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ABSTRACT
Squared error loss remains themost commonly used loss function for
constructing aBayes estimator of theparameter of interest. However,
it can lead to suboptimal solutions when a parameter is defined on a
restricted space. It can also be an inappropriate choice in the context
when an extreme overestimation and/or underestimation results in
severe consequences and amore conservative estimator is preferred.
We advocate a class of loss functions for parameters defined on
restricted spaces which infinitely penalize boundary decisions like
the squared error loss does on the real line. We also recall several
properties of loss functions such as symmetry, convexity and invari-
ance. We propose generalizations of the squared error loss function
for parameters defined on the positive real line and on an interval.
Weprovideexplicit solutions for correspondingBayes estimators and
discuss multivariate extensions. Four well-known Bayesian estima-
tion problems are used to demonstrate inferential benefits the novel
Bayes estimators can provide in the context of restricted estimation.
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1. Introduction

In many parameter estimation problems, the support of the parameter is either naturally
restricted (e.g. probability, variance, exponential distribution parameter) or an investigator
can restrict it based on previously obtained knowledge (e.g. treatment effects on children
given the data for adults). The knowledge about restricted space can carry important infor-
mation and improve estimation [19]. There are also application areas in which estimates
on bounds of the restricted space are highly undesirable as they can lead to severe con-
sequences. For instance, underestimating the potential of an event to have disastrous or
life-threatening consequences may be worse than overestimating it [25]. An erroneously
low estimated risk-level can lead to the absence of initiative to reduce it.

One of the ways to incorporate the information about a restricted space is to employ
a Bayesian approach and to define a (uniform) prior distribution on the restricted space
[10]. However, once a posterior is obtained, the squared error loss

Lq(θ , d) = (θ − d)2 (1)
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where d is a decision the statistician has to take in order to approximate an unknown esti-
mand θ , called parameter, is often used to summarize a posterior distribution. The squared
loss function (1) ignores the information about the restricted parameter space and is recog-
nised to lead to suboptimal solutions [see e.g. 4,31, for alternative loss functions for a scale
parameter]. Research on improving the Bayes estimator under squared loss function (a
posterior mean) for a scale parameter has consequently attracted a great deal of attention
[see e.g. 16, and references therein].

In addition, since loss function (1) does not penalize boundary values, it was found
to be unacceptable in many application areas: see [25] for examples in reliability analysis,
Karimnezhad et al. [13] in environmental sciences and [29] in drug development. To avoid
boundary values of a scale parameter, [25] introduced the precautionary loss function

Lsq(θ , d) = (d − θ)2

d
where θ , d ∈ (0,+∞) (2)

which was used by many researchers [12,14].
The precautionary loss function covers the case of the scale parameter. There are, how-

ever, many applications in which the parameter of interest is restricted to an interval (a, b)
and similar problems of severe consequences of boundary decisions can appear. We pro-
vide twomotivating examples from themedical domain. Firstly, in the setting of outbreaks,
the probability of response for a drug able to stop the outbreak should be high (say> 90%).
In this case, overestimation of the probability of response can lead to the approval of a drug
which cannot stop the outbreak that can cost a lot of human lives. Secondly, inmany paedi-
atric trials, adult data responses can be used to define feasible values of responses (usually
an interval) for children. At the same time, underestimation of the response effect for com-
parative treatments in paediatric clinical trials is highly undesirable as it might result in an
underpowered and unethical study. In both settings, one can benefit from the application
of specific loss function for parameters defined on an interval. We provide more details on
the consequences in the later example in Section 6.

Despite the importance, the question of an appropriate loss function choice for a param-
eter θ defined on the interval (a, b) has been paid less attention in the statistical literature
compared to a scale parameter. At the same time, its importance is acknowledged in many
fields [see 2,22, for examples in compositional data analysis]. Specifically, Aitchison [2]
proposed to use

LiB(θ , d) = (
logit(d) − logit(θ)

)2
as the measure of distance for d, θ ∈ (0, 1) where logit(x) = log x

1−x is the logit-
transformation. This is the squared error loss after the logit-transformation of d and θ .
While being intuitively clear, it is not convex and it has no explicit formula of the Bayes
estimator, making its use challenging in applications. Furthermore, despite the variety of
literature on families of loss functions for parameters restricted to an interval and on cor-
responding improved Bayes estimators (see e.g. [16,21]), they seem to be rarely applied
in practice due to their complexity and to a lack of closed-form solutions. The choice of
loss functions for parameters defined on the interval and on the positive real line is yet
an under-represented area in the Bayesian literature and the usual mean still remains a
common summary statistic.
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The contribution of this work is twofold. Firstly, we provide a unified approach to define
symmetry of a loss functionwhen a parameter space is restricted to a particular open subset
based on an appropriate definition of distance. We underline that our distances on corre-
sponding parameter spaces share a common property – infinite penalization of the bounds
which is also known as the balance property [19].We also recall two other desirable proper-
ties of loss functions: convexity and invariance. Secondly, we propose several loss functions
which are as simple as the squared loss function (1), have explicit solutions for the corre-
sponding Bayes estimator and incorporate the information about the restricted parameter
space in the corresponding Bayes estimator. In particular, we propose the scale invariant
generalization of the the precautionary loss function for a scale parameter θ ∈ (0,+∞)

and the interval squared loss function

Liq(θ , d) = (d − θ)2

(d − a)(b − d)
for the parameter θ ∈ (a, b). We show that the Bayes estimator corresponding to the inter-
val squared loss function includes the Bayes estimator of the squared loss function (1) and
of the precautionary loss function as limiting cases. It is found that the interval squared and
precautionary loss functions are both symmetric on the corresponding parameter spaces
and can be useful in application areas where conservative estimates are preferred. We gen-
eralise the approach for the multivariate parameter space and demonstrate how Bayes
estimators obtained using the proposed loss functions behave in four classic problems of
Bayesian estimation compared to standard approaches.

The rest of the paper is organized as follows. A historical perspective for the scale param-
eter estimation and the case of symmetric loss function on the positive real line is given
in Section 2. Section 3 introduces the novel loss function for an interval. The multivariate
generalizations are given in Section 4. Four examples demonstrating novel loss functions
and corresponding Bayes estimators are considered in Section 5. An application of a novel
loss function to the problem of the sample size calculation in a clinical trial is given in
Section 6.

2. Scale symmetry

2.1. A historical anecdote: galileo on scale symmetry

In the Spring of 1627, a peculiar controversy1 arose in one of Florence intellectual circles,
where noble gentlemen used to entertain erudite talks:

Un cavallo, che vale veramente cento scudi, da uno è stimato mille scudi e da un altro dieci
scudi: si domanda chi abbia di loro stimato meglio, e chi abbia fatto manco stravaganza nello
stimare.

