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Histone deacetylase inhibitors (HDACIs) have been actively explored as a new generation of chemotherapeutics for cancers,
generally known as epigenetic therapeutics. Recent findings indicate that several types of HDACIs repress angiogenesis, a process
essential for tumor metabolism and progression. Accumulating evidence supports that this repression is mediated by disrupting
the function of hypoxia-inducible factors (HIF-1, HIF-2, and collectively, HIF), which are the master regulators of angiogenesis
and cellular adaptation to hypoxia. Since HIF also regulate glucose metabolism, cell survival, microenvironment remodeling, and
other alterations commonly required for tumor progression, they are considered as novel targets for cancer chemotherapy. Though
the precise biochemical mechanism underlying the HDACI-triggered repression of HIF function remains unclear, potential cellular
factors that may link the inhibition of deacetylase activity to the repression of HIF function have been proposed. Here we review
published data that inhibitors of type I/II HDACs repress HIF function by either reducing functional HIF-1α levels, or repressing
HIF-α transactivation activity. In addition, underlying mechanisms and potential proteins involved in the repression will be
discussed. A thorough understanding of HDACI-induced repression of HIF function may facilitate the development of future
therapies to either repress or promote angiogenesis for cancer or chronic ischemic disorders, respectively.

1. Introduction

Tumors are one of the leading causes of disability and
mortality in the USA and other developed countries. While
many advances have been made in both basic research
and clinical treatment, the development of more efficient
cancer-specific therapies remains an unfinished mission. In
addition to surgery and radiation therapy, chemotherapy is
an important component in treating a variety of cancers,
particularly for late stage, advanced cancers that are unsuit-
able for surgical removal. Chemotherapeutics are commonly
antiproliferative compounds that preferentially kill dividing
cells, rarely discriminating cancer cells, or normal dividing
cells such as hematopoietic cells. Given sufficient dose and
time, chemotherapeutics should be able to kill all cancer
cells theoretically. However, in clinical practice, two of the
major hurdles of chemotherapy are (1) tumor hypoxia,

which is related to inefficient drug delivery and triggers
drug resistance [1] and (2) adverse effects on normal tissues,
which frequently limit the dose and duration of treatment.
These two hurdles limit the efficacy of chemotherapy. To
overcome these hurdles, an emerging trend in cancer therapy
is to specifically target hypoxic cancer cells [1, 2]. Indeed,
hypoxia, HIF activation, and angiogenesis in solid tumors
have been demonstrated by many independent studies [3–
5]. Particularly, hypoxic and angiogenic tumors are usually
resistant to traditional radiation and chemotherapy [6–10].
Blocking tumor angiogenesis has been extensively explored
as a novel treatment for cancers in the past decade. The
identification of HIF-function as the master regulator of
angiogenesis and tumor cells adaptation to various stress
conditions, including those caused by chemotherapy and
radiation, provides the rationale to target HIF function as
an important part in cancer therapy. Since HIF function is
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Table 1: Histone deacetylases: Classification and characteristics.

Classes HDACs Localization Features

Class I
Ia HDAC 1, 2 Nucleus

Related to yeast RPD3 deacetylase Zinc dependent [57]Ib HDAC 3 Nucleus & cytoplasm

Ic HDAC 8 Nucleus

Class II
IIa HDAC 4, 5, 7, 9 Nucleus/cytoplasm [58] Related to yeast HdaI Zinc-dependent [23, 24]

IIb
HDAC6 Cytoplasm

HDAC10 Nucleus/cytoplasm [59, 60]

Class III Sirtuins (Sirt1-7) Nucleus, cytoplasm & mitochondria Related to the Sir2 NAD+-dependent [25]

Class IV HDAC 11 Nucleus & cytoplasm Features of both classes I and II [61], Zinc independent

essential for both tumor progression and tissues’ adaptation
to chronic ischemia, it is a potential therapeutic target not
only for cancer but also for chronic ischemic disorders.

In recent years, several HIF inhibitors have been identi-
fied by compound screening processes [11–13]. Interestingly
and surprisingly, basic research and clinical trials have shown
that HDACIs block angiogenesis and suppress tumor growth
[14–16]. It has been gradually realized that these effects
are at least partially mediated by repressing HIF function.
Specifically, a unique phenomenon has been reported that
inhibitors of class I/II HDACs, which usually stimulate
transcription factors, repress the transactivation potential
of both HIF-1α and HIF-2α [17]. Importantly, HDACIs
repress HIF-α in all cells examined, indicating a ubiquitous
mechanism [17, 18]. Although HDACIs were originally
designed as epigenetic therapeutics, the effects of these
compounds are generally pleiotropic. The direct molecular
targets of HDACIs and the biochemical mechanisms under-
lying the repression of HIF function remain elusive. In this
paper, we will first briefly summarize HDACs, HDACIs,
and the regulatory mechanisms of HIF function. We then
will focus on analyzing the potential links between protein
hyperacetylation triggered by inhibitors of type I/II HDACs
and its repressive effect on HIF function.

