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Abstract Severe acute respiratory syndrome (SARS) has
become a global public health emergency. p38 mitogen-activated
protein kinase (MAPK) and its downstream targets are activated
in SARS coronavirus (SARS-CoV)-infected Vero E6 cells and
activation of p38 MAPK enhances the cytopathic effects of
SARS-CoV infection. In addition, weak activation of Akt cannot
prevent SARS-CoV infection-induced apoptosis in Vero E6 cells.
In the present study, we demonstrated that signal transducer and
activator of transcription (STAT) 3, which is constitutively
phosphorylated at tyrosine (Tyr)-705 and slightly phosphory-
lated at serine (Ser)-727 in Vero E6 cells, was dephosphorylated
at Tyr-705 on SARS-CoV infection. In addition to phosphory-
lation of p38 MAPK in virus-infected cells, other MAPKs, i.e.,
extracellular signal-regulated kinase (ERK) 1/2 and c-Jun N-
terminal kinase (JNK), were phosphorylated. Although inhibi-
tors of ERK1/2 and JNK (PD98059 and SP600125) had no
effect on phosphorylation status of STAT3, inhibitors of p38
MAPK (SB203580 and SB202190) partially inhibited dephos-
phorylation of STAT3 at Tyr-705. Tyr-705-phosphorylated
STAT3 was localized mainly in the nucleus in mock infected
cells, whereas STAT3 disappeared from the nucleus in virus-
infected cells. As STAT3 acts as an activator of transcription in
the nucleus, these results suggest that STAT3 lacks its activity
on transcription in SARS-CoV-infected Vero E6 cells.
� 2004 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Severe acute respiratory syndrome (SARS) is a newly found

infectious disease caused by a novel coronavirus, SARS co-

ronavirus (SARS-CoV) [1,2]. In late 2002, SARS-CoV spread

from Guangdong Province in China to more than 30 countries.

The pathogenesis of SARS in vivo may be mediated by both

the effect of viral replication in the target cells and immune

responses. Recently, we reported that p38 mitogen-activated
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protein kinase (MAPK) plays important roles in the cytopathic

effects and apoptosis in SARS-CoV-infected cells [3]. Fur-

thermore, weak activation of Akt cannot prevent apoptosis by

SARS-CoV-infection [4]. Thus, it is necessary to examine the

signaling pathways in SARS-CoV-infected cells in culture to

understand the molecular mechanisms of its pathology in vivo.

MAPKs are signal transducers that respond to extracellular

stimulation by cytokines, growth factors, viral infection, and

stressors, and in turn regulate cell differentiation, proliferation,

survival, and apoptosis [5–8]. p38 MAPK is strongly activated

by stressors and inflammatory cytokines. Our previous study

indicated that p38 MAPK phosphorylation in SARS-CoV-

infected Vero E6 cells reached the maximal level at 18 h post-

infection (h.p.i.) and cytopathic effects (CPEs) were observed

from 24 h.p.i. [3]. The CPEs were partially prevented by

treatment with the p38 MAPK inhibitor SB203580, strongly

suggesting that the p38 MAPK signaling pathway is involved

in the control of cell death in SARS-CoV-infected Vero E6

cells. On the other hand, signal transducer and activator of

transcription (STAT) proteins are transcription factors that

mediate cytokines and growth factors. Activation of all STAT

proteins is induced by phosphorylation of a single tyrosine

residue, leading to dimerization via an intermolecular SH2

phosphotyrosine interaction [9–12]. STAT3 is a major tran-

scription factor activated in response to cytokines, such as

interleukin-6 (IL-6) and IL-10. Inhibition of STAT3 signaling

by dominant negative and antisense STAT3 inhibitors resulted

in a decrease in cell viability and subsequent apoptosis [13–15].

Thus, STAT3 is thought to act as an anti-apoptotic tran-

scription factor. Recent studies indicated that interactions

between STATs and some viral proteins cause degradation of

STATs in virus-infected cells. For example, V protein of

measles virus forms complexes with STAT1, STAT2, and

STAT3, and inhibits extracellular (IL-6) and intracellular (v-

Src) STAT3-dependent signaling [16]. Thus, measles virus-in-

duced degradation of STATs may provide a mechanism for

virus-induced cytokine inhibition that links innate immune

evasion to adaptive immune suppression.