The problem translates into: ‘A horse, whose true worth is one hundred scudi 2, is esti-
mated by someone to be one thousand scudi and by someone else to be ten scudi: the
question is, who gave a better estimate, andwho instead gave amore extravagant estimate?’.
It is formulated in a letter fromAndreaGerini toNozzolini, an erudite priest. Gerini wanted
Nozzolini’s opinion on a sentence by Galilei [7], according to whom

. . . li due stimatori abbiano egualmente esorbitato e commesse eguali stravaganze nello
stimare l’uno mille e l’altro dieci quello che realmente val cento,
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which translates to: ‘The two estimators have been equally exorbitant and are responsible
for an equal extravagance by estimating, one thousand the former and ten the latter, what
is really worth one hundred’.

In the intense correspondence following the initial letters, Nozzolini argues that the esti-
mates should be evaluated according to the arithmetic proportion, whereas Galileo insists
that the correct method of judging is by geometric proportion. The crux of the problem
is that the estimand is a positive quantity, for which the geometric proportion seems more
appropriate, as wittingly argued by Galileo in another letter:

Se uno stimasse alta dugento braccia una torre, che veramente fusse alta cento, con quale
esorbitanza nel meno pareggerà il signor Nozzolini ł’altra nel più ?

which translates as: ‘If one were to overestimate a one-hundred arm high tower as two-
hundred arm high, what underestimate would Nozzolini consider as equally deviating?’

2.2. Scale symmetry and scale invariance

Consider a toy example to illustrate Galileo’s position in modern statistical terms. Two
inferential procedures are based on two independent experiments:

(1) Estimate μ ∈ (−∞,+∞) given i.i.d. Xi ∼ N (μ, σ 2), σ 2 is known;
(2) Estimate σ ∈ (0,+∞) given i.i.d. Yi ∼ N (μ, σ 2), μ is known.

Assume that the true parameters values are equal θ = μ = σ and Xi and Yk independent
for all i,k. Using squared error loss (1), the decisionμ = 0 in the first experiment and σ = 0
in the second are equally penalized, while this should not be the case. The claim of σ = 0
implies that the Y ’s are degenerate random variables, an extremely strong statement which
should be penalized similarly to the decision μ = +∞ or σ = +∞. The squared error
loss function imposes an infinite penalty to a boundary decision in the first experiment
and does not in the second one. While the decision σ = 0 is usually prevented by a proper
choice of the prior, the squared loss function does not imply that it should be avoided and
associated with a severe penalty. In contrast, an appropriate loss function imposes such a
penalty and can be also used to prevent boundary decisions. We define the properties of
such loss function for a scale parameter in this section.

Let us start with the following definition for a parameter defined on the whole real line.

Definition 2.1: A loss function L(θ , d) is symmetric if, for every d1, d2 and θ ∈ R1

(θ − d1)2 = (d2 − θ)2 (3)

implies L(θ , d1) = L(θ , d2).

The Definition 2.1 implies that two decisions defined on the real line should be equally
penalized by a symmetric loss function L(·, θ) if they stand on the same squared distance
from θ . Note that for d1 < d2 Equation (3) can be rewritten as θ = (d1 + d2)/2. It fol-
lows that if θ is the arithmetic mean of d1 and d2, then these decisions should be equally
penalized. Clearly, the squared error loss of equation (1) is symmetric on the real line by
definition.
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Then, Galilei’s claim of eguali stravaganze for a positive parameter θ can be expressed
in modern terminology as the requirement of a scale symmetric loss function, as in the
following definition.

Definition 2.2: A loss function L(θ , d) is scale symmetric if, for every d1, d2 and θ ∈ R+

d1
θ

= θ

d2
(4)

implies L(θ , d1) = L(θ , d2).

Equation (4) can be rewritten as θ = √
d1d2 or log(θ) = (log d1 + log d2)/2. In other

words, if θ is the geometric mean of d1 and d2, then these decisions should be equally penal-
ized by a scale symmetric loss function. As in Definition 2.1 of symmetry for the real line,
two decisions are symmetric if the parameter θ is their appropriate mean – geometric in
this case as opposed to arithmetic. This fact will be used for our proposal of the definition
of symmetry on interval in Section 3.

The distance on the positive real line, R+, defined as [22]

D+(θ , d) = (log θ − log d)2 (5)

is known in Statistics as Brown’s loss function [4]. Its motivation is to rescale the positive
real line to the whole real line via the log transformation and to use the squared error loss
function. Here, the logarithm function is a natural choice for a positive random variable.
Note that D+(θ , d1) = D+(θ , d2) implies either d1 = d2 or Equation (4). Therefore, we
could also restate Definition 2.2 in terms ofD+(·).

The Euclidean distance on the real line andD+ on the positive real line infinitely penal-
ize boundary values on the corresponding parameter space. In case of θ ∈ R, the squared
distance Lq(θ , d) takes an infinite value when d = ±∞. For similar reasons, we require
that an appropriate loss function for a scale parameter should go to infinity as the decision
approaches the natural boundaries of the parameter space, to reproduce the behaviour at
±∞ of the squared error loss function. A loss function with this property is also called
balanced [19].

We recall one more property of loss functions for a parameter on the positive real line -
the scale invariance.

Definition 2.3: Loss function L(θ , d) is scale invariant if for every c>0 and every pair
(θ , d),

L(θ , d) = L(cθ , cd).

Then, the following result can be obtained.

Lemma 2.4: A loss function is scale invariant and scale symmetric if and only if it can be
written as a scalar function g such that g(d/θ) = g(θ/d).

Proof: A loss function L(θ , d) is scale invariant if and only if it is ratio-based, i.e. if and only
if there exists a scalar function g(x), x > 0 such that L(θ , d) = g(d/θ). Scale invariance
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therefore implies L(θ , d) = g(d/θ) for some g, whereas by Definition (2.2) scale symmetry
implies L(θ , d) = L(θ , θ2/d) and vice versa. �

It follows that the squared loss function (1) is not scale symmetric, is not scale invariant
and does not penalize all boundaries for a scale parameter.

2.3. Symmetric loss functions on the positive real line

In the modern statistical literature, the inadequacy of difference-based loss functions, like
the squared error loss, for estimating certain positive quantities has often been recognized
[11,31]. Several alternative loss functions have been proposed, the best-known being the
normalized squared loss function proposed by Stein [31]

Lnq(θ , d) =
(
d
θ

− 1
)2

,

Stein’s loss (or an entropy loss function)

LS(θ , d) = d
θ

− 1 − log
(
d
θ

)

and Brown’s loss function [4] itself,D+(θ , d). One can check that all of functions above are
scale invariant, but only Brown’s loss function is scale symmetric and infinitely penalizes
the boundary decisions. Unfortunately, Brown’s loss function is not convex, a feature of loss
functions which is often required to represent risk aversion and for the sake of regularizing
the associatedminimization problems. Another unpleasant consequence of non-convexity
is that theBayes estimator associated toBrown’s loss function is usually difficult to calculate.
Below we propose simple alternative loss functions, which share the desirable properties
of a loss function on the positive line and have explicit Bayes estimators.