2. Histone Deacetylases and Histone
Deacetylase Inhibitors

HDACs compass a large family of enzymes that remove the
acetyl groups from N-ε-lysines of histones [19–21]. Since the
original discovery of histone acetylation, nonhistone proteins
such as transcription factors or coactivators have been shown
to be subjective to the same modification. Therefore, HDACs
are now redefined as lysine deacetylases to more precisely
reflect the fact that its substrates, acetylated lysyl residues,
are not exclusive for histones [22]. Acetylation status of these
proteins is usually reversibly regulated by a dynamic balance
between acetyl transferases (HATs) and HDACs.

So far 18 HDACs have been identified from mammalian
cells, which are classified into four classes based on their
homology to yeast enzymes [23–25] (Table 1). HDAC1-3, 8
are nuclear localized class I HDACs and are most commonly
associated with transcription repressive complexes known
as Sin3, NuRD, CoRest (HDAC1, 2), and SMRT/NCoR

(HDAC3) [19–21, 26, 27]. Generally, Class I HDACs are
considered to be repressive factors for gene expression,
despite a few exceptions [28, 29]. HDAC1 is also known
to inhibit the function of the phosphatase PTEN involved
in cell signaling by deacetylation [30]. HDAC3 is reported
to control the acetylation of p65, the subunit of NF-κB,
which is a key transcription factor involved in responses to
inflammation and other cellular stresses [31]. HDAC4–7, 9,
10 belong to class II [20]. HDAC4 is involved in a multipro-
tein transcriptional corepressor complex and is implicated
in myocyte differentiation, skeletogenesis, and neuronal
survival [32–35]. HDAC5 has been suggested to interact with
nuclear receptor corepressors 1 and 2, which are important
in the down regulation of gene expression [36]. A key
role in development and pathophysiology of cardiomyocytes
has been proposed for HDAC5 [37, 38]. As an exclusive
member mainly functioning in the cytoplasm, HDAC6
deacetylates cytoplasmic nonhistone substrates including
Hsp90 [23, 39] and α-tubulin [40–43]. HDAC6 also binds
to misfolded proteins and dynein motors, thus allowing the
misfolded proteins to be physically transported to molecular
chaperones and proteasomes for degradation [44]. Class
III comprises of the NAD+-dependent Sirt1-7 [45–49],
which has been implicated in caloric restriction, aging,
neuronal degeneration, and longevity [50–52]. HDAC11,
which is sometimes called class IV [53], negatively regulate
interleukin 10.

HDAC inhibitors (HDACI) encompass several diverse
compounds that inhibit deacetylases. Several HDACIs com-
monly seen in literatures are listed in Table 2, and the
chemical structures of representative compounds are shown
in Figure 1. Since protein acetylation in vivo is, in most cases,
reversibly regulated by a dynamic balance between histone
acetyl transferases (HATs) and HDACs [19–21], exposure
of cells to HDACIs breaks the balance and induces hyper-
acetylation of proteins. Similar to enhanced HAT activity,
HDACIs generally promote gene expression by elevating the
acetylation status of histones, transcription factors, and coac-
tivators. Importantly, HDACIs are anticancer compounds
undergoing intensive investigation; some of them have been
approved by the US Food and Drug Administration (FDA)
for clinical treatment of certain types of cancer patients.
Clinical and experimental data show that inhibitors of class
I/II HDACs repress tumor growth and induce apoptosis.
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Table 2: Major HDAC inhibitors: Targets and current status in cancer chemotherapy.

Class Compounds HDACs Status Reference

Aliphatic acid Valproic acid Class I, IIa Phase II clinical trials [62]

Benzamide MGCD0103 Class I, II Phase II clinical trials [63]

Cyclic peptide FK228 Class I, II FDA approved for CTCL [64]

Hydroxamates
SAHA Class I, II FDA approved for CTCL [63]

LBH589 Class I, II Phase II and III clinical trials [23]

Trichostatin A Class I, II Experimental use [65, 66]

Others
AR-42 Class I, II Started clinical trials [67]

CUDC101 Class I, II Started clinical trials [68]

Note: Valproic acid has been in use as an anticonvulsant and mood stabilizing drug in the treatment of epilepsy and bipolar disorder.

While mainly considered as epigenetic therapeutics, HDACIs
enhance the level of acetylation of nonhistone proteins as
well. For example, the acetylation states of the transcription
regulators such as c-Myb, E2F1, HNF-4, Ku70, NF-κB, p53,
RB, Runx, Sp3, STATs, and YY1 are affected by HDACIs
[14, 54]. It is important to note that HDACIs may also affect
the acetylation of cytoplasmic/mitochondrial proteins that
are not directly involved in the transcriptional control of gene
expression [55, 56].

