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a b s t r a c t

When analyzing experimental chemical data, it is often necessary to incorporate the structure of the
study design into the chemometric/statistical models to effectively address the research questions of
interest. ANOVA-Simultaneous Component Analysis (ASCA) is one of the most prominent methods to
include such information in the quantitative analysis of multivariate data, especially when the number of
variables is large. This tutorial review intends to explain in a simple way how ASCA works, how it is
operated and how to correctly interpret ASCA results, with approachable mathematical and visual de-
scriptions. Two examples are given: the first, a simulated chemical reaction, serves to illustrate the ASCA
steps and the second, from a real chemical ecology data set, the interpretation of results. An overview of
methods closely related to ASCA is also provided, pointing out their differences and scope, to give a wide-
ranging picture of the available options to build multivariate models that take experimental design into
account.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The advances in analytical techniques seen during the last few
decades have produced a spectacular increase in the amount and
complexity of chemical and biological measurements at our
disposal [1]. Consequently, the need for methods to correctly
interpret and extract information from this wealth of data has
become an ever more pressing problem for which recent advances
in chemometrics, statistical learning, machine learning or artificial
intelligence have proven very useful. The most typical questions
addressed by a scientific study concern the relationship between
the measured signals and certain groups of observations consid-
ered in the study design. In this context, more information can be
extracted by including knowledge about the variation-generating
mechanisms in the data, i.e. experimental factors and interactions
related to the experimental questions and to random aspects
beyond experimental control [2].

Design of Experiments (DoE) is an essential component of
almost all fields of science including analytical chemistry and
chemometrics [3]. It is used to identify sources of variation in the
data in terms of factors that were included in the experiment and
c.bertinetto@science.ru.nl

r B.V. This is an open access articl
test their significance. Randomization of the different experiments
mitigates the effect of possible confounding, and (causal) re-
lationships between experimental factors and the values of
measured variables can be established. For example, consider a
simple theoretical case investigating a chemical reaction, particu-
larly how three temperatures (20, 50 and 100 C) and two different
catalysts (A and B) affect the yield of two final products (y1 and y2).
The questions purposely addressed by this hypothetical experiment
are:

(1) What is the overall effect of temperature on product yield?
(2) What is the effect of choosing a different catalyst?
(3) Is the effect of temperature different for each catalyst, i.e. is

there an interaction between temperature and catalyst?

The most commonway to address these questions is by Analysis
of Variance (ANOVA), which allows for exploring the relationships
between controlled factors in an experiment and a single response.
In particular, it can formally separate the variability in response
across the different samples into the different contributions to the
experimental design, i.e. whether the yield of a product changes
significantly with chosen temperature (main effect), used catalyst
(main effect) or whether the temperature response is different be-
tween catalysts (interaction effect) [4]. However, dealing with one
response at a time may be a suboptimal approach, as the yield of
each product may not be separately significant with ANOVA, but
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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may contribute to a characteristic pattern when all responses are
considered simultaneously. This property is referred to as the
‘Multivariate Advantage’ [5] and is illustrated in Fig. 1.

Standard multivariate methods in chemometrics such as Prin-
cipal Component Analysis (PCA) and Partial Least Squares (PLS)
generally do not find themultivariate patterns answering questions
(1e3) in a direct and quantitative way (note that we are not
referring to the use of PLS to calculate the size of the effects in a
DoE, as typically donewhen studying univariate responses [7]). PCA
finds linear combinations of response variables that encompass the
highest amount of variance observed between all samples,
regardless of which temperature/catalyst group they belong to;
such group information needs to be obtained from post hoc inter-
pretation of the model results. Although this dimension reduction
capability can be extremely useful, especially when dealing with
high-dimensional and strongly collinear data (e.g. eomics studies),
the individual Principal Components (PCs) do not explicitly contain
resolved information on the factors temperature and catalyst
(questions 1e2) and their interaction (question 3). Notably, the first
few PCs may not capture any effect of the experimental factors at
all. Consequently, in this context PCA tends to be used only for an
initial exploration of the data.

It is possible to include aspects of the experimental design by
conducting a Discriminant Analysis, by using the analytical data as
the set of predictors and the class labels (of a single factor) as
response. There are several Discriminant Analysis methods avail-
able, of which PLS-DA is undoubtedly the most widely used in
chemometrics, able to resolve variability between groups that may
not be revealed by unsupervised PCA analyses [6]. In most cases,
PLS-DA is employed for binary classification of case-control studies,
although extension to multi-class problems is possible. This
approach allows the study of differences in product yields between
temperatures (question 1) or catalysts (question 2) or between all
combinations of temperature and catalyst. However, the simple
observation of differences between all groups does not enable a
more holistic result that also includes the differences in tempera-
ture-dependence of the response between the different catalysts
(question 3), unless very specific contrasts are subsequently stud-
ied. Such objectives require the formal introduction of relationships
between the different groups of observations.

If the studied factors are of a crossed nature, i.e. every level of
one factor occurs at least once for every level of another factor,
these relationships can be established by combining aspects of
Fig. 1. Illustration of the concept of multivariate advantage. In the plot above, no single
variable can discriminate between the black and the red group, but a linear combi-
nation of both variables can separate them perfectly. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the Web version of this
article.)

2

ANOVA and multivariate data analysis. A multivariate extension of
ANOVA, called Multivariate ANOVA (MANOVA) [8], has been
around for nearly a century [9], see Section 4.1. Analogous to PLS,
this method also involves a dimension reduction step to highlight
differences between the experimental groups (now specifically
focused onmain and interaction effects) and identify the associated
response patterns. However, MANOVA is not applicable to data
with more measured variables than observations. This limitation,
particularly cumbersome in e.g. -omics studies, has led to the
development of other ways to interface ANOVA with multivariate
dimension reduction methods.

One of such ways is by hyphenating ANOVA and PCA, so that the
resulting method is applicable to multi-factor, high-dimensional
data. This combination has led to a family of methods, of which the
most widely known is ANOVA-Simultaneous Component Analysis
(ASCA). ASCA is the focus of this review tutorial. We will detail its
principles by means of analysis of simulated (Section 2) and
experimental data from a chemical ecology study (Section 3).
Finally, Section 4 provides an overview of closely related data
analysis methods.
2. ANOVA simultaneous component analysis: main principles

2.1. The data are decomposed according to the experimental design

A detailed description of the ASCA method can be found in
previous works [2,10]; here we will illustrate its application by
means of a numerical example. In the hypothetical reaction study
introduced above, let us indicate the number of response variables
(the number of reaction products for which the yield is measured)
as P, the levels of the factors temperature and catalyst as I (i ¼ 1;…;

I) and J (j ¼ 1;…;J). Let N indicate the total number of observations,
which for a balanced (full factorial) design, i.e. with the same
number of independent observations K for each combination of
levels (or cell), is equal to N ¼ K x IJ. In the present case, P ¼ 2
(number of reaction products), I ¼ 3 (considered temperatures), J ¼
2 (catalysts), K ¼ 2 (biological replicates) andN ¼ 12. Note that this
is quite a limited number of observations, but here it allows us to
(numerically) show all details of an ASCA analysis. Let X (size N x P)
be the matrix of all measured responses, and xijkp denote the con-
centration of a single product p for replicate ki;j from temperature j
with catalyst i. The simulated data used in this example are shown
in Table 1.