We propose a family of loss functions defined for k>0 as

Lk(θ , d) =
(
d
θ

)k
+
(

θ

d

)k
− 2 (6)

which are scale symmetric, scale invariant, convex, andwhich tend to infinity at the bound-
aries. Expression (6) is a function of the ratio d

θ
to make it scale symmetric, and it satisfies

Lemma 2.4 to make it scale invariant. The constant 2 is subtracted so the minimum value
of the loss function Lk = 0 is attained at d = θ . In this paper, we focus on the case k=1

L1(θ , d) = (d − θ)2

θd
(7)

which can be considered as a modification of the squared error loss function. The numera-
tor is again the squared distance, but the denominator guarantees the infinite penalization
for d=0. It is easy to see that the loss function (7) is a scale invariant version of the
precautionary loss function (2).
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2.4. Scalemeans (theminimizers) and scale variances

Within the Bayesian approach, θ is a random variable with a distribution which conveys
the uncertainty the researcher has in a given state of information (whether prior, posterior,
elicited, objective and so on). In such a scenario, a point summary of the distribution of θ
minimizing the risk (i.e. the expected loss) associated with a given loss function is often
required. Such a minimizer of an expected d is usually called a Bayes estimator. When a
scale symmetric loss function is used, we propose to call such minimizers scale means.
In case of convex loss functions, such as the novel ones listed in the previous section,
minimization can be performed explicitly, as in Theorem 2.5.

Theorem 2.5: Let θ be a positive random variable with a posterior density function f and
such thatE(θk) < ∞ andE(θ−k) < ∞, whereE denotes the posterior mean with respect to
f and k>0. Then,

(a) Expectation of the loss function Lk(θ , d) (6) with respect to f is minimized by the Bayes
estimator (scale mean)

d̂k =
(

E(θk)

E(θ−k)

)1/2k

. (8)

(b) Expectation of the precautionary loss function Lsq (2) isminimized by the Bayes estimator
(scale mean)

d̂sq =
√

E(θ2), (9)

for which the following bound holds: d̂sq ≥ E(θ).

Proof: (a) The expectation of the loss function (6) with respect to the posterior density
function f takes the form

E(Lk(θ , d)) = E

(
d
θ

)k
+ E

(
θ

d

)k
− 2 = dkE

(
θ−k

)
+ dk−1

E

(
θk
)

− 2.

Then, the decision dminimizing the expected loss function is found solving

∂E(Lk(θ , d))
∂d

= kdk−1
E

(
θ−k

)
− kd−k−1

E

(
θk
)

= 0

This results in d̂k = (
E(θk)

E(θ−k)
)

1
2k , and in the special case of k=1, d̂1 =

√
E(θ)/E(θ−1).

(b) Similarly to the previous point, the expectation of the precautionary loss function (2)
with respect to the posterior density function f taken the form

E(Lsq(θ , d)) = E

(
(d − θ)2

d

)
= d2 − 2dE(θ) + E(θ2)

d
.

Then, the decision d minimizing the expected loss function is found by ∂E(Lsq(θ ,d))
∂d = 0.

This results in d̂sq =
√

E(θ2). Using Jensen inequality for θ2 one can obtain E(θ2) ≥
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E2(θ). Applying the squared root to both sides of the inequality the result immediately
follows. �

In a more fundamental Bayesian approach, a Bayes estimator is regarded only as a con-
venient summary of the posterior, and a loss function as a way to prescribe what kind
of summary is appropriate. Typically, a posterior expectation is used as the Bayes estima-
tor, implying that a squared loss function is being used. A second step is usually taken to
accompany the Bayes estimator with a measure of uncertainty of the posterior. If a poste-
rior mean is used, a posterior variance is usually presented. However, if a scale symmetric
loss function is considered to be a reasonable criterion for choosing an estimator, i.e. a
number which minimizes a posterior expected loss, then it is also reasonable to present
the achieved minimum of the posterior expected loss as a second summary of the poste-
rior. For the given loss functions (6) and (2), particularly simple expected posterior losses
can be obtained. In particular, for the loss function (6) such scale variance of order k of
the random variable θ in Theorem 2.5(a) can be written τ̂k(θ) := 2

√
E(θk)E(θ−k) − 2,

whereas the scale variance for the precautionary loss function (2) in Theorem 2.5(b) is
τ̂ (θ) = 2(

√
E(θ2) − E(θ)).

3. Interval symmetry

The approach used above for a positive parameter can be generalized to the parameter
defined on the interval (a, b). The issue of a restricted parameter space is not usually dis-
cussed in the choice of the loss function and corresponding Bayes estimator: bounds are
taken into account through the prior specification only, then the squared loss function and
posterior mean (the corresponding Bayes estimator) are used [21]. Such solutions can be
suboptimal if boundary decisions are to be avoided. Below, we define the property of the
symmetry on an interval and show that the novel definition generalizes the cases of param-
eters on the whole real line and on the positive real line. We provide the loss function with
desirable properties which is, again, a generalization of the squared loss function and the
precautionary loss function.

3.1. Symmetric loss functions on intervals

Let us consider an inferential problem forwhich the parameter of interest lies in a particular
interval (a, b). Define the following transformation

logit(a,b)(x) = log
x − a
b − x

(10)

where a< x<b. Notice that, for a=0 and b=1, transformation (10) reduces to the com-
mon logit transformation widely used in Statistics and was used by Aitchison [2] to justify
the definition of distance on the unit interval. Following the same lines of reasoning as
in Section 2.2, we use this transformation to introduce the definition of symmetric on the
interval (a, b) loss function (or simply interval symmetric loss function), and demonstrate
why it is a convenient choice.
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Definition 3.1: A loss function L(θ , d) is symmetric on the interval (a, b) if, for every
choice of d1, d2 ∈ (a, b) and θ ∈ (a, b)

logit(a,b)(θ) = logit(a,b)(d1) + logit(a,b)(d2)
2

. (11)

implies L(θ , d1) = L(θ , d2).

In other words, two decisions d1 and d2 should be penalized equally if the mean of their
logit transformation is equal to the logit transformation of θ . Lemma 3.2 justifies the use
of the logit transformation (10).

Lemma 3.2: Definition 3.1 is equivalent to Definition 2.1 when a → −∞ and b → +∞
and equivalent to Definition 2.2 when a → 0 and b → +∞.

Proof: Condition (11) for a < d1 < d2 < b can be rewritten

θ = f (a, b, d1, d2) ≡ ab − d1d2 + √
(d1 − a)(b − d1)(d2 − a)(b − d2)
a + b − d1 − d2

.

