ±
0.2598a 

0.0892 ±
0.2512a 

B 0.275 ±
0.2226ab 

0.221 ±
0.163ab 

0.537 ±
1.37a 

0.284 ±
0.301ab 

0.203 ±
0.130b 

Al 1.62 ±
0.922ab 

2.17 ±
2.98ab 

1.42 ±
1.07b 

2.62 ±
1.07a 

2.19 ±
3.18ab 

Ti 0.593 ±
0.522a 

0.593 ±
0.619a 

0.818 ±
1.25a 

0.579 ±
0.680a 

0.523 ±
0.469a 

V 0.0493 ±
0.0943ab 

0.0795 ±
0.166ab 

0.142 ±
0.341a 

0.0483 ±
0.118ab 

0.0401 ±
0.116b 

Cr 0.154 ±
0.182b 

0.285 ±
0.163ab 

0.385 ±
0.412a 

0.283 ±
0.133ab 

0.244 ±
0.138b 

Mn 0.158 ±
0.147ab 

0.209 ±
0.154a 

0.119 ±
0.129b 

0.174 ±
0.0712ab 

0.181 ±
0.0983ab 

Fe 809 ± 129c 5709 ±
152a 

728 ± 280c 948 ± 134b 730 ± 117c 

Co 0.0200 ±
0.0181a 

0.0153 ±
0.0351a 

0.0164 ±
0.0500a 

0.00740 ±
0.0172a 

0.00720 ±
0.0182a 

Ni 0.0855 ±
0.104b 

0.287 ±
0.637a 

0.157 ±
0.0617ab 

0.179 ±
0.0939ab 

0.134 ±
0.0412b 

Cu 0.597 ±
0.314c 

0.908 ±
1.74c 

2.43 ±
0.532a 

1.50 ±
0.164b 

1.44 ±
0.228b 

Zn 6.18 ±
3.96b 

8.416 ±
8.10b 

119 ± 440a 10.4 ±
19.2b 

3.89 ±
0.725b 

As 0.00790 ±
0.00680a 

0.00750 ±
0.00600a 

0.00990 ±
0.0156a 

0.00650 ±
0.00430a 

0.00590 ±
0.00400a 

Se 0.327 ±
0.0670a 

0.244 ±
0.0552c 

0.312 ±
0.0812ab 

0.345 ±
0.0795a 

0.286 ±
0.0529b 

Rb 0.0530 ±
0.0294ab 

0.0394 ±
0.0158b 

0.0505 ±
0.0288ab 

0.0639 ±
0.0413a 

0.0426 ±
0.0185b 

Sr 0.144 ±
0.0725b 

0.159 ±
0.0767b 

0.246 ±
0.109a 

0.148 ±
0.0424b 

0.232 ±
0.0744a 

Cd 0.0134 ±
0.0321a 

0.0349 ±
0.0835a 

0.0283 ±
0.0905a 

0.00680 ±
0.0248a 

0.00980 ±
0.0282a 

Ba 0.101 ±
0.0423b 

0.094 ±
0.0641b 

0.144 ±
0.0948a 

0.0902 ±
0.0355b 

0.142 ±
0.0543a 

Tl 0.0841 ±
0.258a 

0.300 ±
0.775a 

0.244 ±
0.685a 

0.0992 ±
0.337a 

0.104 ±
0.353a 

Pb 0.318 ±
0.163a 

0.391 ±
0.707a 

0.308 ±
0.527a 

0.243 ±
0.165a 

0.270 ±
0.229a 

Na 1880 ±
401ab 

1764 ±
293ab 

2050 ±
400a 

1500 ±
1850b 

1840 ±
517ab 

Mg 148 ± 27.7a 86.5 ±
13.5b 

46.7 ±
6.97b 

153 ± 207a 50.2 ±
10.7b 

Ca 90.1 ±
39.1a 

101 ± 25.9a 96.2 ±
18.1a 

60.3 ±
81.8b 

59.0 ±
41.1b 

K 1760 ±
388b 

1730 ±
300b 

646 ± 368c 2300 ±
2200a 

1030 ±
124c 

Results are expressed as mean values ± standard deviation, n = 30. Values in the 
same line with different superscripts were significantly different (P < 0.05). 
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blood gel, but similar with that in blood gels made from duck, chicken, 
and pig; Al content in pig blood gel was significantly higher than that in 
bovine blood gel, but similar with that in duck, chicken, and sheep blood 
gels; Mn content in chicken blood gel was found significantly higher 
than that in bovine blood gel, but similar with that in duck, pig, and 
sheep blood gels; Na content in bovine blood gel was significantly higher 
than that in pig blood gel, but similar with that in duck, chicken, and 
sheep blood gels. 

As demonstrated in Table 1, elements content in two species of blood 
gels showed significant differences with other remaining three species 
animal blood gels were Sr, Ba, Mg, and Ca and more details are shown as 
follows: Sr content in bovine and sheep blood gels were significantly 
higher than that in duck, chicken, and pig blood gels; Ba content in 
bovine and sheep blood gels were also significantly higher than that in 
duck, chicken, and pig blood gels; Mg content in duck and pig blood gels 
was significantly higher than that in chicken, bovine, and beef blood 
gels; Ca content in pig and sheep blood gels was significantly higher than 