According to the standard ANOVA calculations, each response
can be partitioned into additive effects [11,12] (for simplicity, the
subscript p has been omitted from all the terms on the right-hand
side):
Table 1
The simulated reaction data set used to explain ASCA. The data consists of the yields
(x1 and x2) for two products as a function of the applied temperature and catalyst.

Exp. Temp. (C) Catalyst Yield (g/l)

[x1] [x2]

1 20 A 0.31 2.60
2 20 A 0.98 2.66
3 20 B 1.71 2.35
4 20 B 1.14 2.00
5 50 A 2.07 2.90
6 50 A 1.73 2.20
7 50 B 2.40 1.67
8 50 B 3.16 2.54
9 100 A 2.13 0.64
10 100 A 2.27 0.89
11 100 B 3.25 0.85
12 100 B 2.90 0.46
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xijkp ¼mþ ai þ bj þ ðabÞij þ εkij ; (1)

where m indicates the offset, ai the effect of temperature, bj the
effect of catalyst, ðabÞij the interaction between temperature and
catalyst, and εkij the residuals. In ASCA, “sum-to-zero” constraints
are imposed to ensure uniqueness of the estimated parameters,
therefore all effects are described as deviations from the overall
mean m. For a balanced design, these effects can be estimated by the
ANOVA formulas reported in Table A1 of the Appendix. However, it
is more convenient to re-express Equation (1) into matrix notation,
especially for designs involving more main effects and interactions
than considered here:

xp ¼Dqp þ εp; (2)

where xp is the N x 1 vector of observations for a single response p ,
matrix D of size N � q (with q the number of parameters in the
linear model, see below) specifies the Design of Experiments in a
‘dummy notation’, vector qp (q x 1) is the relevant set of regression
coefficients for response p and εp (size N x 1) contains the residuals
[12e14]. In our example, with 3 temperatures and 2 catalysts
evaluated for 2 replicates, matrix D is given by:

D¼

2
6666666666666666664

1 1 0 1 1 0
1 1 0 1 1 0
1 1 0 �1 �1 0
1 1 0 �1 �1 0
1 0 1 1 0 1
1 0 1 1 0 1
1 0 1 �1 0 �1
1 0 1 �1 0 �1
1 �1 �1 1 �1 �1
1 �1 �1 1 �1 �1
1 �1 �1 �1 1 1
1 �1 �1 �1 1 1

3
7777777777777777775

(3)

Each row of D codifies the levels of the main and interaction
effects used to produce each observation. The type of coding used in
(3), called sum coding or deviation coding [15], is not the only
possible way to express the ANOVA model, but is the most appro-
priate in the context of ASCA for reasons of simplicity and desired
(sum-to-zero) constraints [14]. The first column refers to the global
mean m, which is the same for all observations and thus coded with
a constant value chosen as 1. Columns 2 and 3 together code for
factor temperature, while column 4 codes for factor catalyst; col-
umns 5 and 6 correspond to the interaction between temperature
and catalyst. In general, each main effect with z levels is coded with
z � 1 columns, e.g. temperature has three levels and hence two
columns. Because of the sum-to-zero constraints imposed, the first
z� 1 levels are coded with zeros and ones, and level z (the last
level) is coded with -1’s, e.g. the temperature levels are coded as
½1 0 �, ½0 1 � and ½ �1 �1 �, respectively. The last two columns of
D, coding for the temperature-catalyst interaction, are obtained by
the row-wise Kronecker product of the columns of corresponding
main-effects (in other words: element-wise multiplication of the
catalyst column with the first and second temperature column,
respectively).

After specifying the design (or model) matrix D, an estimate of

the regression coefficients (cqp) is obtained by least-squares:

cqp ¼�
DTD

��1
DTxp; (4)

where ð:ÞT and ð:Þ�1 indicate the transpose and inverse operators,
3

respectively. The resulting estimates after applying this formula to
e.g. the first response variable are:

cq1 ¼
2
6666664

2:00
�0:97
0:33
�0:42
0:03
�0:02

3
7777775 (5)

These regression coefficients imply that e.g. the overall mean is
2.00, temperature 20 has a yield (averaged over catalyst) lower by
0.97, temperature 20 with catalyst A has a yield 0.03 higher than if
the two factors were completely independent, and so on according
to the rows of (3).

Subsequently, to obtain the main and interaction effects, the
relevant blocks of columns in D are multiplied with their corre-

sponding cqp as follows [14]:

xfp ¼DdiagðCÞcqp (6)

where f2fa;b;abg contains the estimates of the levels of the factor
of interest; vector C (size q x 1) highlights which parameters in the
model (i.e. which columns of D) correspond to that factor, and
diagðCÞ indicates a diagonal matrix constructed from C. For the
reaction data set, to obtain estimates of the levels of factors a

(temperature), b (catalyst) and ab (interaction) the following in-
dicators can be used: Ca ¼ ½0; 1; 1; 0; 0 ;0�, Cb ¼ ½0;0;0;1;0;0�, and
Cab ¼ ½0;0;0;0;1;1�. For instance, the estimates of temperature
levels for product 1 are obtained as:

xa1 ¼

2
6666666666666666664

1 1 0 1 1 0
1 1 0 1 1 0
1 1 0 �1 �1 0
1 1 0 �1 �1 0
1 0 1 1 0 1
1 0 1 1 0 1
1 0 1 �1 0 �1
1 0 1 �1 0 �1
1 �1 �1 1 �1 �1
1 �1 �1 1 �1 �1
1 �1 �1 �1 1 1
1 �1 �1 �1 1 1

3
7777777777777777775

2
666664

0 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

3
777775

�

2
6666664

2:00
�0:97
0:33
�0:42
0:03
�0:02

3
7777775

¼

2
666666666666666664

�0:97
�0:97
�0:97
�0:97
0:33
0:33
0:33
0:33
0:64
0:64
0:64
0:64

3
777777777777777775

(7)

If the experimental design involves more factors (and in-
teractions) and levels, the linear model must be modified accord-
ingly but the subsequent steps are essentially the same. Note that



C. Bertinetto, J. Engel and J. Jansen Analytica Chimica Acta: X 6 (2020) 100061
the expressions given above apply to analysis of balanced designs.
The treatment of unbalanced designs is further discussed in Section
2.3.