In the present study, we found that STAT3, constitutively

phosphorylated at tyrosine (Tyr)-705 and slightly phosphory-

lated at serine (Ser)-727 in Vero E6 cells, was dephosphoryl-

ated at Tyr-705 by activation of p38 MAPK on SARS-CoV

infection. Lack of transcriptional activity of STAT3 by viral

infection may decrease anti-apoptotic activity in the cells.
blished by Elsevier B.V. All rights reserved.
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2. Materials and methods

2.1. Cells and virus
Vero E6 cells were routinely subcultured in 75-cm3 flasks in Dul-

becco’s modified Eagle’s medium (DMEM, Sigma, St. Louis, MO,
USA) supplemented with 0.2 mM LL-glutamine, 100 units/ml penicillin,
100 lg/ml streptomycin, and 5% (v/v) fetal bovine serum (FBS), and
maintained at 37 �C in an atmosphere of 5% CO2. For use in the ex-
periments, the cells were split once onto 6- or 24-well tissue culture
plate inserts and cultured until they reached 100% confluence. The
culture medium was changed to 2% FBS containing DMEM prior to
virus infection. SARS-CoV, which was isolated as Frankfurt 1 [17] and
kindly provided by Dr. J. Ziebuhr, was used in the present study. In-
fection was usually performed with a multiplicity of infection (m.o.i.)
of 10.

2.2. Treatment with inhibitors
SB203580 and SB202190 as p38 MAPK inhibitors, PD098059 as a

MEK inhibitor and SP600125 as a JNK inhibitor were dissolved in
dimethyl sulfoxide (DMSO) at a concentration of 10 or 20 mM. All
reagents were purchased from Calbiochem (San Diego, CA, USA). All
test wells, including mock treated controls, were treated with 0.25%
DMSO (v/v). Vero E6 cells were inoculated with SARS-CoV at m.o.i.
of 10 for 1 h and then cells were treated with inhibitors for 17 h.

2.3. Subcellular fractionation
SARS-CoV-infected or mock infected Vero E6 cells at 18 h.p.i. were

subjected to subcellular fractionation using a Subcellular Proteome
Extraction Kit (Calbiochem) according to the manufacturer’s in-
structions. Each subcellular fraction was then analyzed by Western
blotting.

2.4. Western blotting
After virus infection, whole-cell extracts were electrophoresed on

either 12.5% or 10–20% gradient polyacrylamide gels and transferred
onto PVDF membranes (Immobilon-P, Millipore, Bedford, MA,
USA). In the present study, we applied two sets of samples to poly-
acrylamide gels and the membranes were divided into two halves after
blotting. The following antibodies, obtained from Cell Signaling
Technology Inc. (Beverly, MA, USA), were used in the present study
at a dilution of 1:1000: rabbit anti-phospho STAT3 (Tyr-705) anti-
body, rabbit anti-phospho STAT3 (Ser-727) antibody, rabbit anti-p38
MAPK (Thr180/Tyr182) antibody, rabbit anti-p38 MAPK antibody,
rabbit anti-phospho p44/42 MAPK (Thr202/Tyr204) (¼ERK1/2)
antibody, rabbit anti-p44/42 MAPK (¼ERK1/2) antibody, rabbit
anti-phospho SAPK/JNK (Thr183/Tyr185) antibody, anti-SAPK/
JNK antibody, anti-phospho MEK1/2 (Ser217/221) antibody, anti-
MEK1/2 antibody, anti-phospho SEK1/MKK4 (Thr261) antibody,
anti-SEK1/MKK4 antibody, anti-phospho MKK7 (Ser271/Thr275)
antibody, anti-MKK7 antibody, anti-phospho MKK3/MKK6
(Ser189/207) antibody, anti-MKK3 antibody, anti-phospho Jak1
(Tyr1022/1023) an- tibody, anti-phospho JAK2 (Tyr1007/1008) anti-
body, and anti-phospho Tyk2 (Tyr1054/1055) antibody. Mouse anti-
STAT3 antibody (diluted 1:2500), mouse anti-JAK1 antibody (diluted
1:250), and mouse anti-Tyk2 antibody (diluted 1:1000), obtained from
BD Biosciences, Franklin Lakes, NJ, USA, were also used. Rabbit
anti-JAK2 antibody (C-20, diluted 1:200) was obtained from Santa
Cruz Biotechnology (Santa Cruz, CA, USA). After 15-h incubation
with the above antibodies, the membranes were washed with Tris-
borate saline containing 0.1% Tween 20 (0.1% TBS–Tween) and the
reactions were detected with a ProtoBlot II AP system (Promega Co.,
Madison, WI, USA), as described previously [18].
Fig. 1. Infection of Vero E6 cells with SARS-CoV affected the signaling
pathway of STAT3. Western blotting analysis of proteins from SARS-
CoV-infected Vero E6 cells was performed using antibodies that rec-
ognized forms of STAT3 phosphorylated at Tyr-705 or Ser-727.
3. Results