Obviously, θ is a symmetric function of d1 and d2. Considering two limits

lim
a→−∞, b→+∞

f (a, b, d1, d2) = d1 + d2
2

, lim
a→0, b→+∞

f (a, b, d1, d2) =
√
d1d2,

it can be easily seen that the definitions are equivalent. �

It follows from Lemma 3.2 that Definition 3.1 is a convenient generalization of the
definition of symmetry and of scale symmetry.

3.2. An interval symmetric loss function and a Bayes estimator

As in the case of a positive parameter and scale symmetric loss functions, discussed in
Section 2, the approach of [4] of specifying a squared loss function after rescaling the inter-
val (a, b) to the real line via, for example, the logit transformation (10) provides the loss
function

LiB(θ , d) =
(
logit(a,b)d − logit(a,b)θ

)2
. (12)

On the unit interval, this loss function is equivalent to so-called Aitchison distance pro-
posed byAitchison [2] for parameters defined on a simplex.However, the loss function (12)
is not convex and its minimization problem does not have an explicit solution. As an
alternative, we propose the following loss function

Liq(θ , d) = (d − θ)2

(d − a)(b − d)
. (13)

which is interval symmetric and tends to infinity when the decision d tends to bounds a
and b.
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Note that loss function (13) for a=0 and b=1 looks similar to the well-known loss
function (d − θ)2/(θ(1 − θ)) which, however, does not penalize boundary decisions.

The Bayes estimator corresponding to Liq is given in Theorem 3.3.

Theorem 3.3: Let θ ∈ (a, b) be a random variable with a posterior density function f and
E(θ2) < ∞ where E(·) denotes the expectation with respect to f. Then,

(a) the expectation of the interval symmetric loss function Liq (13) with respect to f is
minimized by the Bayes estimator

d̂iq = ab − E(θ2) +
√

(E(θ2) − ab)2 − (a + b − 2E(θ))(2abE(θ) − (a + b)E(θ2))

a + b − 2E(θ)
(14)

(b) In the limiting case a → −∞ and b → +∞ estimator (14) minimizes the expectation
of squared loss function (1), and in the limiting case a → 0 and b → +∞ estimator (14)
minimizes the expectation of precautionary loss function (2).

Proof: (a) The equality is proved by differentiating in d the expected losses Liq (13).
(b) Denote the estimator (14) by d ≡ g(a, b, θ); then, taking the limits

lim
a→−∞, b→+∞

g(a, b, θ) = E(θ), lim
a→0, b→+∞

g(a, b, θ) =
√

E(θ2),

it is easy to see that the obtained estimators are equivalent to theminimizers of the squared
loss function (1) and of the precautionary loss function (13), respectively. Note that d̂iq →
a+b
2 as E(θ) → a+b

2 . �

It follows from Theorem 3.3 that the Bayes estimator d̂iq includes the Bayes estimator
under squared loss function (1) and precautionary loss function (2) as special cases.

4. Multivariate generalizations

The definition of symmetry can be generalized to the case of a parameter belonging to a
subset ofRm by applying the same ideas to selected shapes of the parameter space as in the
following definition.

Definition 4.1: Let θ = (θ(1), θ(2), . . . , θ(m))T be a parameter lying in one of the parame-
ter spaces � ⊂ Rm listed below. Let di = (d(1)

i , d(2)
i , . . . , d(m)

i )T, i=1, 2 be two vectors of
decisions defined on the same parameter space. A loss function L(θ , d) is a multivariate
�−symmetric if the equality

L(θ , d1) = L(θ , d2)

is implied by each triple θ , d1, d2 ∈ � satisfying the following respective definitions of
distances:
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(a) when � = Rm (symmetry on Rm itself):√√√√ m∑
j=1

(
d(j)
1 − θ(j)

)2 =
√√√√ m∑

j=1

(
d(j)
2 − θ(j)

)2
;

(b) when � = R
m+ = {θ : θ(i) > 0, i = 1, . . . ,m} (scale symmetry on R

m+):√√√√ m∑
j=1

log2
(
d(j)
1

θ(j)

)
=
√√√√ m∑

j=1
log2

(
d(j)
2
θj

)
;

(c) when � = {θ : (a1 < θ(1) < b1), . . . , (am < θ(m) < bm)} (symmetry on an Rm-
rectangle):√√√√ m∑

j=1

(
logit(aj,bj)d

(j)
1 − logit(aj,bj)θ

(j)
)2 =

√√√√ m∑
j=1

(
logit(aj,bj)d

(j)
2 − logit(aj,bj)θ

(j)
)2
;

(d) when � = {θ : θ(1) > 0, θ(2) > 0, . . . , θ(m) > 0;
∑m

i=1 θ(i) = 1} (symmetry on the
unit simplex):√√√√√ 1

m

∑
i<j

(
log

d(i)
1

d(j)
1

− log
θ(i)

θ (j)

)2

=

√√√√√ 1
m

∑
i<j

(
log

d(i)
2

d(j)
2

− log
θ(i)

θ (j)

)2

.

The definition of the symmetric loss function in each case employs a distance corre-
sponding to the particular restricted space.While the distances in (a)–(c) are natural exten-
sions of the previously used, the definition in (d) is less straightforward. Definition 4.1(d)
uses the Aitchison distance proposed by Aitchison [2] and employed in compositional
data analysis. Regarding properties of the proposed definition, Lemma 4.2, similar to
Lemma 3.2, holds.

Lemma 4.2: Let θ = (θ(1), θ(2), . . . , θ(m))T be a vector of parameter of interest such that
θ(1) ∈ (a1, b1), θ(2) ∈ (a2, b2), . . . , θ(m) ∈ (am, bm) and di = (d(1)

i , d(2)
i , . . . , d(m)

i )T be a
vector of corresponding decisions lying in corresponding intervals. Definition 4.1(c) is equiv-
alent to Definition 4.1(a) when ai → −∞ and bi → ∞ for all i = 1, . . . ,m and to
Definition 4.1(b) when ai = 0 and bi → ∞ for all i = 1, . . . ,m.

Following [4], all distances in Definition (4.1) could be taken as corresponding sym-
metric loss functions. For example, in case (b), one could define

D(m)
+ (θ , d) =

m∑
j=1

log2
(
d(j)

θ (j)

)
. (15)

At the same time, some convex alternatives could be considered when leading to simple
solutions of minimization problems. However, the search of the symmetric multivariate
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Figure 1. Contour plots of loss functionsD(2)
+ , L(2)1 , L(2)sq for the casem= 2 and θ = (1, 2)T.

generalization of our proposed loss functions Lk, Lsq and Liq seems to be a non-trivial one.
We propose the following loss functions for parameters with non-negative components.