If this whole procedure is applied to all response variables
(yields) and all the column vectors containing the estimates for
each main effect and interaction are collected in matrices, the data
matrix X is partitioned as follows [2,10,14]:

X¼Xm þ Xa þ Xb þ Xab þ Xe; (8)

where the rows in matrix Xm contain the sample estimates of the
overall mean for each response (i.e.Xm ¼ 1mT , where 1 is a column
vector of ones andm is the vector of sample means); Xa and Xb are
effect matrices with the sample estimates of the level means for
factors temperature and catalyst, respectively; Xab contains esti-
mates of the interaction effect between temperature and catalyst
(i.e. the means of each temperature-catalyst combination after
subtracting the means of both main effects); and matrix Xe ¼ X�
Dbq (with bq indicating the effect estimates for all responses) con-
tains the observed within-level variability. For our hypothetical
reaction, this expression corresponds to:

X2
6666666666666666664

0:31 2:60
0:98 2:66
1:71 2:35
1:14 2:00
2:07 2:90
1:73 2:20
2:40 1:67
3:16 2:54
2:13 0:64
2:27 0:89
3:25 0:85
2:90 0:46

3
7777777777777777775

¼

Xm2
6666666666666666664

2:00 1:81
2:00 1:81
2:00 1:81
2:00 1:81
2:00 1:81
2:00 1:81
2:00 1:81
2:00 1:81
2:00 1:81
2:00 1:81
2:00 1:81
2:00 1:81

3
7777777777777777775

þ

Xa2
6666666666666666664

�0:97 0:59
�0:97 0:59
�0:97 0:59
�0:97 0:59
0:33 0:51
0:33 0:51
0:33 0:51
0:33 0:51
0:63 �1:10
0:63 �1:10
0:63 �1:10
0:63 �1:10

3
7777777777777777775

þ

Xb2
6666666666666666664

�0:42 0:17
�0:42 0:17
0:42 �0:17
0:42 �0:17
�0:42 0:17
�0:42 0:17
0:42 �0:17
0:42 �0:17
�0:42 0:17
�0:42 0:17
0:42 �0:17
0:42 �0:17

3
7777777777777777775

þ

Xab2
6666666666666666664

0:03 0:06
0:03 0:06
�0:03 �0:06
�0:03 �0:06
�0:02 0:05
�0:02 0:05
0:02 �0:05
0:02 �0:05
�0:01 �0:11
�0:01 �0:11
0:01 0:11
0:01 0:11

3
7777777777777777775

þ

Xe2
6666666666666666664

�0:33 �0:03
0:33 0:03
0:28 0:17
�0:28 �0:17
0:17 0:34
�0:17 �0:34
�0:38 �0:43
0:38 0:43
�0:07 �0:13
0:07 0:13
0:18 0:19
�0:18 �0:19

3
7777777777777777775

(9)

The decomposition in (8) also partitions the sum-of-squares of
the elements in X into factor-specific sums-of-squares [10]:
4

jj X jj 2 ¼ jj Xm jj 2 þ jj Xa jj 2 þ jj Xb jj 2 þ jj Xab jj 2 þ jj Xe jj 2; (10)

where ||.||2 indicates the squared Frobenius norm, i.e. the sum of
the squared matrix elements. For the reaction data set these are
equal to:

104:84¼87:57þ 13:09þ 2:50þ 0:09þ 1:60; (11)

If the design is balanced, these sums-of-squares can then be
used to quantify the percentage of total variation in X that is
explained by each factor and interaction [14]:

% Varðf Þ¼ X2
f

X2 � X2
m

*100; f2fa;b; ab; eg; (12)

resulting in 75.78%, 14.45%, 0.50% and 9.27% for temperature,
catalyst, interaction and residuals, respectively. If, on the other
hand, the design is unbalanced, the sums of squares are not
uniquely defined, rendering their interpretation less straightfor-
ward (see Section 2.3).
2.2. PCA is applied to the decomposed data

After performing a single-response ANOVA decomposition for
all variables, the second major step of ASCA consists in examining
estimated effects for all variables simultaneously by applying PCA
to each sub-matrix in (8) related to a factor or interaction [2,10,16]:

X¼Xm þ TaPT
a þ TbP

T
b þ TabP

T
ab þ Xe; (13)

where T and P denote, for the corresponding factor or interaction,
the scores and loadings matrices, respectively, whereas the residual
term Xe expresses the deviations of each individual replicate from
the average effects accounted for in the model. To be specific, the
performed operation is a Simultaneous Component Analysis [17]
(SCA, hence the name ASCA), which is a generalization of PCA for
the case of several populations sharing a common set of measured
variables. Equation (13) is essentially another variance decompo-
sition step, inwhich the largest amount of variance among the level
means for a certain factor is explained by the first PC, and in
decreasing order by the following ones, (just as in standard PCA).
However, none of these PCA sub-models describes the whole
variation between all observations, which is what would be ob-
tained by a regular PCA applied to the original, undecomposed, data
matrix. Instead, they provide information specific for every main
effect or interaction, which may include very subtle effects that are
normally masked by other sources of chemical or biological vari-
ability. Of course, such a deeper exploration of course requires
comprehensive quantitative validation to determine the signifi-
cance of the observed effects, typically, by means of a permutation-
testing or bootstrap procedure [18e20] (see Section 2.4).

It is worth noting that each PCA submodel can have only a
maximum number of PCs, corresponding to the number of pa-
rameters in the linear model (and therefore the number of columns
in D) relevant to a given factor or interaction. For main effects, this
corresponds to the number of factor levels e 1. For example, if the
factor temperature has three levels, two PCs already explain 100%
of the variance between the level means for this factor.

Just as in PCA, the differences between the level means of a main
effect or interaction as calculated by ASCA may be visualized in a
score plot [2,10]. For example, Fig. 2 visualizes the level means of
the factor temperature by plotting the first column of Ta (PC1)
against the second (PC2). Since some difference between the group
(level) means will always be observed, even if the effect is not



Fig. 2. Biplot of the factor temperature for the theoretical reaction example. The filled
shapes are the scores of the level averages; the empty ones (whose spread is delimited
by dashed lines) are the projections of residuals from the ASCA model. The arrows are
the loadings of the product yields. The numbers in parenthesis on the axis labels ex-
press the percentage of explained variance for each PC (out of the variance explained
by that specific factor).
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significant, it is more informative to also project on the same plot
the residuals from the data matrix decomposition (Xe) around their
relevant scores [21]. For the temperature effect, that would be
realized by summing up the effect and residual matrices (X* ¼
Xa þ Xe), then projecting X* onto the PCs of the temperature sub-
model (T*a ¼ X*Pa), and plotting the columns of T*a along the scores
of the level means (empty dots in Fig. 2). This procedure allows for
visualizing not only the between-group (level) differences for factor
temperature, but also the within-group variation in the direction of
the selected PCs. It also enables a qualitative evaluation of the
actual relevance of the observed between-group differences, since
when the latter are large compared to the variation of the obser-
vations around their mean, the factor or interaction in question is
usually significant. However, this procedure does not constitute a
formal hypothesis test, which will be discussed in Section 2.4.