3.1. Tyrosine dephosphorylation of STAT3 in

SARS-CoV-infected cells

As described in our previous report, we compared the cel-

lular protein profiles of SARS-CoV-infected (18 h.p.i. when

apoptosis was not evident) and mock infected Vero E6 cells by

Western blotting using 125 antibodies to investigate cellular

responses to SARS-CoV-infection [3,4]. Cellular proteins re-
lated to several signaling pathways that responded specifically

to SARS-CoV infection, including p38 MAPK and Akt, were

found. In the present study, we examined whether signal

transducer and activator of transcription 3 (STAT3) was

dysregulated on infection with SARS-CoV, as reported for

measles virus-infection [16]. Vero E6 cells were infected with

SARS-CoV at m.o.i. of 10, and cellular proteins were har-

vested at 6, 12, 18, and 24 h.p.i. Western blotting analysis was

performed using a series of anti-STAT3 antibodies that rec-

ognized total STAT3 or Tyr-705- or Ser-727-phosphorylated

forms of STAT3. In Vero E6 cells, STAT3 was phosphorylated

constitutively at Tyr-705, whereas Ser-727 was only slightly

phosphorylated (Fig. 1; mock infection). Constitutive activa-

tion of STAT3 was observed in breast carcinoma cell lines [19].

Interestingly, Tyr-705-phosphorylated STAT3 was not de-

tected after 18 h.p.i. in SARS-CoV-infected Vero E6 cells, even

though the total amount of STAT3 did not change until 24

h.p.i. (Fig. 1). This result suggested that STAT3 Tyr-705 was

dephosphorylated from 18 to 24 h.p.i. On the other hand, Ser-

727-phosphorylated STAT3 was slightly increased at the same

time points. Based on the hypothesis that tyrosine phosphor-

ylation of STAT is necessary for its activation [9–12], these

results suggest that the level of activation of STAT3 was de-

creased in SARS-CoV-infected Vero E6 cells. Thus, the

mechanism of dysregulation of STAT3 by SARS-CoV is dif-

ferent from that by measles virus in which Measles virus V

protein forms complexes with STATs resulting in degradation

of STAT3.

3.2. Phosphorylation level of upstream kinases of STAT3

As a general explanation of signal transduction of STAT3,

binding of IL-6 to the receptor induces dimerization of the

common gp130 signal transduction subunit of the IL-6 family

of cytokine receptors, and then Janus kinases (JAK1 and 2)

and Tyk2 are phosphorylated at tyrosine residues through a

conserved membrane-proximal binding domain [20]. The

phosphorylated JAKs and Tyk2 create docking sites for

STAT3. Dimeric STAT3 Tyr-phosphorylated by JAKs and

Tyk2 migrates to the nucleus, where STAT3 activates tran-

scription of specific genes. Thus, JAK1, JAK2, Tyk2, and

STAT3 are phosphorylated in response to IL-6. To test the

hypothesis that Tyr-705-dephosphorylation of STAT3 by

SARS-CoV infection occurred due to a lack of signals from

JAK1/2 and Tyk2, the phosphorylation status of these kinases

was examined in virus-infected or mock infected Vero E6 cells.

As shown in Fig. 2, JAK1, JAK2, and Tyk2 were phosphor-



Fig. 3. Subcellular localization of Tyr-phosphorylated STAT3. (A)
Vero E6 cells were incubated in DMEM containing 0%, 2% or 5% FCS
for 18 h. After subcellular fractionation, Western blotting was per-
formed using anti-phospho STAT3 (Tyr) antibody. (B) C, M, N, S,
and T indicate cytosolic, organelle/membrane, nuclear, cytoskeletal,
and total cellular fraction, respectively.