Proposition 4.3: Let θ = (θ(1), . . . , θ(m))T ∈ R
m+ and d = (d(1), . . . , d(m))T ∈ R

m+. The
loss functions

L(m)

k (θ , d) =
m∑
j=1

⎛
⎝(d(j)

θ (j)

)k

−
(

θ(j)

d(j)

)k
⎞
⎠− 2m (16)

L(m)
sq (θ , d) =

m∑
j=1

(d(j) − θ(j))2

d(j) (17)

are additive multivariate generalizations of the loss function L1 given in (6) and (2), respec-
tively, which infinitely penalize each boundary decision d(j) = 0 and d(j) = ∞, j = 1, . . . ,m.

Clearly, loss functions L(m)
1 and L(m)

sq penalize the boundaries as desired and some good
performance of the corresponding estimators can be expected. However, the property of
symmetry is not satisfied. One can find two decisions d̃1 and d̃2 for which D(m)

+ (θ , d̃1) =
D(m)

+ (θ , d̃2), but L
(m)
1 (θ , d̃1) 
= L(m)

1 (θ , d̃2). Even if the whole loss functions are not sym-
metric, they are ‘component-wise’ symmetric as shown above. The comparison of loss
functions L(2)

1 , L(2)
sq andD(2)

+ for different values of decision d1 and d2 and fixed θ = (1, 2)T

is given in Figure 1.
The proposed loss functions perform similar to the distanceD(2)

+ , but have some more
favourable properties, like convexity.

5. Examples

Loss functions penalising boundary decisions were found to be more beneficial in many
applications areas. For instance, Saint-Hilary et al. [29] have shown that a loss function
similar to the loss function (6) penalising the decision d=0 can lead to a more reliable
benefit-risk analysis of novel drugs. Similarly, Mozgunov and Jaki [24] have found that



2326 P. MOZGUNOV ET AL.

the loss function (13) penalising decisions d=0,1 incorporated into a model-based dose-
finding design can improve a selection of the optimal doses without exposing patients to
excessively toxic doses. Below, we investigate the performance of the proposed loss func-
tion and corresponding Bayes estimators inmore general settings.We consider four classic
examples of estimation to demonstrate the essential differences of estimators. We focus
on the small sample size (n=15) to emphasize the difference in estimators. The results
for moderate (n = 100) and large (n = 1000) sample sizes are given in Supplementary
Materials. Software in the form of R code [27] is also provided in SupplementaryMaterials.

For all examples, the frequentist operating characteristic, Mean Squared Error (MSE), is
chosen to compare the different estimators on common grounds. As advocated by Berger
et al. [3,6], studying the frequentist properties of Bayes estimators is a way to study the
properties independently of the prior distribution and to consider Bayesian point estimate
simply as a function of the data. Furthermore, as we intend to compare several Bayes esti-
mators, which minimize different loss functions, the frequentist characteristics are chosen
to assess the performance of these estimators on an equal basis. Note that this choice is not
favourable to our new proposals, since the MSE is derived from squared error loss.

5.1. Estimation of a probability

An important example of a parameter defined on the finite interval [0, 1] is a probability. In
the presence of a binary random sample with an unknown probability of success a uniform
distribution, i.e. a Beta prior distribution B(1, 1) is often assumed, a proposal which dates
back to Laplace. Having observed x successes out of n trials, the posterior distribution
is a conjugate Beta distribution B(x + 1, n − x + 1). The estimator corresponding to the
squared error loss function (posterior mean) has the form p̂q = x+1

n+2 . Another widely used
estimator is the so-called ‘add two successes and two failures’ Agresti-Coull estimator [1]
p̂AC = x+2

n+4 . Below we compare these approaches to the newly proposed estimator (14).
The symmetric optimal Bayes estimator (14) in the case a=0 and b=1 can be written

d̂iq = E(θ2) −
√

E(θ2)(1 − 2E(θ) + E(θ2))

2E(θ) − 1

where θ is a probability of success lying in the interval (0,1), over which a posterior dis-
tribution is given. It is assumed that the extremes of the interval are not possible values
for the parameter. The first and second moments of a Beta distribution can be computed
explicitly and plugged in formula (14) to obtain the following interval symmetric optimal
Bayes estimator

p̂iq =
(
1 +

√
(n − x + 1)(n − x + 2)

(x + 1)(x + 2)

)−1

. (18)

Simulated trials with sample sizen=15 are considered.On a grid of values θ ∈ (0.01, 0.99),
N = 109 trials were simulated. This means that for each value of θ on the grid, we simulate
109 trials with the total sample size n=15. This results in 109 point estimates found for
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Figure 2. MSE, variance and bias for the restricted symmetric squared error loss function estimator p̂iq
(solid), the squarederror loss functionestimator p̂q (dashed) and theAgresti-Coull estimator p̂AC (dotted).
Results are based on n= 15 observations and 109 simulations.

each method. Then, the MSE is computed as

MSEk ≡ 1
N

N∑
i=1

(p̂(i)
k − θ)2, (19)

where p̂(i)
k is a corresponding value in the ith simulation and k=q, iq, AC corresponds to

an estimation method. The results are given in Figure 2.
The proposed estimator p̂iq outperforms (in terms of the MSE) the Bayes estimator

obtained using the squared error loss function p̂q in the interval θ ∈ (0.2, 0.8). The cost
of this advantage is the worse performance on the intervals close to the bounds as the pro-
posed form of the loss function penalizes boundary decisions and by that drives the final
estimate away from them.However, the proposed estimator outperforms the Agresti-Coull
estimator p̂AC at the same intervals θ ∈ (0, 0.2) and θ ∈ (0.8, 1). Thus, the proposed esti-
mator might be considered as a trade-off between currently used estimators p̂q and p̂AC,
that outperforms p̂AC on bounds and p̂q away from bounds.

In addition to the MSE, the associated confidence intervals and coverage probabilities
are extensively studied in the literature [5]. In particular, coverage probabilities were shown
to have an erratic behaviour and often to go below their nominal level. Corrections were
proposed by Agresti and Coull [1]. Confidence intervals can also be constructed around
our newly proposed point estimator p̂iq. The following confidence intervals are compared
via simulated coverage probabilities in Figure 3:

(1) Normal approximation confidence interval centred around p̂k, k = q, iq,AC as sug-
gested by Brown et al. [5]

CI(k)N = p̂k ± z α
2

√
p̂k(1 − p̂k)

n
,

where 1 − α is the confidence level.
(2) Wilson confidence interval centred around p̂AC [33]

CI(AC)
W = x + 2

n + 4
± 2

√
n

n + 2

√
x(n − x)

n2
+ 1

n
.
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Figure 3. Left panel: Coverage probabilities of CI(iq)N (middle line), CI(q)N (lower line) and CI(AC)N (upper

line) using [1], thenormal approximation interval. Right panel: Coverageprobabilities ofCI(iq)D (lower line)

and CI(AC)W (upper line) using [2], theWilson, and [3], the delta-method, confidence intervals respectively.
Results are based on n= 15 observations and 109 simulations.