The response variables associated to the differences observed in
the score plots are identified in each PCA sub-model by a specific
set of loadings [2,10]. These may be visualized separately, or
together in a biplot with the scores to see the relationship between
levels and response variables in a single view. For instance, the plot
in Fig. 2 shows that the extreme temperatures increase the yield of
only one product (x1 or x2), while at 50 C both yields are enhanced,
as its relevant score is on the positive side of both loading vectors.
The same considerations in the construction of biplots apply as in
normal PCA [22]. The relatively narrow range of the projected re-
siduals compared to the spread of the level-means indicates that
cqa ¼
��

d*;2 d*;3
�T�d*;2 d*;3

� ��1�
d*;2 d*;3

�T

2
6666666666666666666664

�1:63 0:70
�0:96 0:76
�0:23 0:45
�0:80 0:10
0:13 1:00
�0:21 0:30
0:46 �0:23
1:22 0:64
0:19 �1:26
0:33 �1:01
1:31 �1:05
0:96
�0:71

�1:44
1:08

5

the temperature effect is likely to be significant (and this is
confirmed more rigorously by statistical tests described below).

For data with a higher number of variables and possibly quite
noisy measurements, the interpretation of loadings can easily get
very cumbersome. However, several tools employed in PCA for this
task are suitable in ASCA as well, such as constructing bootstrapped
confidence intervals for each loading coefficient [23] or performing
an implicit variable selection by applying sparse (rather than
normal) PCA [24], as implemented in Group-wise ASCA (GASCA)
[25]. For cases in which there is a natural ordering among the
variables, e.g. spectral data, there is also the option of interval-ASCA
(i-ASCA) [26], which fits several ASCA models to subsets of vari-
ables (instead of the complete data) and subsequently applies some
form of multiplicity correction to take into account that multiple
models are being assessed rather than a single one.

Another important similarity between ASCA and PCA is that the
result is heavily influenced by the type of scaling applied to the data
matrix, which can be used to focus on relative differences rather
than absolute ones, see Section 3.2. However, ASCA also enables
other forms of scaling related to the design information. Most
notably, the effect matrices in (8) can be scaled with the standard
deviations of the residual effect matrix Xe, in order to highlight
variables with large between-group variance as compared to the
within-group one [12,27]. It is also possible to take into account the
within-group correlations between the responses when reducing
the dimension of the data [8,28], which may even better highlight
multivariate effects attributable to a factor or interaction. Further-
more, scaling with respect to a reference group is also possible [27].
2.3. Additional corrections are needed for unbalanced data

Although the least squares estimators obtained in (4) and (5) are
generally unbiased, unbalanced data may nevertheless affect the
subsequent dimension reduction by PCA. If certain cells in the
experimental design are over- or underrepresented, the resulting
effect matrices are not completely orthogonal to each other.
Consequently, their PCs do not necessarily describe variation solely
due to the considered factor and (10) is no longer valid.

It might appear that the easiest solution could be to simply
rebalance the design by removing observations. However, it is often
far from obvious how the design should be rebalanced, especially in
complicated designs; this approach also leads to the loss of useful
information and a reduction in statistical power. Alternatively, the
sums of squares correction methods already used in ANOVA were
extended to ASCA [12,14,29]. The simplest one, known as “type-I
sums of squares” fits the model sequentially: e.g. factor
3
7777777777777777777775

¼
��0:93 0:66

0:32 0:48

�
(14)
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temperature, followed by factor catalyst, followed by their interac-
tion. However, for unbalanced data the resulting sums of squares
attributed to a factor and the PCA output are influenced by the
order in which the main effects enter the model [30]. As demon-
stration, let us add a single data point to the reaction data set, with
temperature 20 C, catalyst A, x1 ¼ 1.23 and x2 ¼ 2.98. After sub-
tracting the overall mean, the regression coefficients for the factor
temperature can be computed by using in (4) only the relevant
columns of the design matrix:

where
�
d*;2 d*;3

�
denotes the second and third column of D. The

corresponding effect matrices can be calculated as in (6), filling the
regression coefficients of other factors with zeros:
X’
a ¼

2
6666666666666666666664

1 1 0 1 1 0
1 1 0 1 1 0
1 1 0 �1 �1 0
1 1 0 �1 �1 0
1 0 1 1 0 1
1 0 1 1 0 1
1 0 1 �1 0 �1
1 0 1 �1 0 �1
1 �1 �1 1 �1 �1
1 �1 �1 1 �1 �1
1 �1 �1 �1 1 1
1
1

�1
1

�1
0

�1
1

1
1

1
0

3
7777777777777777777775

2
666664

0 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

3
777775

2
666664

0
�0:93
0:32

0
0:66
0:48

0
0
0

0
0
0

3
777775 (15)
The resulting effect matrices for temperature and catalyst fac-
tors, the latter calculated in analogous way from the residual of the
previous calculation, are:

X’
a ¼

2
6666666666666666666664

�0:93 0:66
�0:93 0:66
�0:93 0:66
�0:93 0:66
0:32 0:48
0:32 0:48
0:32 0:48
0:32 0:48
0:62 �1:14
0:62 �1:14
0:62 �1:14
0:62
�0:93

�1:14
0:66

3
7777777777777777777775

X’
b ¼

2
6666666666666666666664

�0:37 0:19
�0:37 0:19
0:37 �0:19
0:37 �0:19
�0:37 0:19
�0:37 0:19
0:37 �0:19
0:37 �0:19
�0:37 0:19
�0:37 0:19
0:37 �0:19
0:37
�0:37

�0:19
0:19

3
7777777777777777777775

(16)

whose sum-of-squares are 14.54 and 2.27, respectively. On the
other hand, applying the same procedure first to the catalyst factor,
then temperature, yields:
6

X’’
a ¼

2
6666666666666666666664

�0:87 0:62
�0:87 0:62
�0:87 0:62
�0:87 0:62
0:29 0:50
0:29 0:50
0:29 0:50
0:29 0:50
0:58 �1:12
0:58 �1:12
0:58 �1:12
0:58
�0:87

�1:12
0:62

3
7777777777777777777775

X’’
b ¼

2
6666666666666666666664

�0:45 0:24
�0:45 0:24
0:45 �0:24
0:45 �0:24
�0:45 0:24
�0:45 0:24
0:45 �0:24
0:45 �0:24
�0:45 0:24
�0:45 0:24
0:45 �0:24
0:45
�0:45

�0:24
0:24

3
7777777777777777777775

(17)
with sum-of-squares of 13.43 and 3.31. The discrepancy between
these two outcomes, corresponding to about 6% of explained
variance, is expected to be even larger for data sets with greater
imbalance.