3. Hypoxia, Hypoxia Inducible Factors, the
Oxygen Sensing Pathway, and Angiogenesis

The oxygen-sensing pathways, which represent the canonical
regulatory mechanism of HIF function, have been investi-
gated in depth, making it possible to modulate HIF function
as a novel therapy. Hypoxia-inducible factors (HIF-1, 2, 3)
are heterodimeric transcription factors, each composed of
a unique α-subunit (HIF-1α, 2α or 3α) and a common β-
subunit (HIF-β) shared by HIF-α and other transcription
factors. HIF-1 and HIF-2 are the major contributors to the
transcription of HIF target genes that encompass several
orchestrated functional groups [69, 70]. While regulating
the expression of overlapping target genes, HIF-1 and HIF-2
have been demonstrated to possess distinctive nonredundant
functions [71–73]. The overall biological effect of expression
of HIF target genes is to facilitate the utilization of oxygen
and other nutrients, thus inducing cellular adaptation to
hypoxia, chemotherapy, and other cellular stresses [69, 70].
Most importantly, the expression of key proangiogenic
factors, such as vascular endothelial growth factor (VEGF)
[74, 75], bFGF, and their receptors [76, 77], stimulates
angiogenesis and vasculogenesis, which are fundamental
processes involved in tumorigenesis, wound healing, chronic
ischemic adaptation, and early embryonic development.

As heterodimeric transcription factors, HIF-1 and HIF-2
are functionally controlled by their alpha subunits (HIF-1α
and HIF-2α, resp., HIF-α collectively). HIF-α activity is con-
trolled by two well-known mechanisms [78–80] (Figure 2).
Firstly, HIF-α is rapidly degraded through a hydroxylation-
ubiquitination-proteasomal system (HUPS) when oxygen is
sufficient. With an adequate oxygen supply, HIF-α is hydrox-
ylated at two prolyl residues in the oxygen-dependent degra-
dation domain (ODD) by a family of prolyl hydroxylases

(PHD) [78–80]. The oxygen-facilitated hydroxylation makes
HIF-α recognizable by VHL, an E3 ligase, for ubiquitination
[78–80]. Consequently, the ubiquitinated HIF-α is degraded
by the proteasome system [81, 82]. Secondly, HIF-α activity
is controlled by its transactivation potential (TAP), which
is in turn controlled by its interaction with coactivator
p300/CBP and other factors [83, 84]. Factor inhibiting
HIF-1 (FIH), an oxygen-dependent hydroxylase, modifies
an Asn residue at the carboxyl terminal activation domain
(HIF-αCAD) and disrupts its interaction with p300/CBP
[85, 86]. In addition, HIF-α has an N-terminal activation
domain (NAD) whose activity is also influenced by oxygen
availability. Lack of oxygen (hypoxia, anoxia), a common
pathophysiological condition frequently complicated with
neoplastic, cardiovascular, hematologic, and respiratory dis-
orders, represses the activity of hydroxylases and activates
HIF function [78–80]. Finally, hypoxia triggered generation
of reactive oxygen species by the mitochondrial electron
transfer chain has been identified as a major player in
the stabilization of HIF-α [87, 88]. Oxygen and oxygen-
dependent hydroxylation-triggered events form the con-
ventional regulatory pathways of HIF function (Figure 2),
illustrating a physiological feedback.

HIF activation and the expression of HIF target genes
play key roles in tumorigenesis and angiogenesis. One
of the major metabolic features of tumors is that they
usually demand increased oxygen, carbon, and nitrogen
sources because of active biosynthesis during cell growth
and proliferation [89]. Continuous growth of primary or
metastatic tumors can happen only when this demand is
met, usually by angiogenesis. Indeed, hypoxia and HIF-1
activation has been observed in a variety of solid human
tumors [90–93], accompanied by overexpression of HIF
target genes and angiogenesis. Loss of HIF-1α dramatically
retards solid tumor growth in vivo and is correlated with a
reduced capacity to release proangiogenic factors [94–96].
Angiogenesis is defined as the formation of new blood vessels
from pre-existing vessels. Neoplastic angiogenesis involves
three major components [97]: (1) the tumor cells that
synthesize and secret signaling molecules and growth factors
(paracrine), (2) the extracellular matrix and surrounding
microenvironment, and (3) the responses of endothelial
and other stromal cells. It is noted that tumor-secreted
signaling molecules not only function on endothelial cells,
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Figure 1: Chemical Structures of Representative Inhibitors of Class I/II HDACs. While structurally diverse, they share one common feature:
the existence of active groups targeting the zinc-dependent catalytic sites of class I/II HDACs.

but also satisfy the growth factor requirement of tumor
cells. The HIF-stimulated autocrine loop renders tumor cells
independent of growth factors from other origins. Therefore,
HIF-induced angiogenesis and secretion of growth factors
fulfill the major needs of sustainable tumor growth, invasion,
and progression. While expression of HIF-1α and HIF-2α has
been observed in both stromal and tumor cells [71–73, 98,
99], an intrinsic or autonomous role of HIF-2α in endothelial
cells has been also reported [72]. HIF-1α is believed to play
more important roles in regulating tumor cell survival and
metabolic reprogramming in response to hypoxia [94–96].