Fig. 4. IL-22 induces Tyr phosphorylation of STAT3. (A) Vero E6 cells
were treated with IL-22 from 0 to 90 min. Cellular proteins were
sampled every 15 min. Western blotting was performed using anti-
phospho STAT3 (Tyr and Ser) antibodies. (B) SARS-CoV-infected
Vero E6 cells were treated with IL-22 for 20 min at 18 h.p.i., and then,
Western blot analysis was performed using anti-phospho STAT3 (Tyr)
and anti-phospho p38 MAPK.
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ylated at low levels in mock infected cells, whereas no signifi-

cant changes in phosphorylation level of these kinases were

observed after virus infection. These observations suggest that

Tyr-705 dephosphorylation of STAT3 in virus-infected cells

occurred independent of its upstream kinases. Therefore, total

activity of STAT3 may be low in Vero E6 cells. However, it

can not be ruled out that the anti-phospho JAK1, JAK2 and

Tyk2 antibodies used in the present study are difficult to be

recognized in the phosphorylated JAK1, JAK2 and Tyk2 in

Vero E6 cells as the datasheet included no description of cross-

reactivity with monkey.

3.3. Stimulation of Tyr-705 phosphorylation of STAT3 by

cytokines

Previous studies have indicated that at least six cytokines,

IL-2, IL-6, IL-10, IL-15, IL-17, and IL-22, can stimulate ac-

tivation of STAT3 [21–24]. Tyr-705 dephosphorylation of

STAT3 in virus-infected cells may be due to a lack of stimu-

lation by these cytokines after 18 h.p.i. Therefore, it is im-

portant to identify the cytokines responsible for stimulating

Tyr phosphorylation of STAT3 to understand the mechanism

of Tyr-705-dephosphorylation of STAT3 in virus-infected

cells. To investigate whether fetal calf serum (FCS) in the

medium contains stimulators for STAT3 phosphorylation,

Vero E6 cells were cultured in DMEM containing 0%, 2% or

5% FCS for 18 h, subjected to subcellular fractionation, and

then the proteins were analyzed by Western blotting using

anti-phospho-specific antibodies. As shown in Fig. 3A, there

were no significant differences in total amount of STAT3 in

cultures with various concentrations of FCS in the medium.

This result suggests that FCS does not contain components

that stimulate Tyr-phosphorylation of STAT3. We next de-

termined cytokines and their receptors produced in Vero E6

cells using a GEArray Q Series Human Interleukin and Re-

ceptor Gene Array (SuperArray Bioscience Corporation,

Frederick, MD, USA). Expression level of IL-22, which has

also been reported as a stimulator of STAT3 [23], was very

low, and receptors for IL-22 (IL-22RA1 and RA2) were ob-

tained as strong and weak signals, respectively (data not

shown). Therefore, we examined whether IL-22 stimulated

Tyr-705 and Ser-727 phosphorylation of STAT3. As shown in

Fig. 4A, the level of Tyr-705-phosphorylated STAT3 increased

15 min after treatment with murine IL-22 (200 ng/ml) (Pepro

Tech EC, London, UK), whereas phosphorylation of Ser-727

was not enhanced, suggesting that it is difficult for Ser-727 of
Fig. 2. Phosphorylation levels of upstream kinases of STAT3 in virus-
infected cells. Western blotting analyses were performed using anti-
phospho JAK1, JAK2, and Tyk2 antibodies.
STAT3 to be phosphorylated in Vero E6 cells stimulated by

SARS-CoV infection and IL-22. Although the phosphoryla-

tion level of p38 MAPK was not changed in SARS-CoV-in-

fected Vero E6 cells by treatment with IL-22 for 20 min at 18

h.p.i., the Tyr-705-phosphorylation of STAT3 increased

(Fig. 4B). These results suggest that signaling pathway via IL-

22 is not regulated by p38 MAPK in Vero E6 cells.