An alternative that avoids this ambiguity consists in calculating

corrected effect matrices X
000
, defined as the difference between the

residual matrix of a reduced model that excluded certain columns
of D from (2), and the residual matrix of a full model that contained
all effects [31]. When the correction concerns onlymain effects, it is
known as “type-II sums of squares”, whereas it is denoted “type-III”

if it also corrects for interactions. For example, X
000
a in the latter case

describes the effect of temperature given the factor catalyst and the
interaction temperature x catalyst, i.e. Xðajb;abÞ, obtained by:

X
000
a ¼Xðajb;abÞ ¼XðaÞ

e �Xe ¼X� bXðaÞ � ðX� bXÞ¼ bX� bXðaÞ ¼ Dbq
� DðaÞdqðaÞ

(18)

where Xe is the residuals matrix from (8), XðaÞ
e the residuals matrix

of the reduced model without factor a, bX and bXðaÞ
the data matrices

estimated by the full and reduced model, respectively, D is the
designmatrix (with thirteen rows to account for the additional data

point in this unbalanced design), DðaÞ ¼ Ddiagð½1; 0; 0; 1; 1; 1�Þ, i.e.
a designmatrix inwhich the second and third columns are replaced

by zeros, and bq and
d
qðaÞ the regression coefficients for the full and

reduced model, obtained as in (4) using D and DðaÞ, respectively.
The resulting corrected effect matrices for temperature and catalyst
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are:

X’’’
a ¼

2
6666666666666666666664

�0:68 0:47
�0:68 0:47
�1:02 0:71
�1:02 0:71
0:36 0:46
0:36 0:46
0:36 0:46
0:36 0:46
0:66 �1:16
0:66 �1:16
0:66 �1:16
0:66
�0:68

�1:16
0:47

3
7777777777777777777775

X’’’
b ¼

2
6666666666666666666664

�0:28 0:13
�0:28 0:13
0:41 �0:20
0:41 �0:20
�0:41 0:20
�0:41 0:20
0:41 �0:20
0:41 �0:20
�0:41 0:20
�0:41 0:20
0:41 �0:20
0:41
�0:28

�0:20
0:13

3
7777777777777777777775

(19)

whose sums-of-squares are 13.59 and 2.38, respectively. Notice that

this correction causes some rows, e.g. rows 1e4 of X
000
a , to have

slightly different values even if they refer to the same level of the
considered factor.

Thiel et al. [14] proposed an algorithm using type III sum-of-
squares, known as ASCAþ, and showed that it corrects the bias of
the effects that appear in conventional ASCA, especially for inter-
action terms. In particular, regular ASCA applied to unbalanced data
tends to make non-significant interactions appear as significant.
Later, Martin and Govaerts further generalized this approach to
linear mixed models, in a method named LiMM-PCA [32]. Among
its main differences with ASCA are an initial PCA transformation to
de-correlate the responses and the use of the effects covariance
matrix for the random effects, whose parameters are estimated by
Restricted Maximum Likelihood. This algorithm ought to be
considered when the experimental design contains both fixed and
random effects.
2.4. The statistical significance of effects can be tested in different
ways

The incorporation of external knowledge on the experimental
design, in the form of the design matrix D, confers ASCA a super-
vised nature. Consequently, before interpreting the obtained scores
and loadings it is paramount to rigorously assess the significance of
any factor, to ensure that the result is not produced by overfitting.
Analogously to ANOVA, significant effects are defined as those for
which a clear difference is observed in at least one of the levels. The
most common significance testing involves resampling methods
like bootstrap and permutation.

Bootstrapping works by substituting a few samples with
Fig. 3. PCA scores plot of the ecotoxicolog

7

repetitions of others in the same data set, i.e. random sampling of
observations with replacement, while maintaining an identical
data set size and groupings (factors and levels) in the experimental
design. This method allows to determine not only the significance
of the whole model, but also the confidence intervals for scores and
loading parameters, which help in determining which response
variables are significant. Performing this calculation requires
dealing with the inherent non-uniqueness of PCA, for example by
re-ordering and applying a Procrustes rotation to the bootstrapped
PCs to align them to the components obtained from all data [33].
Care must also be placed on the resampling scheme, such that the
structure of the experimental design remains intact [20]. For the
final calculation of the confidence limits from the estimated model
parameter distributions, several authors recommend the bias-
corrected and accelerated method [20,34].

However, Vis et al. argue that the bootstrapping is not the most
reliablemethod to estimate the standard deviation of the difference
between level means without making extra assumptions [18]. On
the other hand, permutation tests randomly permute the factor
levels, usually by reshuffling the rows of D, and recalculate the
level-mean differences every time. This procedure thus generates
null-distributions of a certain metric for each factor or interaction,
which can be compared to the corresponding values of the real
model. Different metrics can be employed for this purpose, often
borrowed from the MANOVA literature, such as the sums-of-
squares (SSQ) of the effect matrix (as defined in (9)) [18] or
Wilk’s lambda statistic [12,35]. After performing a large number of
permutations, typically between 1000 and 10000, the p-value of
the test is defined as the fraction of permutations for which the
employed metric was better (i.e. higher or lower depending on
which metric) than the unpermuted one. An effect is considered
significant if its p-value is smaller than an appropriate significance
threshold, e.g. the commonly employed 0.05. It is important to note
that permutation tests are exact only for main effects, but
approximate tests for interactions have nonetheless been devel-
oped [18,19]. Other special cases, such as nested designs, are also
considered in the literature [19].

In the case of balanced experimental designs, it is also possible
to calculate (within-group) confidence ellipses in score plots [36],
based on multivariate distributional theory. One advantage of this
method as compared to permutation tests is the possibility tomake
direct pairwise comparisons between different factor levels. The
assumptions required to estimate these ellipsoids may not be very
often fulfilled, but the authors claim that the approach is still
effective in cases of slight unbalancedness, especially if used as an
explorative tool.
y data as raw (left) and scaled (right).



Fig. 4a. ASCA model for raw (unscaled) data. Left: score plots with projected residuals. Right: biplots; the labels of the variables with smallest loadings have been omitted to avoid
overcrowding.