(3) Approximate confidence interval using the delta-method centred around the newly
proposed p̂iq

CI(iq)D = p̂iq ± 2
√
V̂iq, V̂iq =

(
∂f (x)
∂x

)2 ∣∣∣
x=np̂iq

np̂iq(1 − p̂iq), f (x) = p̂iq.

Using the normal approximation confidence interval, the coverage probability of CI(q)N
goes below the nominal value for several values of θ . The coverage probabilities of CI(iq)N
and CI(AC)

N also fluctuate but do not go below 0.95 for N=15, which is a desirable prop-
erty. While one can find combination of N and θ for which coverage probabilities CI(iq)N
and CI(AC)

N might be below 0.95 [5], it would be generally true that their coverage proba-
bilities are greater than of CI(q)N for larger intervals of θ and are more robust. In addition,
a comparison between the normal approximation method (left panel of Figure 3) and the
Wilson and delta method intervals (right panel of Figure 3) supports the suggestion by
Brown et al. [5] that the normal approximation method gives a portmanteau way to con-
struct simple confidence intervals with - on average - better coverage probabilities than
more complicated methods.

5.2. Restricted estimation of a normal distributionmean

In the following example, it is demonstrated what benefits the proposed form of loss func-
tion (13) can provide in a Bayesian framework in the presence of the additional information
that the true parameter lies in an interval (a, b).

The problem of restrictedmean estimation has been known for a long time and has been
extensively studied in the literature (see e.g. [17], and references therein). The previously
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proposed estimators were constructed using the squared error loss function and compared
by the Bayesian risk. For an extensive overview of the problem, we refer the reader to [21]
and for some recent generalizations to [20]. Interestingly, despite the variety of the literature
on the problem and the fact that the Bayes estimator with respect to the uniform prior
distribution on (−a, a) outperforms uniformly the ‘unrestricted’ Bayes estimator under
squared error loss function [10], the sample mean estimator is still widely used in practice.
For this reason, we propose our simple alternative and compare it to the most commonly
used estimators.

Consider the problem of estimating the mean μ of a normal sample of i.i.d. Xi ∼
N (μ, σ 2), i = 1, . . . , n where σ 2 is known. Assume it is known that the parameter μ

belongs to the interval (−a,+a) where a>0. A possible example is the estimation of
the treatment effect in paediatric studies of a clinical treatment that was already tested
on adults. An investigator might be sure that the same dosage of the drug as given to
adults would cause a greater level of toxicity in children. It is of interest how much one
can gain by incorporating this information in the estimator (14) compared to currently
used approaches that use the squared error loss.

As stated above, the common way to incorporate this information in a Bayesian frame-
work is restricting the prior distribution for the parameter of interest μ to the interval
(−a,+a) and then using the squared error loss to obtain a point estimate (as a summary
of a posterior distribution). However, the information about the restricted space is used
only on the prior and ignored when choosing summary statistics, while the proposed form
of loss function (13) allows to incorporate it again. Moreover, in practice the prior infor-
mation is often ignored and the sample mean estimator (corresponding to Jeffrey’s prior)
is used. Therefore, a comparison of the proposed loss function and the currently utilized
approaches (with and without the incorporation the prior information) is of interest.

Consider samples of size n=15 and alternative Bayes estimators as follows:

• Bayes estimator under Jeffrey’s prior g(μ) ∝ k
√

n
σ 2 for μ and the squared error loss

function. Denoted by J;
• Bayes estimator under the uniform prior U ∼ (−a,+a) for μ and squared error loss

function. Denoted by U1.
• Bayes estimator (14) under the uniform prior U(−a,+a) for μ and the interval

symmetric squared error loss function. Denoted by U2.

Alternatively to U2, the Bayes estimator U ′
2 defined by (14), but with a wider interval

(−1.25a,+1.25a) is also applied to investigate how less severe penalization of the bounds
influences the estimation. This wider interval could be considered as a conservative way to
incorporate information about the location of the parameter.

Two cases a=2 and a=4 are considered. The parameterσ 2 = 4 is assumed to be known
in both cases. As before, theMSE is used for a fair comparison of methods. The results for
106 replications for each value of μ are given in Figure 4.

Incorporating the interval information in the Bayes estimator allows for improvement if
the true value of the parameterμ does not lie close to the bound. In the case a=2 estimator
U2 outperforms U1 on the interval μ ∈ (−1,+1) and in the case a=4 on the interval μ ∈
(−3,+3). The same holds for estimator U ′

2, however, its MSE never falls below the level of
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Figure 4. MSE corresponding to different values of the restricted mean parameterμwith (a) a= 2 and
(b) a= 4 and the Bayes estimator U1 (solid), U2 (dashed) and U′

2 (dotted) and simple mean estimator J
(solid dashed). Results are based on 106 replications.

the MSE of estimator J. Clearly, the wider interval improves estimation on the bounds, at
the cost of the higher MSE in the middle. Note that the wider interval a=4 corresponds
to weaker additional information and to a smaller benefit in the MSE comparing U1,U2
and U ′

2 against J. Overall, the Bayes estimator corresponding to the interval symmetric
loss function avoids the boundary decisions, improves the estimation if the parameters lies
away from bounds and can be recommended for the application if boundary decisions lead
to severe consequences.

5.3. Bayesian estimation of the parameters of a gamma distribution

An important example of multidimensional restricted parameter estimation is a Gamma
distribution with positive shape and scale parameters α1,α2 > 0. Bayesian inference
for this problem has been studied, for example, in [23] and methods for approximate
computation of Bayes estimators were proposed using the Lindley approximation [18].

We consider the function L(2)
sq given in (17) to obtain Bayes estimators. As the loss

function (17) is the sum of the univariate precautionary loss functions (2), the following

estimators are used α̂i =
√

E(α2
i ), i = 1, 2 where the expectation E is taken with respect

to the posterior distribution.
Let us consider an experiment with sample size n=15. The parameters of the Gamma

distribution are varied over a grid, α1,α2 ∈ (0, 10) and the performance of the different
approaches are compared by simulations. The two approaches compared use the sameprior
distribution for parameters α1 and α2 using the following estimators:

(1) Bayes estimator under the squared error loss function,
(2) Bayes estimator under the multivariate precautionary loss function.
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Figure 5. Difference in theMSEs for parametersα1 andα2 for their different true values and using Bayes
estimator under the squared error loss function and Bayes estimator under L(2)sq . Results are based on 109

replications.