Hypoxia is not the only cause of HIF activation in
tumors. In solid tumors, in addition to hypoxia, a combi-
nation of extracellular and intracellular factors (Figure 3),
including growth factors, mitogenic signaling (MAPK,
PI3K/Akt), activation of oncogenes, and loss of tumor sup-
pressors (VHL, p53 and PTEN), activates HIF-α by acting on
various points of the canonical pathways [78–80, 100–106].
Considering the complexity of signaling pathways that lead
to HIF-activation in tumors, it is generally difficult to repress
HIF function by repairing the aberrant canonical pathways.
Furthermore, the diverse contributions of HIF target genes
to metabolic reprogramming, cell survival, tumor growth,
and progression make it less effective to block each effect
of HIF activation. Instead, directly targeting HIF may be an
ideal strategy for cancer therapy. Currently, many studies are
actively exploring compounds to directly repress HIF-α, and
several HIF inhibitors have been developed [11–13].

Interestingly, some small molecular weight compounds
under development for cancer therapy but not originally
intended to target HIF function show good anticancer effects
and antiangiogenic features. These include HDACIs [14–
16], heat shock protein (HSP) 90 inhibitors [107, 108],
proteasome inhibitors [109–112] and microtubule inhibitors
[113–115]. While these compounds are aimed at distinct
cellular targets, studies have linked their antiangiogenic and
antitumor effects to HIF inhibition.

4. Histone Deacetylase Inhibitors Repress
Tumor Angiogenesis and HIF Function

Accumulating evidence suggests that inhibition of class I/II
HDAC activity represses HIF function in tumor cells [17, 18,
116–122]. The HDACIs showing anti-HIF activity generally
block class I and II HDACs. While most inhibitors of class
I/II HDACs are not selective for a particular deacetylase, they
do not directly repress the enzymatic activity of class III
HDACs (Sir2 family) [48, 49, 123]. Trichostatin A (TSA) is
among several HDACIs reported to repress angiogenesis in
vitro and in vivo [118, 124]. Other HDACIs including FK228
(depsipeptide, FR901228) [120, 121], butyrate [28, 122], and
LAQ82481 have been known to repress angiogenesis and
expression of HIF regulated pro-angiogenic factors, such
as vascular endothelial growth factor (VEGF). While HIF1
had been accepted as a major regulator of angiogenesis, the
early explanations for the antiangiogenesis effects of HDACIs
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Figure 3: Multiple Signaling Pathways Regulate HIF Function and Key Determinants of the Transcription Activity of HIF-1 and HIF-2. The
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varied, perhaps because HDACIs have a pleiotropic nature,
and multiple pathways regulate angiogenesis. Later findings
suggest that HDACI-mediated repression of angiogenesis
renders its effect on HIF function in tumor cells [118,
120, 124–127]. While detailed molecular and biochemical
mechanisms remains unknown, several current explanations
include (1) HDACI-mediated destabilization of HIF-1α [18–
21, 26–29, 40–43, 48, 49, 53, 116, 118, 123, 124, 128], (2)
HDACI-mediated repression of the transactivation potential
of the carboxyl-terminal transactivation domain of HIF-
αCAD [17, 129], (3) repressing DNA binding ability [120],
and (4) inhibiting nuclear translocation of HIF-1 [117,
122]. Below we will focus our discussion on HDACI-
mediated destabilization of HIF-1α and HDACI-mediated

repression of HIF-αCAD TAP, the two better supported
models. We will discuss data consistent with or contrary to
these views. Interested readers are referred to other proposed
mechanisms including inhibiting nuclear translocation of
HIF-1α [117, 120, 122].

5. Mechanisms Underlying
HDACI-Mediated Repression of HIF-α
Transactivation Potential

Early report suggested that TSA repressed angiogenesis by
regulating VHL and p53 function, hence destabilizing HIF-
1α [118]. Later observations show that HDACIs also repress
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the TAP of the carboxyl-transactivation domain (CAD) of
both HIF-1α and HIF-2α [17]. This effect can be clearly
demonstrated by using a recombinant HIF-αCAD construct
fused to the DNA binding domain of the yeast GAL4
transcription factor. The protein levels of this fusion protein
are not decreased by HDACIs, allowing the examination of its
activity by monitoring the expression of a reporter gene [17].
All other transactivators tested in the same way, including
p300, VP16, MyoD, and p53, were enhanced by HDACIs
under the same conditions. The effects of HDACI on the
transactivation potential have two special features that are
distinct from the destabilizing effects. First, low doses of
HDACIs that were not sufficient to cause HIF-1α degradation
were sufficient to repress HIF-1α transactivation potential
under both normoxic and hypoxic conditions [17]. Second,
while HDACIs repress the transactivation potential of both
HIF-1α and HIF-2α, they only trigger the destabilization of
HIF-1α, not HIF-2α [17, 18]. Because of these two features,
this mechanism may be more relevant to the antitumor
effects of HDACIs than the HIF-1α destabilization caused
by high doses of HDACIs, because it is easier and more
practical to achieve a low therapeutic dose in a clinical
setting. Scientifically, this is also interesting because it shows
the uniqueness of HIF-α among other transcription factors.