Fig. 4b. Left: score plot of the PCA on the model residuals. Right: the standard deviation for each variable.
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Fig. 5. ASCA model for scaled data. Left: score plots with projected residuals. Right: biplots. Dynamic trajectories, both general and treatment-specific, are highlighted by arrows in
the score plots.
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3. Example: analysis of a chemical ecology data set

The second example of this paper illustrates the possibilities of
ASCA in further detail, especially concerning the interpretation of
results. It consists of a well-known chemical ecology data set that
examines how feral Brassica oleracea responds to Jasmonic Acid, a
model hormone treatment to simulate herbivory [37]. This hor-
mone was applied to either the roots or to the shoots of the plant,
and the dynamic response was measured 1, 7 and 14 days after the
treatment. To characterize this response, thirteen compounds with
ecological function known as ‘glucosinolates’ were measured at
each time point. The measurement was destructive, so a different
9

plant was analysed in each case. Because of the removal of outlying
samples, the resulting experimental design is unbalanced and each
cell contains 6e10 observations.

It is worth noting that the full potential of ASCAwould be better
displayed on a data set with many more variables than samples (as
typical -omics data sets are), onwhich other methods mentioned in
this review (e.g. MANOVA) cannot be used. However, the results on
this low-dimensional data are easier to explain and visualize, and
the procedure is essentially the same. Examples of application of
ASCA to a high-dimensional data set can be found elsewhere
[10,38].



Fig. 6. PCA on the level means, scaled data. Left: score plots with projected residuals. Right: biplots. Top half: level means. Bottom half: level means after subtracting the effect
matrix for the time factor.

Fig. 7. Radar plot of the day-averages of scaled data for the control and shoot-induced
groups, respectively. The decrease of RAPH throughout the days is highlighted by the
arrows.
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3.1. PCA and ASCA on raw data

First, we performed PCA as explorative analysis and the scores of
PC1 against PC2 for raw and autoscaled data are plotted Fig. 3. In
both cases, an effect of the treatment factor is clearly visible by the
separation of the colors. The raw data for the shoot-induced group
show a much larger variation than the other two groups, followed
by the root-induced and controls. A U-shaped time pattern can
arguably be discerned for the non-control samples, especially in
autoscaled data. However, these plots do not provide a quantitative
assessment of the significance of these time and treatment effects,
nor of any treatment-specific dynamics stemming from an inter-
action. Moreover, the PCs in question may be highly influenced by
the variability of the replicates, especially from shoot-induced
samples, although this variability is not necessarily related to the
factors under investigation.

Therefore, to focus the analysis on the effects of the specific
factors of treatment, time and their interaction, we built an ASCA
model as in (8), with a and b indicating treatment and time,
respectively, and using type-III sum-of-squares correction for un-
balanced data.

Fig. 4a visualizes the ASCA results to the raw data (i.e. without
scaling). The effect of treatment can now be observed even more
clearly than with normal PCA. A slight effect of time can be
observed as well, although there is still a considerable overlap
between the different day-groups. No strong group-related differ-
ences are visible for the time-treatment interaction. The residuals
matrix explains a rather large percentage of the total variance
(34%), but a PC score plot of these residuals (see Fig. 4b) reveals no
10
apparent structure, suggesting that this high variance is due to
experimental uncertainty, especially of shoot-induced samples af-
ter 14 days, rather than underlying data patterns that were not
captured by the model. Inspection of the biplots of all these sub-
models (rightside column of Fig. 4a) reveals a strong alignment of
loadings with glucosinolates such as NEO and GBC, and to a lesser
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degree PRO and GBN. These are the variables with highest standard
deviation, as can be seen in the right-hand side plot of Fig. 4b. Such
variables can easily dominate the multivariate models derived on
the relevant data, but are not necessarily the most important with
respect to the considered biological phenomenon.
3.2. ASCA on scaled data

In order to prevent this oversize influence by responses with
high within-group variances, we built a second ASCA model on the
autoscaled data, i.e. in which each variable was scaled by its stan-
dard deviation. The resulting loadings, plotted on the right-hand
side of Fig. 5, are more evenly distributed among all glucosino-
lates and their sizes are not linked to the within-group variation
anymore. The effect of scaling was to remove the absolute con-
centration as a primary scale of importance, thereby facilitating a
view on lower-abundant and perhaps higher-bioactive compounds.
For example, compounds such as RAPH and 4MeOH, which were
almost invisible in the loadings of Fig. 4, now appear as main
contributors in some of the ASCA submodels. The new score plots
also allow a better elucidation of the plant dynamics, both in terms
of overall time effect (the U-shaped pattern is more clearly visible
in the score plot of the time factor) as well as treatment-specific
response. Indeed, in the interaction submodel it can be observed
that the shoot-induced group shows large dynamic differences
along PC1, whereas most of the variability of the root-induced
group is expressed by PC2. A permutation test confirms that both
main effects and their interaction described by this model are
significant, with p < 0.001 in all cases. Therefore, it can be
concluded that different glucosinolate combinations are produced
by the plant depending on where the Jasmonic acid treatment is
applied.

A full interpretation of the interactions from a score plot like in
Fig. 5 (bottom row) is usually not intuitive, because such submodel
represents the deviation of a particular group from the overall ef-
fects of the other two factors. In particular, this plot tells that the
dynamic response of root-induced samples ends in higher GBN and
lower ALY than the overall time effect, while shoot-induced sam-
ples develop higher-than-average 4MeOH and 4OH (and other
glucosinolates according to their respective loadings); in compar-
ison, the control group has lower GNL and PRO after 14 days. It is
Fig. 8. Illustration of the difference between ASCA and MANOVA on a simple example
with two variables and two levels. The black dots and the black ellipses indicate the
group means and the data spread around these means, respectively. However, ASCA
assumes that this spread is distributed along the red dashed circles. Consequently, the
PCs can be considerably different than the CVs calculated by MANOVA. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the
Web version of this article.)
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important to stress that, since the factor levels are different for
every group, the interaction score plot cannot be used to assess
similarity of samples based on distance between points, as typically
done when reading score plots.

For this reason, it is recommended that the interactions plot be
examined together with a more naïve representation of the data
set, such as selected raw data or the score plot of a normal PCA.
Here we propose to perform a PCA of the group means with pro-
jection of the residuals, analogous to the ASCA score plots shown in
the paper. The resulting plot, shown in the upper half of Fig. 6, is
similar to the normal PCA in Fig. 3, but the directions of the PCs are
not influenced by the within-group variation of the data. It is
equivalent to an ASCA model built with a single factor containing a
different level for each time-treatment combination. Such plot re-
veals that the samples are, as expected, most similar at the start of
the treatment (day 1) and then proceed on diverging paths. Some of
the patterns observed in the interaction plot are also visible here,
such as the higher values of 4MeOH for shoot-induced samples
after 14 days. However, since this plot is so heavily influenced by
the main overall trends in the data, it may be difficult to describe
the differences in dynamic response in full detail.