We use the same weakly informative Gamma prior distributions �(10−4, 10−4) of
(α1,α2) with parameters for both estimation methods and an approximate method pro-
posed by Lindley [18]. The weakly informative distribution are chosen to minimize the
influence of the prior distribution on the comparison of estimators and corresponds to the
situations of no prior knowledge about the parameters. We would like to emphasize that
the choice of the prior distribution is out of the scope of this paper and the goal is to com-
pare two Bayes estimators when all other parameters are equal. The difference between the
MSE of estimators based on method (method 1 against method 2) for parameters α1 and
α2 in 109 simulations is given in Figure 5.

The differences in the MSEs for both parameters are positive for all values of the true
parameters α1 and α2. It means that the Bayes estimator from method 2) is associated
with smaller MSE than the Bayes estimator from method 1). The difference in the MSE
increases as the true value of the parameter increases. This result makes the proposed esti-
mator and the associated loss function L(2)

sq good candidates for further investigation in
multidimensional estimation problems.

5.4. Bayesian estimation of the parameters of aWeibull distribution

Another important example of multidimensional restricted parameters estimation is the
Weibull distribution which positive scale and shape parameters λ, ν > 0. TheWeibull dis-
tribution is of great importance in applications as it is widely employed in, for example,
reliability engineering, extreme value theory and survival analysis [26]. Bayesian infer-
ence for this problem has been studied in [9]. Importantly, despite both parameters being
defined on the positive real line only, the squared error loss function (and associated pos-
terior mean Bayes estimator) are used in these works. Below, we consider how the novel
loss function (7) and the associated Bayes estimator behaves in this estimation problem.

We consider the function L(m)

k given in (16) to obtain Bayes estimators. As the loss func-
tion (16) is the sum of the univariate loss functions (6), the following Bayesian estimators
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are used for both scale parameters of Weibull distribution

λ̂k =
(

E(λk)

E(λ−k)

)1/2k

, ν̂k =
(

E(νk)

E(ν−k)

)1/2k

(20)

where the expectations are taken with respect to the posterior density function. Note that
the estimators depend on the parameter of the loss function k. We will investigate the
influence of the parameter k on the estimation.

As above, we consider an experiments with a small sample size, n=15.We consider sev-
eral values of both scale and shape parameters, λ ∈ {1, 2, 3, 4, 5}, ν ∈ {(0.5, 1, 5, 10, 15)},
and the performance of different approaches are compared by simulations. Again, the
two approaches compared use the same weakly information Gamma prior distribution
�(10−4, 10−4) for both positive parameters, as we would like to minimize the impact of
the prior distribution on the comparison.

We start from the comparison of

(1) Bayes estimators under the squared error loss function,
(2) Bayes estimators (20) under the multivariate L(m)

1 (16) for k=1.

The difference between theMSE of estimators (method 1 against method 2) for positive
parameters λ, ν in 104 simulations are given in Table 1. The MSE for ν are scaled by 1

νλ to
obtain the results on a similar scale for various parameters.

The differences in the MSEs for both parameters are positive for all considered true
values of λ and ν. It follows that the Bayes estimator frommethod 2) leads to a smallerMSE
than the estimator corresponding to the squared error loss function. For a fixed value of ν,
theMSE corresponding to λ increases with the parameters. The scaledMSE corresponding
to ν stays nearly the same for various values of λ. Overall, the proposed estimator and the
associated loss function can be good candidates to be used for the parameters defined on
the positive real line.

So far, only the loss function L(m)

k for k=1 has been considered. To investigate the
impact of the parameter k on the estimation characteristics, we fix the scale parameter
ν = 1 and vary the shape parameter over the grid λ ∈ (1, 8). Specifically, we consider the
following value of the parameter k = {1, 2, 3, 4}. The results are given in Table 2.

Table 1. Difference in the MSEs for parameters λ (upper lines) and ν (lower lines) for their different true
values and using Bayes estimator under the squared error loss function and Bayes estimator under L(m)

1 .

ν = 1 ν = 2 ν = 5 ν = 10 ν = 15

λ = 1 0.0061 0.0065 0.0067 0.0069 0.0068
0.0097 0.0081 0.0033 0.0067 0.0087

λ = 2 0.0268 0.0270 0.0274 0.0265 0.0269
0.0090 0.0106 0.0103 0.0142 0.0142

λ = 3 0.0608 0.0616 0.0598 0.0622 0.0613
0.0081 0.0125 0.0143 0.0136 0.0147

λ = 4 0.1075 0.1068 0.1065 0.1065 0.0987
0.0104 0.0122 0.0146 0.0136 0.0151

λ = 5 0.1652 0.1649 0.1645 0.1652 0.1585
0.0093 0.0131 0.0140 0.0115 0.0152

Note: Results are based on 104 replications.
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Table 2. MSE, Bias and Variance for the Bayes estimator ofλ ∈ (1, 8) corresponding to the squared error
loss function (posterior mean) and for the estimator λ̂k given in Equation (20) for k= 1,2,3,4.

λ = 1 λ = 2 λ = 3 λ = 4 λ = 5 λ = 6 λ = 7 λ = 8

Posterior Mean MSE 0.072 0.286 0.653 1.150 1.781 2.582 3.515 4.571
Bias 0.096 0.189 0.286 0.383 0.475 0.577 0.669 0.772

Variance 0.063 0.250 0.571 1.003 1.555 2.249 3.067 3.975
Est. (20); k = 1 MSE 0.065 0.259 0.592 1.042 1.613 2.339 3.185 4.137

Bias 0.072 0.142 0.215 0.287 0.356 0.434 0.502 0.581
Variance 0.060 0.239 0.546 0.959 1.486 2.150 2.933 3.800

Est. (20); k = 2 MSE 0.065 0.258 0.589 1.036 1.604 2.325 3.166 4.112
Bias 0.071 0.139 0.210 0.281 0.348 0.425 0.492 0.569

Variance 0.060 0.238 0.545 0.957 1.482 2.144 2.924 3.789
Est. (20); k = 3 MSE 0.064 0.255 0.583 1.026 1.588 2.302 3.135 4.072

Bias 0.068 0.134 0.203 0.271 0.336 0.410 0.474 0.549
Variance 0.059 0.237 0.542 0.952 1.475 2.134 2.910 3.771

Est. (20); k = 4 MSE 0.063 0.252 0.575 1.012 1.567 2.271 3.092 4.016
Bias 0.065 0.127 0.192 0.257 0.318 0.388 0.449 0.520

Variance 0.059 0.236 0.538 0.946 1.465 2.120 2.891 3.746

Note: Results are based on 104 replications.

The posterior mean estimator (corresponding to the squared error loss function) cor-
responds to the highest MSE for all considered values of λ. As it was shown above, one can
reduce the MSE by applying the estimator (20) for k=1. Considering the bias k=1, the
estimator overestimates the true value of the parameter. When increasing the value of k,
the value of the estimator decreases and approaches the true value of the parameter. This
results in reduce bias of the estimator for all values of λ as k increases. Furthermore, the
variance of the estimator decreases with parameter k. This results in decrease of the MSE
as k increases. Overall, increasing values of k are found to lead lower estimates, which in
the case of the overestimations leads to smaller MSE and more accurate estimation.