It has been well established that HIF function is deter-
mined by the protein levels and the transactivation activity of
HIF-α. HIF-α has two transactivation domains, the NAD and
the CAD. The transactivation activity of CAD is absolutely
dependent on the interaction of the CAD with either p300
or CBP. The interaction between HIF-1α and p300 (or
CBP) requires an intact CH1 domain of p300 (or CBP). In
addition, HIF-1α has been reported to possess a p300/CBP
CH1-independent transactivation activity which is also
sensitive to HDACIs [129, 130]. Because HIF-αCAD has
been demonstrated to be absolutely dependent on p300/CBP
CH1 [129], the p300/CBP CH1-independent mechanism
might involve the NAD of HIF-α. These reports indirectly
indicate that inhibitors of class I/II HDACs also repress the
transactivation activity of HIF-αNAD.

Because HDACIs mediate repression of HIF function
in a manner independent of HIF-α levels, the key targets
of this repression must be the HIF-α-p300 or HIF-α-CBP
complexes (Figure 3). In oxygen-sensing pathway, oxygen
availability regulates this interaction through FIH (Factor
inhibiting HIF-1)-mediated hydroxylation of HIF-αCAD.
However, mutation of Asn803 of HIF-1αCAD did not
abolish HDACI-mediated repression [17], indicating that
the HDACI-mediated repression of HIF-1α-p300 function is
independent of either FIH or hydroxylation. The HDACI-
mediated repression of HIF-α TAP is also independent
of VHL [17], suggesting a mechanism distinct from the
normoxic repressive pathway. Since a minimal CAD domain
(HIF-1α786-826) lacking the normoxic repressive region
thus being constitutively active can be repressed by HDACIs
[17], it is unlikely that the HDACI-mediated repression of
HIF-αCAD involves a direct change of acetylation states of
HIF-α [17]. HIF-αNAD, on the other hand, overlaps with the
oxygen-dependent degradation domain and contains more
than one lysyl residues. So it is possible that acetylation

of any of the lysyl residues affects NAD transactivation
activity.

While direct acetylation of HIF-α, if any, is unlikely to
be involved in HDACI-mediated repression of HIF function,
the direct acetylation of p300/CBP, the other determinant of
the transactivation activity of HIF complexes, has been well
documented. p300 and CBP are acetyltransferases serving as
general cofactors for multiple transcription factors including
HIF-α [131]. These two proteins possess multiple domains
that function as docking sites for their interaction with a
variety of transcription regulators [131]. Interestingly, all
those important functional domains are lysine-rich and
have shown to be subjective to autoacetylation by p300 or
CBP [131, 132]. Importantly, exposure of cells to HDACIs
causes hyperacetylation of p300 [131]. Consistent with these
observations, p300 has been reported to complex with
HDAC activities [133–135]. These observations suggest that
HDACI-mediated repression of HIF transactivation more
likely implicates the acetylation status of p300 or CBP. A
recent work revealed that the transactivation activity of
HIF-αNAD also requires an interaction with p300 or CBP
[136]. This interaction is mediated by CH3 domain, which is
also one of the lysine-rich regions subjective to acetylation
[131]. Therefore, it is possible that the HDACI-mediated
repression of HIF-αNAD also involves the acetylation status
of p300 or CBP. Considering that both CH1 and CH3
domains of p300 or CBP are lysine-rich and subjective to
acetylation [131] and p300 or CBP physically interacts with
deacetylase activity [134], one intriguing hypothesis would
be that the acetylation status of CH1 and CH3 may affect
their binding affinity to different transcription factors [137].
If it is true, acetylation of p300 and CBP may represent an
additional mechanism for these two general coactivators to
dynamically coordinate the transcriptional reprogramming
of multiple genes. Finally, since multiple signaling pathways
regulate HIF-α-p300 complex, it is also possible that one or
more signaling pathways are relayed by HDAC activity, or
some regulators of the signaling pathways are subjective to
acetylation (Figure 3).

6. Mechanisms Underlying HDACI-Mediated
Degradation of HIF-1α

As histone acetylation is generally associated with enhanced
gene transcription, it is common to find that HDACI
enhances the transcription and de novo synthesis of proteins.
It is also true in most exogenous gene expression systems
including transfection of cultured cells and in vivo gene
therapy. The transcription of endogenous HIF-1α, however,
is not affected by HDACIs (Chen & Sang, unpublished
data). Previous studies from our laboratories and others have
shown that HDACI treatment has little effect on the de novo
translation of endogenous HIF-1α protein [137]. Here we
focus our discussion on HDACI-mediated degradation of
HIF-1α.