that in duck, chicken, and bovine blood gels. 

The Table 1 also shows that Fe content in the EABG samples 
increased in the following order: chicken, pig and duck; no significant 
difference was found in Fe content in EABG samples of duck, cow and 
sheep. Cu content increased in the following order: bovine, pig and 
duck; it was found that the Cu content was similar between pig and 
sheep blood gels, and between duck and chicken blood gels. K content 
found in the EABG samples increased in the following order: pig, duck 
and bovine; it was found that the K content was similar between duck 
and chicken blood gels, and between bovine and sheep blood gels. Zn 
content in bovine blood gel was significantly higher than in other animal 
blood gels used. V content in bovine blood gel was significantly higher 
than that in sheep blood gel, but there were no significant differences 
with other remaining animal blood gels. Cr content in bovine blood gel 
was significantly higher than that in duck and sheep blood gels, but 
there was no significant difference with chicken and pig blood gels. Se 
content found in the EABG samples increased in the following order: pig, 
sheep and chicken; it was found that the Se content was similar between 
duck and pig blood gels as well as between sheep and bovine blood gels. 

In order to further explore the difference of EABG multi-element 
distribution, the relative content of the measured elements obtained 
via single element content divided by the total element content of the 
sample was also analyzed, and the results are shown in Table 2. 

Selection of key elements and dimension reduction for modelling 

The SWDA and one-way ANOVA were separately used to select key 
elements for machine learning modelling. Results of the SWDA showed 
that regarding the absolute content of the elements used, B, Fe, Ni, Cu, 
Sr, Na, Mg, K, and Ca were selected as the key variables; In contrast, as 
the relative content of related measuring elements, eight elements were 
selected as the key elements, namely Fe, Ni, Cu, Zn, Sr, Na, Mg, and K. 
Results of the one-way ANOVA showed that all the tested elements 
except Li, Be, Ti, Co, As, Cd, Tl, and Pb were selected considering the 
absolute content; and in terms of the relative content, the measured 
elements other than Be, B, Ti, Co, Tl, and Pb were selected as the key 
variables for modeling. 

Afterwards, PCA and Fisher LDA were utilized comparatively for 
dimension reduction of the key elements selected. The accumulative 
contribution rates of the top several principal components (PCs) and 
discriminate functions (DFs) used were shown in Fig. 1 It could be 
observed from Fig. 1 that the top 8 PCs and 5 PCs could be used to 
represent the key elements selected by using ANOVA and SWDA 
respectively on the absolute content dataset of the measured elements; 
as well as, the top 9 PCs and 5 PCs could represent the key elements 
selected via ANOVA and SWDA respectively on the relative content 
dataset of the measured elements. Fig. 1 also shows that the top 3 DFs 
could be used for representing these corresponding datasets respectively 
while SWDA was used. 

Table 2 
Results of the relative content of elements in blood gels (duck, chicken, bovine, 
pig, and sheep) obtained via single element content divided by the total element 
content of the sample.   