6. Application of the novel estimator to the paediatric clinical trial sample
size calculation

6.1. Motivation

There is overwhelmingmedical evidence that children’s response cannoticeably differ from
the adults’ response in many diseases [15,32]. While there is generally a large amount of
data available from adult studies, the knowledge about children remains quite limited. An
example is drug-resistant partial epilepsy. Despite guidelines establishing the need to per-
form comprehensive paediatric drug development programmes, pivotal trials in children
with epilepsy have been completed mostly in Phase IV as a postapproval replication of
adult data [28]. To change this practice, more studies in children should be conducted.
The planning of such studies, however, requires many assumptions, and the information
from adults population can (and should) be efficiently used to justify them. Specifically,
the planning requires the values of the expected responses (given previous trials) for an
alternative treatment (or control) to which the comparison is to be made. The underesti-
mation of this expected value can lead to a underpowered study and to unethical allocation
of children in the study. In this section, we will demonstrate how the information about
the relation between adults’ and children’s response can be incorporated in the proposed
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interval symmetric estimator and how it impacts the subsequent planning of the clinical
trial.

6.2. Setting

Assume that one would like to conduct a randomized controlled clinical trial to study
whether a novel intervention leads to a significantly different response in children with
inadequately controlled partial seizures. A typical question that a clinician would ask a
statistician before the trial is the sample size required to achieve a desirable level of sta-
tistical power. Suppose that equal sample sizes for the intervention and control (placebo)
groups are to be used. Formally, the clinician would like to test the following hypothesis

H0 : p ≤ pplacebo versus H1 : p > pplacebo

where p is the unknown probability of response for the tested intervention and pplacebo is
the probability of response given the placebo. To achieve 1 − β in testing this hypothesis
and given the type-I error α, one can obtain the following formula for the sample size

n ≈
(
zα
√
2p̄(1 − p̄) + zβ

√
ptarget(1 − ptarget) + pplacebo(1 − pplacebo)

)2
(
ptarget − pplacebo

)2
where ptarget is the clinically important response which the clinician would like to find
in the trial, and zα and zβ are 1 − α and 1 − β quantiles of the normal distribution. The
latter two values are to be defined by clinicians and statisticians. The clinically important
response, given the severity of the diseases and alternative treatments [28], is assumed to
be ptarget = 0.5. However, the response corresponding to the placebo effect is much more
challenging.

Given a vast amount of data from clinical trials in adults, it is known that the response
to placebo is 0.10 [28]. However, one cannot use this value as there is an evidence that the
placebo response can be lower for children. Moreover, the meta-analysis by Rheims et al.
[28] suggested the placebo response is at 0.20 twice as large. Using this knowledge and the
clinical data from the recent study [8], one can estimate the response for the placebo effect.
We argue that the estimator corresponding to the interval symmetric loss function (13) is
appropriate choice for at least two reasons:

(1) It is known that the clinically feasible values of the placebo response start at 0.1.
Therefore, the probability of interest, pplacebo lies in the interval (0.1, 1).

(2) Underestimation of the placebo response is highly undesirable given that the trial
is conducted in children. The underestimation leads to underpowered study, which
might result in its failure and in the unethical ‘waste’ of children patients involved.

At the same time, one would like to limit a number of children enrolled in the study
and the proposed sample size should be justified. The difference in the sample size calcu-
lations using the currently used ‘naive’ estimator for the placebo and the proposed interval
symmetric estimator (14) is given below.
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6.3. Results

Given the data obtained in the randomized clinical trial [8], there were 97 children patients
assigned to the placebo group and 19 of them experienced a reduction of partial seizure
frequency. Therefore, the ‘naive’ estimator that would be typically used to plan the clinical
trial is

p̂naive = 19
97

≈ 0.196.

Alternatively, using the information that the estimator p ∈ (0.1, 1) and assuming the uni-
form prior distribution for the probability and the Beta posteriorB(x + 1, n − x + 1) as in
Section 5.1, one can obtain the following formula for the interval symmetric estimator (14)

p̂iq =
0.1 − (x+1)(x+2)

(n+3)(n+2) +
√(

(x+1)(x+2)
(n+3)(n+2) − 0.1

)2 −
(
1.1 − 2 x+1

n+2

) (
2.2 x+1

n+2−1.1 (x+1)(x+2)
(n+3)(n+2)

)
1.1 − 2 x+1

n+2
.

Plugging-in the data from the study [8], x=19 and n=97, one can obtain

p̂iq ≈ 0.209.

While the difference in the estimates can look quite marginal, it indeed leads to a differ-
ence in the required sample size per treatment group. Using α = 0.05 type-I error, and the
desirable power of 1 − β = 0.90, one can obtain that the estimators lead to the following
sample sizes: nnaive = 41 and niq = 45. Consequently, the proposed estimator suggests to
enrol 8 more patients into the study. While this might seem to result in a minor change in
the total sample size, this justified increase in the sample size can avoid a failure of the study
and might lead to a new, better intervention available for children suffering from epilepsy.

7. Discussion

The concept of a symmetric loss function in a restricted parameter space is introduced in
this paper. Scale symmetric and interval symmetric loss functions which share desirable
properties are provided. On the basis of four examples, we show that the correspond-
ing Bayes estimators perform well when compared to other available estimators based on
squared error loss and improve the estimation if the parameter lies away from bounds. Fol-
lowing the real-life application example, it is found that the novel Bayes estimators allow
avoiding boundary decisions that can be undesirable in paediatric clinical trials. Conse-
quently, the estimator can be recommended in other applications wheremore conservative
estimates are preferable.

Overall, when choosing a loss function for the particular application, we argue that a
statistician should answer two questions: (i) is there credible information that the parame-
ter of interest is restricted to particular space and (ii) are there any values of the parameters
should be avoided as they might lead to undesirable consequences. Answering these ques-
tions will guide whether, for example, the squared error loss function, the scale symmetric
loss function or the interval symmetric (with specified interval) loss function should be
used. We would like to emphasize that we restrict our choice to some specific loss func-
tions, mainly due to their simplicity and easy implementation. Alternative loss function
sharing the stated properties can and should be considered.
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The proposed definitions were generalized for a subset of Rm, where distances on
restricted spaces could themselves be used as loss functions, which usually are non-convex
and do not result in explicit minimizers. While we have presented the modification of the
squared error loss function for a restricted univariate parameter defined on an interval, the
equivalent multidimensional extension seems to be non-trivial and requires further study.

Notes

1. The italic is a translation of a commentary to [7] appearing in the edition of Galilei’s works
mentioned in the bibliography, from which all of the quotes are taken, following [30].

2. A monetary unit, literally, a shield.
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