3.4. Tyr-705-phosphorylated STAT3 in the nucleus

To determine the localization of Tyr-705-phosphorylated

STAT3 in Vero E6 cells, subcellular extraction was performed

using a Subcellular Proteome Extraction Kit (Calbiochem) and

then Western blotting analyses were performed. As described

above, the amounts of total and Tyr-705-phosphorylated

STAT3 were similar in cells grown in media containing 0%, 2%

or 5% FCS. The subcellular localization of STAT3 was not
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affected by the concentration of FCS (Fig. 3A). Total STAT3

was located mainly in the cytosol, and also in membranes/or-

ganelles and the nuclear fractions. On the other hand, Tyr-

705-phosphorylated STAT3 appeared mainly in the nuclear

fraction. We next examined whether Tyr-705-phosphorylated

STAT3 was not present in the nucleus in SARS-CoV-infected

Vero E6 cells at 18 h.p.i. As shown in Fig. 3B, Tyr-705-

phosphorylated STAT3 had clearly disappeared from the

nuclear fraction in virus-infected cells. This result strongly

suggested that STAT3 did not act as a transcriptional enhancer

in SARS-CoV-infected Vero E6 cells after 18 h.p.i.

3.5. Phosphorylation of MAPKs in SARS-CoV-infected cells

Our previous report indicated that SARS-CoV-infection to

Vero E6 induced phosphorylation of p38 MAPK and its

downstream targets, HSP-27, eIF4E and CREB [3]. Phos-

phorylation of these proteins was prevented by treatment of

the cells with the p38 MAPK inhibitor SB20854. MAPKs were

reported to induce Ser-727 phosphorylation of STAT3 [25]. To

investigate whether other MAPKs, i.e., ERK1/2 (extracellular

signal-regulated kinase) and JNK, are also phosphorylated in

SARS-CoV-infected Vero E6 cells, the kinetics of phosphor-

ylation of ERK1/2 and JNK were analyzed by Western blot-

ting. Vero E6 cells were infected with SARS-CoV at m.o.i. of

10 and the cell extracts were prepared at various time points

after infection. Western blotting analysis demonstrated that

levels of phosphorylated ERK1/2 and JNK were increased in

SARS-CoV-infected cells (Fig. 5A). Two phosphorylated

forms of ERK, ERK1 and ERK2, were detected at 12 h.p.i.

and accumulated continuously up to 24 h.p.i. The kinetics of

accumulation of phosphorylated ERK1/2 and JNK in the in-

fected cells were similar to that of accumulation of phos-

phorylated p38 MAPK. We next examined whether the

upstream MAPK kinases (MAPKKs) were also phosphory-

lated in SARS-CoV-infected Vero E6 cells. The kinases of p38,

ERK1/2, and JNK are known as MKK3/6, MEK1/2, and
Fig. 5. MAPKs phosphorylation in virus-infected cells. Western blot-
ting analysis of proteins from SARS-CoV-infected Vero E6 cells was
performed using anti-phospho ERK1/2, JNK, MEK1/2, MKK4,
MKK7, and MKK3/6 antibodies.
MKK4/7, respectively. As shown in Fig. 5, MKK3/6, MEK1/

2, and MKK4/7 were phosphorylated in SARS-CoV-infected

Vero E6 cells.