Duck (%) Chicken (%) Bovine (%) Pig (%) Sheep (%) 

Li 1.02*10-5 

± 0.565*10- 

5 ab 

1.02*10-5 

± 0.449*10- 

5 ab 

1.16*10-5 

± 0.948*10- 

5 a 

0.836*10-5 

± 0.496*10- 

5b 

1.17*10-5 

± 0.404*10- 

5 a 

Be 1.68*10-5 

± 3.65*10-5 

a 

4.47*10-5 

± 9.53*10-5 

a 

5.59*10-5 

± 11.0*10-5 

a 

2.17*10-5 

± 6.01*10-5 

a 

2.60*10-5 

± 7.42*10-5 

a 

B 5.99*10-5 

± 5.06*10-5 

a 

5.17*10-5 

± 3.66*10-5 

a 

10.4*10-5 

± 19.5*10-5 

a 

6.63*10-5 

± 7.11*10-5 

a 

5.54*10-5 

± 3.94*10-5 

a 

Al 3.54*10-4 

± 2.18*10- 

4c 

5.07*10-4 

± 7.01*10-4 

abc 

3.89*10-4 

± 2.91*10-4 

bc 

6.06*10-4 

± 2.77*10-4 

ab 

6.15*10-4 

± 9.26*10-4 

a 

Ti 1.27*10-4 

± 1.11*10-4 

a 

1.39*10-4 

± 1.45*10-4 

a 

2.10*10-4 

± 2.98*10-4 

a 

1.33*10-4 

± 1.49*10-4 

a 

1.47*10-4 

± 1.39*10-4 

a 

V 1.04*10-5 

± 1.89*10- 

5b 

1.89*10-5 

± 4.00*10-5 

ab 

3.27*10-5 

± 6.31*10-5 

a 

1.11*10-5 

± 2.72*10- 

5b 

1.16*10-5 

± 3.42*10- 

5b 

Cr 3.21*10-5 

± 3.64*10- 

5c 

6.77*10-5 

± 4.02*10- 

5b 

9.91*10-5 

± 6.56*10-5 

a 

6.57*10-5 

± 3.30*10- 

5b 

6.83*10-5 

± 4.37*10- 

5b 

Mn 3.42*10-5 

± 3.32*10- 

5b 

4.96*10-5 

± 3.71*10-5 

a 

3.04*10-5 

± 2.39*10- 

5b 

3.93*10-5 

± 1.54*10-5 

ab 

4.97*10-5 

± 2.86*10-5 

a 

Fe 0.173 ±
0.0252 a 

0.134 ±
0.0337 d 

0.197 ±
0.0460b 

0.221 ±
0.0504 a 

0.198 ±
0.0354b 

Co 4.29*10-6 

± 3.84*10-6 

a 

3.65*10-6 

± 8.51*10-6 

a 

3.21*10-6 

± 6.83*10-6 

a 

1.70*10-6 

± 4.00*10-6 

a 

2.06*10-6 

± 5.38*10-6 

a 

Ni 1.81*10-5 

± 2.18*10- 

5b 

6.31*10-5 

± 12.5*10-5 

a 

4.38*10-5 

± 1.84*10-5 

ab 

4.22*10-5 

± 2.53*10-5 

ab 

3.71*10-5 

± 1.44*10-5 

ab 

Cu 1.26*10-4 

± 5.65*10- 

5c 

20.2*10-5 

± 34.0*10- 

5c 

68.9*10-5 

± 20.4*10-5 

a 

35.2*10-5 

± 7.78*10- 

5b 

39.4*10-5 

± 8.80*10- 

5b 

Zn 1.36*10-3 

± 1.05*10- 

3b 

1.94*10-3 

± 1.78*10- 

3b 

17.2*10-3 

± 60.0*10-3 

a 

2.42*10-3 

± 4.45*10- 

3b 

1.06*10-3 

± 0.235*10- 

3b 

As 1.69*10-6 

± 1.39*10-6 

ab 

1.77*10-6 

± 1.43*10-6 

ab 

2.55*10-6 

± 3.67*10-6 

a 

1.48*10-6 

± 1.01*10- 

6b 

1.64*10-6 

± 1.18*10-6 

ab 

Se 7.00*10-5 

± 1.40*10- 

5b 

5.79*10-5 

± 1.41*10- 

5c 

8.82*10-5 

± 2.95*10-5 

a 

8.02*10-5 

± 2.36*10-5 

ab 

7.84*10-5 

± 1.79*10-5 

ab 

Rb 1.14*10-5 

± 0.618*10- 

5 ab 

0.933*10-5 

± 0.385*10- 

5b 

1.43*10-5 

± 0.929*10- 

5 a 