For that purpose, it can be helpful to build a PCA model on the
level means after subtracting the effect matrix for the time factor,
thus removing the common temporal pattern among the groups.
This procedure is equivalent to the following ASCA model:

X¼Xm þ Xb þ Xaþab þ Xe; (20)

The (aþab) submodel, plotted in the bottom half of Fig. 6,
combines the treatment factor with the time-treatment interaction
(with a and b defined as in Section 3.1), and hence focuses on the
differences between the groups on each day. This approach can be
seen as a compromise between the level of detail of a pure-
interaction model and the interpretability of a normal PCA. Such
types of models can also be made combining other factors and
interactions, depending on the particular aspect that wants to be
examined. In the bottom plots of Fig. 6, the points corresponding to
the same day (1, 7 or 14) can now be compared with each other as
in a normal score plot. They show very clearly that the different
treatment groups become more dissimilar with passing days and,
compared to the previous plot, it is easier to see along which glu-
cosinolate species this dissimilarity is expressed.

It important to point out that all differences observed in these
plots are expressed in relative terms. For instance, does RAPH in-
crease over time for the control group or does it decrease for all the
others? In light of this, it is good practice to look back at the original
data after building the ASCA model. Fig. 7 shows the level averages
for each variable as a radar plot; the shoot-induced group is omitted
to avoid overcrowding. In this case, it can be clearly seen that the
control group remains rather constant, while e.g. the RAPH variable
of the shoot-induced group decreases considerably with time.
4. Methods related to ASCA

We already pointed out at the beginning of the paper that ASCA
is not the only multivariate data analysis approach which takes the
experimental design into account. This section provides alternative
approaches that are closely related to ASCA, aimed at giving the
reader a guideline onwhen it is appropriate to look for alternatives.
For clarity, the methods described below have been subdivided into
two broad categories: those that involve a different dimensionality
reduction and those that apply a different data decomposition as
compared to ASCA. It must be noted that in some cases this
distinction is not perfectly applicable, as a method may have as-
pects of both categories.
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4.1. Methods with different dimensionality reduction

As mentioned in the Introduction, an earlier way of analysing
multivariate data with an underlying experimental design is pro-
vided by MANOVA [8]. Like ASCA, it first partitions the data matrix
X according to expression (7), then applies a dimension reduction
step to each effect matrix while also taking the residual matrix (i.e.
within-group variation) into account. However, whereas ASCA uses
a PCA to highlight between-group differences assuming uncorre-
lated (independent) variables with respect to within-group differ-
ences, MANOVA takes the within-group covariance matrix into
account, i.e. the shape of the data cloud around the level means, as
visualized in Fig. 8. Its output includes vectors known as Canonical
Variates (CV, analogous to PCA loadings), which indicate the di-
rections along which the between-group differences are maxi-
mized relative to the within-group variation [8]. These canonical
variates are identical to those obtained by applying Fisher linear
discriminant analysis (LDA) to the matrix X* ¼ Xf þ Xe [39], where
Xf and Xe are defined as in (7) and f indicates a main or interaction
effect. For the statistical validation, several hypothesis tests based
on the canonical variates’ eigenvalues (equivalent to PCA scores)
have been proposed, such asWilk’s Lambda, Pillai’s trace, Hoteling’s
Trace and Roy’s greatest root [35].

MANOVA can in certain cases highlight the effect of a factor with
greater power than ASCA. Indeed, the assumption of variable in-
dependence (visualized in Fig. 8 as circular instead of diagonally
oriented ellipses) causes the ASCA loadings to be more closely
related to univariate test statistics applied to each variable sepa-
rately [12]. However, as already mentioned MANOVA cannot be
used for data with a higher number of variables than observations,
because in such case the inverse of the within-group dispersion
matrix cannot be computed [40].

The simplest way to solve this problem is to reduce the data
dimension using PCA and apply MANOVA to the scores of the first
few PCs [41], in what is referred to as PC-MANOVA. A refined
version, known as 50/50 MANOVA, also allows for automatic se-
lection of the number of PCs [42]. Compared to ASCA, the order of
variance partition and dimension reduction are here reversed, with
the advantage that (M)ANOVA is performed on a low-dimensional
data set that enables use of all the traditional tools of statistics, e.g.
known null distributions or incorporation of random effects.
However, the initial dimension reduction ignores the experimental
design and risks excluding relevant PCs that do not explain a large
amount of data variance.

Another approach to overcome the limitations of both ASCA and
MANOVA was proposed by Engel et al. who combined both
methods into what is referred to as regularized MANOVA (rMA-
NOVA) [12]. This combination is realized by shrinking the within-
group covariance matrix [40], using a weighted average of the
within-group covariance matrices of ASCA and MANOVA, deter-
mined in a data driven fashion. This weighted estimate of the
within-group covariance is then used in (13) and subsequent
computations are performed as in MANOVA. Since the null distri-
bution of the Wilk’s lambda statistic is unknown, significance
testing is carried out by means of a permutation test. Like ASCA,
rMANOVA is applicable to high-dimensional data sets, but it also
takes possible correlations among variables into account when
considering the within-group variation.Whereas ASCA applies PCA
to Xf matrices, several methods instead apply it to the residual-
augmented matrix X* ¼ Xf þ Xe [43,44]. This approach is known
as ANOVA-PCA, or APCA (not to be confused with PC-ANOVA). By
incorporating the residuals into the effect matrix, only significant
effects are likely to produce clear separations in the score plots.
However, this approach may miss subtle yet significant effects that
are masked by noise or large within-group variation from Xe. On
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the other hand, modelling directly the Xf matrix as done by ASCA
gives greater power in highlighting such effects [21]; this com-
parison is similar to the difference between normal PCA and the
PCA of group-means that we discussed in the plant example. There
is also an intermediate option between ASCA and APCA [45] that
uses a reduced residuals matrix, obtained by subtracting n PCs of
Xe, with n optimized by a permutation test.

To facilitate the interpretation of the results, perhaps at the
expense of analytical detail, the ANOVA Common Dimensions
(AComDim) method was developed [46,47]. Like ANOVA-PCA, it is
calculated on the residual-augmented matrix, but it has two
important differences: it models several effect matrices simulta-
neously to find joint components in a common representation
space, and it uses a variance-covariance matrix based on samples
instead of variables.

Further ways of performing dimension reduction after parti-
tioning the data variance are based on Partial least squares e

discriminant analysis (PLS-DA) [48e51]. In particular, PLS-DA is
applied to X* (defined as above) to build a classification model in
which each class is represented by a level of the factor under
consideration. Results can be analysed employing substantially the
same tools developed for PLS, such as score plots and variable
importance measures (e.g. target projection [48]). Significance
testing can be done using the cross-validated classification accu-
racy as a test statistic, estimating its null distribution by means of a
permutation test. This approach takes into account the within-
group covariance, but can nevertheless be applied to high-
dimensional data. It was also demonstrated by El Ghaziri et al.
that ANOVA-PLS can be viewed as a compromise between ASCA
and ANOVA-PCA [50].