3.6. Tyr dephosphorylation of STAT3 by p38 MAPK

To investigate whether Tyr-705 phosphorylation is regulated

by activated MAPKs in SARS-CoV-infected Vero E6 cells, the

infected cells were treated for 18 h with three MAPK inhibi-

tors: SB203580 (p38 MAPK inhibitor), PD98059 (MEK

inhibitor), and SP600125 (JNK inhibitor). Tyr-705- and Ser-

727-phosphorylated STAT3 were then analyzed by Western

blotting. As shown in Fig. 6A, SB203580 did not affect Ser-727

phosphorylation of STAT3, while SARS-CoV-induced de-

phosphorylation of STAT3 Tyr-705 was partially inhibited by

SB203580. On the other hand, neither PD98059 nor SP600125

affected STAT3 phosphorylation. To confirm whether inhibi-

tion of p38 prevents dephosphorylation of STAT3 Tyr-705,

virus-infected cells were treated with another p38 inhibitor,

SB202190. As shown in Fig. 6B, Tyr-705 dephosphorylation of

STAT3 in the infected cells was also partially inhibited by

SB202190. These results indicated that activated p38 MAPK in

SARS-CoV-infected Vero E6 cells regulates Tyr-705 phos-

phorylation of STAT3, but not that of Ser-727.
4. Discussion

In the present and previous studies, we reported that the

cellular mechanisms by which SARS-CoV caused the activa-

tion of physiological intracellular signaling cascades that lead

to the phosphorylation and activation of downstream mole-

cules [3,4]. We showed here that SARS-CoV-infection of per-

missive Vero E6 cells stimulated p38, ERK1/2, and JNK
Fig. 6. Effects of treatment of SARS-CoV-infected Vero E6 cells with
p38 MAPK inhibitor. (A) Vero E6 cells were infected with SARS-CoV
at m.o.i. of 10, and then incubated with SB203580, PD98059, and
SP600125 at concentrations from 10 to 50 lM for 17 h. Western
blotting analyses were performed to detect Tyr-705- and Ser-727-
phosphorylated forms of STAT3. (B) SB202190 was used as a p38
MAPK inhibitor.
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signaling pathways. The activation of p38 MAPK induces

cytopathic effects in Vero E6 cells, whereas ERK1/2 and JNK

had no effect (unpublished data). As MAPKKs for p38,

ERK1/2, and JNK were all phosphorylated in virus-infected

cells, further studies are needed to identify triggers of the

stress-activated response pathway by viral infection. The

present study strongly suggested that the p38 MAPK signaling

pathway is upstream of Tyr-705 dephosphorylation of STAT3.

We also demonstrated that infection with SARS-CoV slightly

increased the level of phosphorylation of Ser-727 STAT3.

Although the effect of Ser-727 phosphorylation on the function

of STAT3 in SARS-CoV-infected cells remains unresolved, a

previous study showed that phosphorylation of Ser-727 of

STAT3 negatively modulates its tyrosine phosphorylation [26].

Thus, the timing of Tyr-705 dephosphorylation and Ser-727

phosphorylation may be almost the same in SARS-CoV-in-

fected cells. The Ser-727-phosphorylated STAT3-mediated

expression of a Bcl-2 family member, Mcl-1, is essential for the

survival of cells [27], suggesting that Ser-727-phosphorylated

STAT3 has anti-apoptotic activity. However, the mechanism

through which serine phosphorylation regulates the tran-

scriptional activities of STAT3 is still unclear. On the other

hand, one of the important roles of Tyr-705-phosphorylated

STAT3 is binding to regulatory DNA elements that control

the expression of target genes [28,29]. Suppression of STAT3

expression by siRNA induces apoptosis in several astrocytoma

cell lines, and STAT3 is required for the expression of the anti-

apoptotic genes survivin and Bcl-xL in the A172 glioblastoma

cell line [30]. In addition, the role of STAT proteins during

viral infection has been the subject of several recent studies.

The proteasome-dependent degradation of STAT1 is induced

by V protein of simian virus 5 [31], while type II human

parainfluenza virus V protein targets STAT2, and mumps vi-

rus V protein targets both STAT1 and STAT3 [32–34]. In

measles virus-infected cells, the V protein forms complexes

with STAT1, STAT2, and STAT3, and inhibits both IL-6- and

v-Src STAT3-dependent signaling [16]. Thus, a role of V

protein as an inhibitor of the STAT3 signaling pathway is

advantageous for viral growth. SARS-CoV may also obtain a

growth advantage by Tyr-705 dephosphorylation of STAT3.

Our recent study indicated that Akt was also activated in

response to SARS-CoV-replication [4]. Although phosphory-

lation of serine residue 473 on Akt was detected at least 8

h.p.i., threonine residue 308 was not phosphorylated in virus-

infected Vero E6 cells. A downstream target of Akt, glycogen

synthase kinase 3b (GSK-3b), was slightly phosphorylated,

indicating that the level of activation of Akt was very low. The

present study showed that IL-22 can induce Tyr-705 phos-

phorylation of STAT3, but not Ser-727 phosphorylation,

similarly to SARS-CoV infection. It may be difficult for Ser-

727 of STAT3 to be phosphorylated in Vero E6 cells, similarly

to Thr-308 of Akt. Based on these results, we hypothesized

that weak activation of Akt cannot prevent apoptosis induced

by SARS-CoV infection in Vero E6 cells. In SARS-infected

Vero E6 cells, both incomplete activation of Akt and STAT3

dephosphorylation via p38 MAPK activation lead to apopto-

tic cell death. We assume that these are at least part of the

mechanisms of the pathogenesis of SARS-CoV infection.
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