1.49*10-5 

± 1.08*10-5 

a 

1.18*10-5 

± 0.560*10- 

5 ab 

Sr 3.13*10-5 

± 1.68*10- 

5b 

3.71*10-5 

± 1.75*10- 

5b 

6.73*10-5 

± 2.53*10-5 

a 

3.48*10-5 

± 1.24*10- 

5b 

6.34*10-5 

± 2.22*10-5 

a 

Cd 3.05*10-6 

± 7.45*10-6 

ab 

8.19*10-6 

± 20.0*10-6 

a 

5.41*10-6 

± 12.7*10-6 

ab 

1.55*10-6 

± 5.74*10- 

6b 

2.74*10-6 

± 8.20*10-6 

ab 

Ba 2.19*10-5 

± 0.972*10- 

5b 

2.21*10-5 

± 1.53*10- 

5b 

3.84*10-5 

± 1.84*10-5 

a 

2.09*10-5 

± 0.914*10- 

5b 

3.90*10-5 

± 1.62*10-5 

a 

Tl 1.74*10-5 

± 5.13*10-5 

a 

7.16*10-5 

± 18.8*10-5 

a 

5.19*10-5 

± 12.3*10-5 

a 

2.29*10-5 

± 7.79*10-5 

a 

3.01*10-5 

± 10.4*10-5 

a 

Pb 6.83*10-5 

± 3.48*10-5 

a 

9.42*10-5 

± 17.5*10-5 

a 

7.30*10-5 

± 8.27*10-5 

a 

5.78*10-5 

± 4.24*10-5 

a 

7.54*10-5 

± 6.61*10-5 

a 

Na 0.401 ±
0.0636c 

0.413 ±
0.0581c 

0.575 ±
0.109 a 

0.283 ±
0.0875 d 

0.486 ±
0.0740b 

Mg 0.0316 ±
0.00522 a 

0.0202 ±
0.00220c 

0.0131 ±
0.00236 d 

0.0283 ±
0.00464b 

0.0139 ±
0.00461 d 

Ca 0.0191 ±
0.00855c 

0.0236 ±
0.00512b 

0.02691 ±
0.00614 a 

0.0110 ±
0.00591 d 

0.0160 ±
0.0103c 

K 0.373 ±
0.0673c 

0.406 ±
0.0426b 

0.169 ±
0.0371 e 

0.453 ±
0.0678 a 

0.283 ±
0.0535 d 

Results are expressed as mean values ± standard deviation, n = 30. Values in the 
same line with different superscripts were significantly different (P < 0.05). 
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Fig. 2 shows that the scatter plots of the EABG samples under the top 
3 PCs and 3 DFs separately. The figure could be used for exploring the 
distribution trends of the EABG samples with different species. The 
distinguishing capability of Fisher LDA was better than PCA. DFs of 
Fisher LDA calculated to fulfill the intra class deviation formed by each 
intra class projection value is as small as possible, and the inter-class 
deviation formed by the projection value between different classes is 
as large as possible (Han, Huang, Aheto, Zhang, & Feng, 2020); PCs of 
PCA was achieved by calculating the eigenvectors and eigenvalues of the 
covariance matrix of the original data matrix (Yousefi, Sfarra, Ibarra 
Castanedo, & Maldague, 2017). Even though PCA has been widely used 
for processing the multidimensional and serious collinearity datasets in 
a multivariate problem, Fisher LDA performed better than PCA for the 
task of classification herein. 