Further developments included the application of PLS-DA to
several effect matrices simultaneously, e.g. Y** ¼ Xf1 þ Xf2 þ Xe

[49], as well as the use of a kernel-based multiblock Orthogonal
Partial Least Squares (AMOPLS) [51]. The latter method obtains a
general model based on all effect matrices, rather than one separate
PLS-DA model for each effect matrix. Some authors have also pro-
posed using the data matrix to predict the design matrix, thus
inverting the roles of D and X [8,41]. This approach does not require
any partitioning of the data according to the experimental design
before building the PLS model. Its overall performance can be
assessed by cross-validation, but it is difficult to deduce the sig-
nificance of specific main effects or interactions [41].

The dimensionality reduction step does not necessarily have to
be based on a bilinear model like the those described above. For
instance, the interactions terms in an experimental design can also
be described by a multiplicative trilinear model such as PARAFAC,
which may provide additional insight into the underlying patterns
between two factors. Jansen et al. showed an implementation of
PARAFAC into ASCA (named PARAFASCA) applied to a toxicology
study that uses metabolomics analyses [52]. Guisset et al. used
another metabolomics data set to compare ASCA and APCA with
PARAFASCA, AComDim and AMOPLS, concluding that they are all
suitable for the considered analysis, but that their different type of
outputs maymake the interpretation of the results easier in certain
cases than in others [53].

4.2. Methods with different data decompositions

As mentioned in section 2.1, sum-to-zero constraints are nor-
mally applied in ASCA to ensure uniqueness in the parameters of
the final model, thus describing every effect as deviation from the
overall mean m. However, in certain situations it may be more
insightful to use other constraints or linear decompositions that
better reflect a specific variability of interest. Several of these de-
compositions are described and compared by Smilde et al. in a



Table A1
Usual constraints and parameter estimators for the two-way ANOVA model for
balanced designs.

Parameter Constraint Estimator

m � bm ¼ y
…

ai PI
i¼1

ai ¼ 0
bai ¼ yi:: � y

…

bj PJ
j¼1

bj ¼ 0
bbj ¼ y:j: � y:::

ðabÞij PI
i¼1

PJ
j¼1

ðabÞij ¼ 0
cabij ¼ yij: � yi:: � y:j: þ y:::

εijk � bεijk ¼ yijk � yij:
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generic framework of techniques combining ANOVA with dimen-
sional reduction [11]. They include Principal Response Curves
(PRC), a method to study dynamic dose-responses, describing them
as deviations of treatment groups from the control group,
measured at the same time-points [40]. Another method named
Scaled-to-Maximum, Aligned, and Reduced Trajectories (SMART)
[54] is used in dose-response studies with repeated measures and
expresses all samples as deviations from the pre-dose samples of
the corresponding individual, thereby removing constitutive bio-
logical variability between biological replicates.

A similar objective is pursued by REP-ASCA, which models the
repeatability error from a separate set of repeated measures and
performs an orthogonal projection in the row-space to reduce the
repeatability error of the original dataset; ASCA is then performed
on the resulting orthogonalized dataset [55]. In a NIR study of
coffee beans, this method was able to increase the power of ASCA
and reveal spectral features in the loadings of factors of interest that
were previously covered by experimental noise.

On the other hand, it can also be insightful to focus precisely on
the analysis of the residuals matrix Xe, since patterns or sub-
groupings observed in the residuals may reveal an underlying
data structure that was not accounted for in the experimental
design. The most straightforward way to realize this is a PCA on Xe,
as we did in the plant example. However, there are also methods
specifically devised for this purpose such as SCA-IND, which
models the variability across individual samples for each group by
combining SCA with Individual Differences Scaling. Jansen et al.
applied it to the same plant data of the previous section, identifying
early and late responders in the root-induced group, as well as two
major response chemotypes for the shoot-induced group [56].

When analysing data sets from different compartments or
analytical platforms, which nevertheless share the same underlying
experimental design, it is of particular interest to highlight the
variation common to all sets as opposed to the variation specific to
a particular one. Penalized Exponential ANOVA simultaneous
component analysis (PE-ASCA) realizes this task by first decom-
posing the data matrix into common and distinct variation, and
subsequently applying ASCA to each resulting submatrix [57]. A
similar objective is also tackled by Huopaniemi et al. [58] using a
Bayesian approach.

5. Conclusion

The ever pressing need to account for the experimental design
when modelling multivariate data has spurned the development of
a variety of approaches to deal with this task, which have been
surveyed in this tutorial review. Despite this prolific research ac-
tivity, ASCA still stands out as one of the methods applicable in the
widest range of cases, and whose utilization and interpretation is
relatively straightforward. This paper explains step-by-step its
main principles and use, by means of a couple of simple examples
that nevertheless demonstrate the clear advantage of incorporating
information on the experimental design into a chemometric model.
These advantages are even more evident when analyzing complex
designs and/or high-dimensional data, for which not all ANOVA-
related methods are applicable. Special importance was placed
into showing how to interpret results correctly, providing various
graphical tools that assist this task in the most intuitive way
possible. They are not meant as the only possible approach, but as a
framework fromwhich the reader is encouraged to develop further
perspectives adapted to the problem under study.

Moreover, this work provides an overview of alternative
methods to ASCA, describing the situations in which they might be
more suitable, e.g. to take the within-group variance into account,
to employ an ad-hoc data decomposition or to deal with mixed
13
designs. This information constitutes a simple yet comprehensive
guide that can help chemometricians and data analysts select the
best approach to build models that include knowledge of the
experimental design.

6. Software

Several online packages for ASCA are available in R and Matlab,
the languages used to perform the calculations discussed in this
paper:

- https://cran.r-project.org/src/contrib/Archive/MetStaT/
- http://www.bdagroup.nl/content/Downloads/software/
software.php

There are also stand-alone platforms that do not require any
programming:

- PLS_toolbox: http://www.eigenvector.com/software/pls_
toolbox.htm

- MetaboAnalyst [59]: https://www.metaboanalyst.ca/

ASCA can also be performed using the rMANOVA code (https://
github.com/JasperE/regularized-MANOVA), which also contains
sums-of-squares corrections for analysis of unbalanced data.

It is worth noting that none of the software above can perform
all of the operations shown in this paper. For certain advanced or
ad-hoc applications, a little programming is necessary.
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Appendix
The value y
…

¼ 1=ðIJKÞP
ijk
yijk is sample mean of the response

(average over all observations), yi:: ¼ 1=ðJKÞP
jk
yijk is the sample

average of the response of all observations in temperature-group i,
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y:j: ¼ 1=ðIKÞP
ik
yijk is the sample average of all observations in

catalyst group j, and yij: ¼ 1=ðKÞP
k
yijk is the sample average of the

observations in temperature/catalyst-group ij.
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