6.1. Do Inhibitors of Class I/II HDACs Directly Enhance the
Acetylation of HIF-1α at Lys532? Interaction between protein
acetylation and ubiquitination has been discussed in two
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recent reviews [138, 139]. In an early report from Dr. Kim’s
group, the shorter mouse variant isoform mARD1225, which
is a mammalian orthologue of a yeast N-α-acetylase, cat-
alyzed N-ε-acetylation of HIF-1-αODD at Lys532, promotes
HIF-1α recognition and ubiquitination by VHL [124]. The
longer human hARD1235 isoform is also known to associate
with HIF-1αODD in vitro and with full length HIF-1α in vivo
[140]. Subsequent evidence has shown that hARD1 cannot
acetylate human HIF-1α in vitro [140–143]. One explanation
for this discrepancy is that mARD1225 has a C-terminal
region that significantly differs from those of other mouse or
human ARD1 [144]. An alternative possibility is that hARD1
may aggregate in vitro, and aggregated hARD1 losses its
catalytic activity as an α-acetylase [145]. Silencing of hARD1
with siRNA affected cell proliferation, but showed no effect
on HIF-1α stability [141, 142]. The role of hARD1 in cell
proliferation was further demonstrated in mouse xenograft
tumor model [146]. Therefore, while published data suggest
that mARD1225 has a role in HIF-1α stability, and hARD1
is implicated in the regulation of cell proliferation, a precise
role of hARD1 in HIF-1α stability remains unclear.

HIF-1α is easily detectable from the immunoprecipitates
by using anti-acetyl-lysine antibodies [116, 124, 147, 148]. It
is also possible that HIF-1α interacts with one or more acety-
lated proteins, thus is indirectly coprecipitated by antily-
sine antibody in immunoprecipitation experiments. More
recently, several studies showed direct detection of HIF-1α
in immunoblotting with anti-acetyl-lysine antibodies [149].
The involvement of Sirt1, a member of class III deacetylase,
in the regulation of HIF-2α has been reported [150]. These
reports generally support that HIF-1α may undergo direct
acetylation in cells. Nevertheless, a specific role of Lys532
in HDACI-triggered HIF-1α degradation remains unclear.
ODD is sufficient to mediate the HDACI-triggered HIF-
1α instability; however, mutation of the putative acetylation
site (Lys532 to Arg) failed to protect ODD from HDACI-
induced degradation [18]. So far there is no direct evidence
to support that HDACIs of class I/II enhance HIF-1α
acetylation at Lys532 in cells. Mass-Spectrometry analysis
of HIF-1α isolated from cells may eventually resolve the
acetylation status of Lys532 of HIF-1α and shed light on its
role in HIF-1α stability.

6.2. HDACIs Induce Ubiquitination-Independent Degradation
of HIF-1α. In the original model proposed by Dr. Kim,
HIF-1α acetylation at Lys532, either catalyzed by mARD1
or induced by HDACIs, promoted HIF-1α recognition and
eventual ubiquitination by VHL [118, 124]. Since HDACIs
enhance the interaction between HIF-1α and HSP70, an
alternative ubiquitination pathway mediated by HSP70-
associated CHIP has been proposed [151]. Ubiquitination of
proteins sequentially involves three enzyme activities termed
E1, E2, and E3. Mammalian cells have a single ubiquitin-
activating enzyme E1, and VHL is the HIF-α-specific E3
ligase. Accordingly, VHL-defective cells or E1-inactivated
cells accumulate high levels of HIF-α. If HDACI-triggered
HIF-1α degradation was mediated by the canonical ubiqui-
tination pathway, the process would depend on functional

E1 and VHL activity. In fact, it is reported that HDACIs
decreased HIF-1α levels in all cells tested, including VHL
(−/−) C2 and RCC4 cells, indicating that HDACI-induced
HIF-1α degradation is through a mechanism existing in,
perhaps, all tumors, including those lacking VHL. A special
cell line, Ts20TGR, contains a temperature sensitive E1 [152].
Inactivating E1 in this cell line by culturing the cells at
39◦C resulted in accumulation of nonubiquitinated HIF-1α
[18]. Apparently, HDACIs are able to trigger degradation
of the accumulated nonubiquitinated HIF-1α. Since the
HDACI-triggered degradation can be blocked by proteasome
inhibitors, but not by lysosomal inhibitors, it is clear that
the proteasome system is required [18]. Based on the above
facts, it is clear that HDACIs induce HIF-1α destruction
by a ubiquitination-independent proteasome system (UIPS),
whereas the precise mechanism remains to be dissected.