Results of ELM models 

ELM models with different inputs obtained from section 3.2 were 
constructed and optimized for predicting the species of the EABG. 
During ELM modelling, one-third of the samples in each group were 

selected as the prediction set via the Kennard-Stone algorithm (Zhang 
et al., 2017). The rest samples were utilized as the training set. 

According to the knowledge of ELM theory, the input weight and 
networks bias were generated randomly. Hence, each ELM model was 
performed 12 times for performance comparison. Table 3 shows the 
performances of the ELM models constructed for the testing samples. 
The table indicates that the optimal ELM models were obtained when 
the one-way ANOVA was used to select key elements and the Fisher LDA 
was used to reduce dimension. For consideration of the absolute content 
of the measured elements, while the Sig active function was used, the 
ELM model offered identification accuracy over 90%; as for the relative 
content considered, while the Sig and Sin functions were used, both ELM 
models offered high identification accuracies not lower than 93.0%. 

Also, performances of the ELM models with original datasets from 
the absolute and relative content of the measured elements and the one- 
way ANOVA and SWDA were compared. Results showed that the per-
formance of the ELM model using Fisher LDA for dimension reduction 
(88.3 ± 5.35%) was significantly superior to PCA (66.6 ± 8.31%) uti-
lized; However, performance of the ELM model with original datasets 
from the absolute (76.1 ± 13.9%) and the relative content (78.8 ±

Fig. 1. The accumulative contribution rates of the top several principal components (PCs) by principal component analysis (PCA) and discriminate functions (DFs) by 
Fisher linear discriminate analysis (Fisher LDA) for dimension reduction of the crucial input elements selected via stepwise discriminant analysis (SWDA) and one- 
way ANOVA. 

Fig. 2. Scatter diagrams of the top 3 principal components (PCs) by principal component analysis (PCA) and the top 3 discriminate functions (DFs) by Fisher linear 
discriminate analysis (Fisher LDA) for dimension reduction of the crucial elements selected via stepwise discriminant analysis (SWDA) and one-way ANOVA. (a- 
ANOVA on the absolute content using PCA; b-SWDA on the absolute content using PCA; c-ANOVA on the relative content using PCA; d-SWDA on the relative content 
using PCA; e-ANOVA on the absolute content using Fisher LDA; f-SWDA on the absolute content using Fisher LDA; g-ANOVA on the relative content using Fisher LDA; 
h-SWDA on the relative content using Fisher LDA). 
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11.7%) of the measured elements showed no significant difference. As a 
comparison of the one-way ANOVA and SWDA used for variables se-
lection, the key elements selected using SWDA were included in datasets 
selected via one-way ANOVA (see part 3.2), resulting in ANOVA datasets 
containing more specific information of the elements than AWDA 
datasets for EABG samples’ identification. 

Eventually, for the 288 tests of ELM modelling, under the condition 
of using relative content and Sin active function, the best ELM model 
was obtained with the best neural network structure was 3–12-1, which 
provided the highest accuracy of 96.0% for the prediction set. It means 
that only two samples were misclassified of the unknown 50 samples. In 
training set, there were also only two samples misclassified offering a 
high prediction accuracy of 98.0%. It is suggest that elemental finger-
prints accompanied by ELM have great potential in authenticating the 
edible animal blood foods. 

Conclusions 

A method based on elemental fingerprint coupled with machine 
learning modelling was proposed for identifying the EABG species. Re-
sults suggest that: (1) both the absolute and relative content of the ele-
ments measured could be used for modelling; (2) Fisher LDA for 
dimension reduction was significantly better than PCA; (3) the optimal 
ELM models obtained with the relative content of the measured ele-
ments and Sin active function were used, which offered identification 
accuracies of not less than 96% in the training and test set. It can be 
concluded that the elemental fingerprint in conjunction with machine 
learning modeling has great potential in the species authentication of 
edible animal blood foods. This work presented the multi-element 
content in EABG for the first time, and developed a method for 
authenticating EABG species, which can be used to regulate the edible 
animal blood food market, thereby preventing illegal adulteration and 

unfair competition. 
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