6.3. Is Hsp90 the Major Player in HDACI-Triggered Degrada-
tion of HIF-1α? Studies with Hsp90 inhibitors reveal a good
candidate which may be responsible for HDAC-triggered
degradation of HIF-1α. Hsp90 is known to associate with
nonnative structures of many proteins and is responsible
for protein folding in general [153]. Hsp90 have three
functional domains, the ATP binding domain, protein
binding domain, and dimerization domain. The normal
function of Hsp90 depends on its ATPase activity because
it is the principal binding site for drugs that target this
protein [154]. Hsp90 inhibitors have also been explored as
antitumor drugs [155]. A quick comparison reveals some
obvious similarities between these two groups of drugs.
(1) Both HDACI and HSP90 inhibitors have been reported
to destabilize various mutated HSP90 client proteins in
cells; (2) both groups of drugs enhance the levels of
HSP70; (3) both groups of drugs decrease client proteins’
interaction with HSP90 but increase its interaction with
HSP70; (4) while HDACIs apparently inhibit deacetylases,
since HSP90 function requires HDAC6 activity to maintain
its deacetylated states [156–160], HDACIs function as HSP90
inhibitors indirectly (Figure 4).

It has been reported by independent laboratories that
molecular chaperones including HSP70 and HSP90 directly
interact with HIF-1α, suggesting that HIF-1α is one of the
client proteins of the HSP machinery. Similar to HDACIs,
the Hsp90 inhibitor 17-AGG triggers ubiquitination inde-
pendent degradation of HIF-1α [17, 18]. We noted that
most of the reported protein degradation cases triggered by
either HDACI or HSP90 inhibitor were observed in cells with
normal ubiquitination system. So even though the proteins
subjective to the drug-induced degradation were generally
associated with ubiquitination, there is no real evidence to
support that ubiquitination is an absolute prerequisite for
their degradation.

6.4. Potential Role of α-Tubulin Acetylation in HDACIs-
Mediated Degradation of HIF-1α. Another possible acety-
lated protein that may play a role in HDACI-induced distabi-
lization of HIF-1α is the α subunit of tubulin heterodimers
(α-tubulin). α-tubulin is an important component for the
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Figure 4: Acetylated Proteins Potentially Involved in the Control of HIF-1α Maturation and Stability. HDACIs may lead to hyperacetylation
of one or more proteins involved in the folding process of HIF-1α. Similar to HSP90 inhibition-caused blockage of normal folding and
mature processes of HIF-1α, unfolded or misfolded HIF-1α remains interacting with HSP70, which may eventually trigger a ubiquitination-
independent degradation process.

formation of microtubules and other cellular structures with
a variety of functions. The acetylation of α-tubulin was dis-
covered long before the identification of histone deacetylase
and protein acetyl transferases [161]. Its acetylation at Lys40
is a marker of stabilized microtubules [41, 43, 162] and is
regulated by HDAC6 [163]. In addition, HDAC6 provides a
link between protein acetylation and ubiquitination [164],
suggesting a role in regulating protein stability. Since a
role of HDAC6 in HIF-1α stability has been proposed
[18, 41, 137], one possibility is that microtubule dynamics
may somehow be required for HIF-1αstabilization. This
hypothesis is supported by evidence that the small molecules
disrupting the dynamics of microtubules also destabilize
HIF1α [113, 114, 165]. However, how and why microtubule
dynamics affects HIF-1α stability remains unknown.

7. The Acetylases and Deacetylases
Involved in HIF Function

Because of the complexity and possible functional redun-
dancy, it may be difficult to identify an individual member
that is exclusively responsible for the regulation of HIF
acetylation and function. As discussed above, the role of
hARD1 in HIF-1α acetylation is controversial. A role of
HDAC7 in regulating HIF-1 function was first proposed,
based on its interaction with HIF-1α but not HIF-2α [117].
HDAC7 was found to increase the transactivation activity of
HIF-1, and it is thought to be a transactivation coactivator
of HIF-1 [117]. So far several Class II HDACs have been
proposed to regulate HIF-1α stability [116]. However, since
HDAC7 does not interact with HIF-2α, it cannot be used
to fully explain the repressive effects of HDACIs on HIF-
2αCAD. It is shown that HDAC4 and HDAC6 coimmuno-
precopitated with HIF-1α and the specific inhibition of
HDAC4 and HDAC6 repress HIF-1α stability [116]. It is
possible that multiple deacetylases are involved in HDACI-
induced modulation of HIF function, and that different
cell types, different physiological conditions or signaling
pathways may implicate different HDACs in the regulation
of HIF function.

8. Conclusions and Perspective

The above discussion is based on experimental evidence
and published literature that may link the biochemical
effects of HDACIs to the repression of HIF function. The
discussions are generally focused on deacetylases, acetylation
substrates, and their potential relevance to the regulation of
HIF function. It is clear that the transcription complexes of
HIF-1 and HIF-2 require an activity of type I/II deacetylase
for their transactivation activity. This deacetylase-dependent
transactivation represents a unique feature of HIF func-
tion. It is also conclusive that higher doses of HDACIs
induce the degradation of HIF-1α through a proteasome-
dependent pathway. This degradation can be mediated by an
ubiquitination-independent mechanism. We expect further
investigation in this field would bring new insight into the
molecular and biochemical mechanisms underlying the anti-
HIF and antiangiogenic effects of inhibitors of type I/II
HDACs. It is also important to point out that a member of
the class III HDACs, Sirt1, has been reported to deacetylate
HIF-1α and HIF-2α and repress HIF-α activity [150, 166],
further showing the complexity of effect of acetylation on
HIF function. A thorough understanding of the regulation
of HIF-α by protein acetylation is essential for future
exploration aiming to modulate HIF function in vivo by
targeting HDACs.

While it is conclusive that in addition to serving as
epigenetic therapeutics, the inhibitors for class I and II
deacetylases also repress HIF function, the underlying mech-
anisms remain far from clear. A better understanding of the
mechanisms may be beneficial not only for better efficacy
of cancer therapy, but also for prevention of side effects
to normal organs. Particularly, given the large number of
deacetylases and their important roles in transcriptional reg-
ulation, epigenetic programming, chromosomal remodeling,
and other cellular processes, it is possible that nonselec-
tively blocking deacetylases may cause unpredictable side
effects. Obviously, a nonexhaustive list of imminent future
directions should include (1) identifying the acetylases and
deacetylases involved in HIF function under defined condi-
tions in specific cell types, (2) identifying the HIF regulatory
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factors subjective to acetylation, (3) defining the specific
acetylation sites of their substrates and their relevance to
HIF-α, (4) defining the upstream signaling pathways that
regulate HIF function through protein acetylation. At least, a
recent elegant study has linked cellular metabolic to protein
acetylation [167].

Finally, because it is more difficult to destroy HIF-1α pro-
tein, understanding the molecular basis of HDACI-mediated
repression of HIF-α transactivation activity is expected to
elucidate novel ways to repress HIF-α transactivation poten-
tial, regardless of its protein levels or stability. Considering
that HIF function is required for the maintenance of oxygen
and nutrient supply and for prevention of cell death under
hypoxic conditions, global repression of HIF-α activity in
the entire body, particularly for long-term use, may affect
chronic adaptation required for ischemic disorders. On the
other hand, since HIF function and disregulated expression
of VEGF play roles in tissue damage caused by ischemia-
reperfusion, HDACI-mediated repression of HIF may prove
to be beneficial for acute ischemia [168]. The effects
of HDACIs on endothelial, bone marrow, neuronal, and
circulatory systems warrant a thorough interrogation [169,
170]. Taken the potential adverse effects into consideration,
a lesion-specific activation of prodrugs, which can be either
HDACIs or compounds specifically regulating HIF function,
may become an exciting exploration.

Abbreviations

CAD: Carboxyl-terminal transactivation domain
CHIP: Carboxyl terminus of HSP70-interacting protein
FDA: Food and Drug Administration (USA)
FIH: Factor inhibiting HIF-1
HAT: Histone acetyltransferase
HADC: Histone deacetylase
HDACI: Histone deacetylase inhibitor
HIF: Hypoxia-inducible factors
HSP: Heat shock protein
HUPS: Hydroxylation-ubiquitination-proteasomal

system
NAD: Amino-terminal transactivation domain
ODD: Oxygen-dependent degradation domain
PHD: Prolyl hydroxylases
TAP: Transactivation potential
UIPS: Ubiquitination independent proteasomal system
VEGF: vascular endothelial growth factor.

Acknowledgments

Research work in Dr. Sang’s lab is supported in part by
Grants K01-CA098809 and R01-CA129494 (to N. Sang)
from NCI, National Institutes of Health (NIH), and start-up
fund from Drexel University. The authors thank Ms. A. Rajan
for proofreading the manuscript.

References

[1] D. L. Schwartz, J. A. Bankson, R. Lemos Jr. et al., “Radiosensi-
tization and stromal imaging response correlates for the HIF-
1 inhibitor PX-478 given with or without chemotherapy in

pancreatic cancer,” Molecular Cancer Therapeutics, vol. 9, no.
7, pp. 2057–2067, 2010.

[2] G. L. Semenza, “Defining the role of hypoxia-inducible factor
1 in cancer biology and therapeutics,” Oncogene, vol. 29, no.
5, pp. 625–634, 2010.

[3] A. Daponte, M. Ioannou, I. Mylonis et al., “Prognostic
significance of hypoxia-inducible factor 1 alpha(HIF-1alpha)
expression in serous ovarian cancer: an immunohistochemi-
cal study,” BMC Cancer, vol. 8, article no. 335, 2008.
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